運動分子生物学研究室
 教授:藤井宣晴  准教授:眞鍋康子  助教:古市泰郎

 首都大学東京 人間健康科学研究科 ヘルスプロモーションサイエンス学域

本文へジャンプ

教授 藤井宣晴 Nobuharu Fujii Ph.D. 


写真にマウスをのせると、真剣な顔で何を検索しているのかがよくわかります。


研究履歴

1994年 筑波大学博士課程体育科学研究科修了

1994年 筑波大学応用生物化学系遺伝子実験センター

       国際科学振興財団 専任研究員

1996年 筑波大学応用生物化学系遺伝子実験センター

       日本学術振興会 特別研究員 –PD

1999年 ジョスリン糖尿病センター(米国), ポストドクトラルフェロー

       ハーバード大学医学部(米国), ポストドクトラルフェロー

       日本学術振興会 海外特別研究員

2001年 ジョスリン糖尿病センター, Research Associate

       ハーバード大学医学部, Instructor of Medicine

2008年 首都大学東京 大学院人間健康科学研究科

       ヘルスプロモーションサイエンス学域 教授

1999年- Red Sox Nation (Boston), Citizen


専門分野
 

これまで、運動生理学、分子生物学、代謝内分泌学の研究室で、それぞれの研究に従事してきました。現在は、運動の大事な要素である「筋収縮」に焦点を当て、骨格筋と筋収縮の新生物学を展開しています。運動によって健康がもたらされる仕組みを、細胞および細胞内分子のレベルで解明することを目標にしています。



研究者を志望する皆さんへ

研究が大好きな人、研究に強い憧れがある人、研究者になりたいと思っている人。そんな人たちの受け皿となれればと思っています。藤井・眞鍋研のメンバーは皆、自分らしい新発見をして、それを世界に向け発信することに真剣です。卒業研究、大学院受験、ポスドク研究を考えている人は、わたし達の研究活動をぜひ見に来てください。相談や見学だけでなく、ゼミ体験参加も随時行っています。(042-677-2966,  fujiin@tmu.ac.jp)

 

注意

ニューヨーク・ヤンキースファンは入室を制限される場合がありますのであらかじめご了承ください。

異なる視点からのプロフィールはこちら

研究履歴に対する論文情報

Miyatake S, Manabe Y, Inagaki A, Furuichi Y, Takagi M, Taoka M, Isobe T, Hirota K, Fujii NL. Macrophage migration inhibitory factor diminishes muscle glucose transport induced by insulin and AICAR in a muscle type-dependent manner. Biochem.Biophys.Res.Commun., 444, 496-501, 2014

Goto-Inoue N, Yamada K, Inagaki A, Furuichi Y, Ogino S, Manabe Y, Setou M, Fujii NL. Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet. Sci.Rep., 3, 3267, 2013

Tanaka A, Woltjen K, Miyake K, Hotta A, Ikeya M, Yamamoto T, Nishino T, Shoji E, Sehara-Fujisawa A, Manabe Y, Fujii N, Hanaoka K, Era T, Yamashita S, Isobe K, Kimura E, Sakurai H. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS One,8, e61540, 2013

Tsuchiya M*, Manabe Y* (*contributed equally), Yamada K, Furuichi Y, Hosaka M, Fujii NL.  Chronic exercise enhances insulin secretion ability of pancreatic islets without change in insulin content in non-diabetic rats. Biochem.Biophys.Res.Commun., 430(2):676-682, 2013

Manabe Y, Gollisch KSC, Holton L, Kim Y, Brandauer J, Fujii NL, Hirshman MF, Goodyear LJ.  Exercise training-induced adaptations associated with increases in skeletal muscle glycogen content. FEBS J., 280(3):916-926, 2013

Manabe Y, Miyatake S, Takagi M, Nakamura M, Okeda A, Nakano T, Hirshman MF, Goodyear LJ, Fujii NL.  Characterization of an Acute Muscle Contraction Model using Cultured C2C12 Myotubes. PLoS ONE,7(12):e52592, 2012

Goto-Inoue N, Setou M, Fujii NL.  Visualization of metabolite changein skeletal muscle by contraction using imaging mass spectrometry. J.Phys.Fit.Sport.Med.,1(2): 347-350. 2012

Goto-Inoue N, Manabe Y, Miyatake S, Ogino S, Morishita A, Hayasaka T, Masaki N, Setou M, Fujii NL.  Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry.  Anal.Bioanal.Chem., 403(7):1863-1867,2012

Henstridge DC, Bruce CR, Pang CP, Lancaster GI, Allen TL, Estevez E, Gardner T, Weir JM, Meikle PJ, Lam KS, Xu A, Fujii N, Goodyear LJ, Febbraio MA.  Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice. Diabetologia. 55(10):2769-2778. 2012

Toyoda T, An D, Witczak CA, Koh HJ, Hirshman MF, Fujii N, Goodyear LJ. Myo1c regulates glucose uptake in mouse skeletal muscle.  J.Biol.Chem.  2011,  286(6):4133-40.

