

放射化学の基礎事項

核種、放射壞変、壞変系列、天然放射性核種、核反応、照射効果

理学研究科化学専攻

大浦 泰嗣

令和2年度放射線業務従事者教育訓練 (2020/5/23)

																	-2
1	1																18
Н	2											13	14	15	16	17	He
Li	Be											В	С	N	0	F	Ne
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Ρ	S	Cl	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	У	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Уb	Lu
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

安定元素

天然放射性同位体がある元素

天然放射性元素

113番、115番、117番、118番元の命名 (2016年):
 Nh (ニホニウム) Mc (モスコビウム) Ts (テネシン) Og (オガネソン)
 理研で113番元素発見 (2004年、2012年) 113番元素の命名権が理研に(2015年)
 ²⁰⁹Biは放射性 [(1.9±0.2)×10¹⁹年] (2003年)

Z: 同位体 *isotope*N: 同中性子体 *isotone*A: 同重体 *isobar*

 12
 C6
 13
 C7
 14
 C8

 安定
 安定
 安定
 放射性

放射壊変により他の核種へ自発的に変換する

エネルギーを放出してより安定な状態へ

γ遷移 α 壞変 ₿ 壊変 ${}^{A}_{7}E \rightarrow {}^{A-4}_{7-2}E' + {}^{4}_{2}He$ $^{A}_{Z}E \rightarrow ^{A}_{Z+1}E' + e^{-} + \overline{\nu}$ ${}^{A}_{