Sugita S, Kamei Y, Akaike F, Suganami T, Kanai S, Hattori M, Manabe Y, Fujii N, Takai-Igarashi T, Tadaishi M, Oka J, Aburatani H, Yamada T, Katagiri H, Kakehi S, Tamura Y, Kubo H, Nishida K, Miura S, Ezaki O, Ogawa Y. Increased systemic glucose tolerance with increased muscle glucose uptake in transgenic mice overexpressing RXRγ in skeletal muscle.  PLoS One. 2011;6(5):e20467

Koh HJ, Toyoda T, Fujii N, Jung MM, Rathod A, Middelbeek RJ, Lessard SJ, Treebak JT, Tsuchihara K, Esumi H, Richter EA, Wojtaszewski JF, Hirshman MF, and Goodyear LJ,  Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle.  Proc Natl.Acad.Sci. USA. 2010; 107(35): 15541-6.

 
Jessen N, Koh HJ, Folmes CD, Wagg C, Fujii N, Løfgren B, Wolf CM, Berul CI, Hirshman MF, Lopaschuk GD, and Goodyear LJ,  Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function.  Biochim Biophys Acta. 2010; 1802(7-8): 593-600.

 
An D, Toyoda T, Taylor EB, Yu H, Fujii N, Hirshman MF, and Goodyear LJ,  TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle.  Diabetes. 2010; 59(6): 1358-65.

Witczak CA, Jessen N, Warro DM, Toyoda T, Fujii N, Anderson ME, Hirshman MF, and Goodyear LJ,  CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.  Am.J.Physiol. Endocrinol.Metab. 2010; 298(6): E1150-60.

Fujii N.  Molecular mechanism of glucose transport in skeletal muscle.  Adv.Exer.Sport.Physiol. 2008; 14(3): 45-47
 

Fujii N, Ho RC, Manabe Y, Jessen N, Toyoda T, Holland WL, Summers SA, Hirshman MF, Goodyear LJ.  Ablation of AMP-activated protein kinase alpha2 activity exacerbates insulin resistance induced by high-fat feeding of mice.  Diabetes. 2008 Nov;57(11):2958-66

Higaki Y, Mikami T, Fujii N, Hirshman MF, Koyama K, Seino T, Tanaka K, Goodyear LJ.  Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol-3-kinase-dependent pathway.  Am.J.Physiol. (Endocrinol Metab.) 2008; May;294(5):E889-97.

 Taylor EB, An D, Kramer HF, Yu H, Fujii N, Roeckl KS, Bowles N, Hirshman MF, Xie J, Feener EP, Goodyear LJ.  Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle.  J.Biol.Chem. 2008; 283(15):9787-96.

Kramer HF, Taylor EB, Witczak CA, Fujii N, Hirshman MF, Goodyear LJ,  Calmodulin-binding domain of AS160 regulates contraction- but not insulin-stimulated glucose uptake in skeletal muscle.  Diabetes 2007; 56(12):2854-62.


Ho RC, *Fujii N, Witters LA, Hirshman MF, Goodyear LJ.  Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle

Rockl KS, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ.  Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift.  Diabetes 2007; 56(8):2062-9.

Fujii N, Seifert MM, Kane EM, Peter LE, Ho RC, Winstead S, Hirshman MF, Goodyear LJ.  Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal suscle. - Insight from analysis of a transgenic mouse model -  Diabetes Res.Clin.Pract. 2007; 77:S92-8.

Witczak CA, Fujii N, Hirshman MF, Goodyear LJ.  Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation.  Diabetes 2007; 56(5):1403-9

Fujii N, Jessen N, Goodyear LJ.  AMP-activated Protein Kinase and the Regulation of Glucose Transport.  Am.J.Physiol. (Endcrinol.Metab.) 2006; 291(5):E867-77


Witczak CA, Hirshman MF, Jessen N, Fujii N, Seifert MM, Brandauer J, Hotamisligil GS, Goodyear LJ.  JNK1 deficiency does not enhance muscle glucose metabolism in lean mice.  Biochem.Biophys.Res.Commun. 2006; 350(4):1063-8


Koh H, Arnolds DE, Fujii N, Hirshman MF, Goodyear LJ.  Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3.  Mol.Cell Biol. 2006; 26(22):8217-27


Kramer HF, Witczak CA, Taylor EB, Fujii N, Hirshman MF, Goodyear LJ.  AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle.  J.Biol.Chem. 2006; 281(42):31478-85

 
Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ.  Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle.  Diabetes 2006; 55(7):2067-76


Sakamoto K, Arnolds DE, Fujii N, Kramer HF, Hirshman MF, Goodyear LJ.  Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle.  Am.J.Physiol. (Endocrinol.Metab.) 2006; 291(5):E1031-7

Yu H, Hirshman MF, Fujii N, Pomerleau JM, Peter LE, Goodyear LJ.  Muscle-specific overexpression of wild type and R225Q mutant AMP-activated protein kinase gamma3 Subunit differentially regulates glycogen accumulation.  Am.J.Physiol. (Endocrinol.Metab.) 2006; 291(3):E557-65

Aschenbach WG, Ho RC, Sakamoto K, Fujii N, Li Y, Kim YB, Hirshman MF, Goodyear LJ.  Regulation of dishevelled and beta-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3beta signaling pathway.  Am.J.Physiol. (Endocrinol.Metab.) 2006; 291 (1): E152-8.


Fujii N, Hirshman MF, Kane EM, Ho RC, Peter LE, Seifert MM, Goodyear LJ.  AMP-activated protein kinase alpha2 activity is not essential for contraction-and hyperosmolarity-induced glucose transport in skeletal muscle.  J.Biol.Chem. 2005; 280 (47): 29033-29041.

Pold R, Jensel LS, Jessen N, Buhl ES, Schmitz O, Flyvbjerg A, Fujii N, Goodyear LJ, Gotfredsen CF, Brand CL, Lund S.  Long-term AICAR administration and exercise prevents diabetes in ZDF rats.  Diabetes 2005; 54(4):928-34<

Musi N, Hirshman MF, Arad M, Xing Y, Fujii N, Pomerleau J, Ahmad F, Berul CI, Seidman JG, Tian R, Goodyear LJ.  Functional Role of AMP-activated protein kinase in the heart during exercise.  FEBS Lett. 2005; 579(10):2045-50

Fujii N, Aschenbach WG, Musi N, Hirshman MF, Goodyear LJ.  Regulation of glucose transport by the AMP-activated protein kinase.  Proc.Nutr.Soc. 2004; 63: 205-210

Alcazar O, Ho R, Fujii N, Goodyear LJ.  cDNA cloning and functional characterization of a novel splice variant of c-Cbl associated protein (CAP) from mouse skeletal muscle.  Biochem.Biophys.Res.Comm. 2004; 317(1): 285-93

Fujii N, Boppart MD, Dufresne SD, Crowley PF, Jozsi AC, Sakamoto K, Kim S, Miyazaki H, Hirshman MF, Goodyear LJ.  Overexpression or ablatiation of JNK in skeletal muscle has no effect on glycogen synthase activity.  Am.J.Physiol. (Cell Physiol.) 2004; 287(1): C200-8

Ho R, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ.  p38gamma MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle.  Am.J.Physiol. (Regul.Integr.Comp.Physiol.) 2004; 286(2): R342-9

Yu H, Fujii N, Hirshman MF, Pomerleau JM, Goodyear LJ.  Cloning and characterization of mouse 5’AMP-activated protein kinase gamma3 subunit.  Am.J.Physiol. (Cell Physiol.) 2004; 286(2): C283-92

Iemitsu M, Miyauchi T, Maeda S, Sakai S, Fujii N, Miyazaki H, Kakinuma Y, Matsuda M, Yamaguchi, I.  Cardiac hypertrophy by hypertension and exercise training exhibits different gene expression of enzymes in energy metabolism.

 Hypertens.Res.2003; 26(10): 829-37

Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, Goodyear LJ, Tian R.  Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative alpha 2 subunit of AMP-activated protein kinase.  J.Biol.Chem.2003; 278(31): 28372-28377

Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC.  Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression.  J.Biol.Chem. 2002; 277(33): 30010-30018

Aschenbach WG, Hirshman MF, Fujii N, Sakamoto K, Howlett KF, Goodyear LJ.  Effect of AICAR treatment on glycogen metabolism in skeletal muscle.  Diabetes 2002; 51(3): 567-573

Iemitsu M, Miyauchi T, Maeda S, Sakai S, Kobayashi T, Fujii N, Miyazaki H, Matsuda M, Yamaguchi I.  Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am.J.Physiol. (Regul Integr Comp Physiol ) 2001; 281(6): R2029-2036

Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE.  Role of AMP-activated protein kinase in mechanism of metformin action.  J.Clin.Invest. 2001; 108(8): 1167-1174

Musi N, Fujii N, Hirshman MF, Ekberg I, Froberg S, Ljungqvist O, Thorell A, Goodyear LJ.  AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise.  Diabetes 2001; 50(5): 921-927

Musi N, Hayashi T, Fujii N, Hirshman MF, Witter LA, Goodyear LJ.  AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle.  Am.J.Physiol. (Endocrinol. Metab.) 2001; 280 (5): E677-68

Higaki Y, Hirshman MF, Fujii N, Goodyear LJ.  Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle.  Diabetes 2001; 50(2): 241-247

Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, Mu J, Ljungqvist O, Birnbaum MJ, Witters LA, Thorell A, Goodyear LJ.  Exercise induces isoform-specific increases in 5’ AMP-activated protein kinase in human skeletal muscle. Biochem.Biophys.Res.Comm. 2000; 273(3): 1150-1155

Hayashi T, Hirshman M, Fujii N, Habinowski SA, Witters LA, Goodyear LJ.  Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism.  Diabetes 2000; 49(4): 527-531

Tanaka M, Tsuchida S, Imai T, Fujii N, Miyasaki H, Ichiki T, Naruse M, Inagami T.  Vascular response to angiotensin II is exaggerated through an upregulation of AT1 receptor in AT2 knockout mice.  Biochem.Biophys.Res.Commun. 1999; 258(1): 194-19

Kotani E, Sugimoto M, Kamata H, Fujii N, Saitoh S, Usuki S, Kubo T, Song K, Miyazaki M, Murakami K, Miyazaki H.  Biological roles of angiotensin II via its type2 receptor during rat follicle atresia.  Am.J.Physiol. (Endocrinol. Metab.)  1999; 276(39): E25-33

Fujii N, Nagashima S, Yukawa K, Miyauchi T, Maki S, Sakai S, Murakami K, Miyazaki H.  Hypotensive effects of an angiotensin II type 1 receptor antagonist differ between exercised and sedentary rats aged from 4 to 19 weeks.  Jpn.J.Physiol. 1998(3); 48: 215-218

Fujii N, Homma S, Yamazaki F, Sone R, Ikegami H, Murakami K, Miyazaki H.  b-adrenergic receptor number in human lymphocytes is inversely correlated with aerobic capacity.  Am.J.Physiol. (Endcrinol. Metab.) 1998; 274(37): E1106-1112

Fujii N, Shibata T, Homma S, Ikegami H, Murakami K, Miyazaki H.  Exercise-induced changes in b-adrenergic receptor mRNA level measured by competitive RT-PCR.  J.Appl.Physiol. 1997; 82(6): 1926-1931

Fukuoka Y, Shigematsu M, Itoh M, Fujii N, Homma S, Ikegami H.  Effects of football training on ventilatory and gas exchange kinetics to sinusoidal work load.   J.Sport.Med.Phys.Fit. 1997; 37(3): 161-167

Fujii N, Shibata T, Yamazaki F, Sone R, Fukuoka Y, Nabekura Y, Ikegami H, Murakami K, Miyazaki H.  Exercise-induced change in b-adrenergic receptor number in lymphocytes from trained and untrained men. Jpn.J.Physiol. 1996; 46(5): 389-395

Sone R, Yamazaki F, Fujii N, Fukuoka Y, Ikegami H.   Respiratory variability in R-R interval during sinusoidal exercise.  Eur.J.Appl.Physiol. 1996; 75(1): 39-46

Yamazaki F, Fujii N, Sone R, Ikegami H.  Responses of sweating and body temperature to sinusoidal exercise in physically trained men.  J.Appl.Physiol. 1996; 80(2): 491-495

Sone R, Yamazaki F, Homma S, Fujii N, Ikegami H.  Effects of sensory stimulation on respiratory cardiac cycle variability in humans.   Eur.J.Appl.Physiol. 1995; 70(5): 394-400

Fujii N, Tanaka M, Ohnishi J, Yukawa K, Takimoto E, Shimada S, Naruse M, Sugiyama F,Yagami K, Murakami K,  Miyazaki H.  Alterations of angiotensin II receptor contents in hypertrophied hearts.  Biochem.Biophys.Res.Comm. 1995; 212(2): 326-333

Yamazaki F, Fujii N, Sone R, Ikegami H.  Mechanisms of potentiation in sweating induced by long-term physical training.  Eur.J.Appl.Physiol. 1994; 69(3): 228-232

Homma S, Fujii N, Sone R, Yamazaki F, Eda H, Ikegami H.  Muscle circulation and metabolic activity during exhaustive cycle exercise studied by near-infrared spectroscopy.  J.Exerc.Sci. 1993; 3: 49-56

Yamazaki F, Sone R, Fujii N, Ikegami H.  Comparison of sweating response during exercise and recovery in terms of sweating rate and body temperature.  Int.J.Biometeorol. 1993; 37(4): 212-217

Yamazaki F, Sone R, Fujii N, Homma S, Ikegami H.  An improved method for measurement of sweat expulsions during profuse sweating.  Jpn.J.Physiol. 1993; 42(6): 991-996

Fujii N, Miyazaki H, Homma S, Ikegami H.   Dynamic exercise induces translocation of b-adrenergic receptors in human lymphocytes.  Acta Physiol.Scand. 1993; 148(4): 463-464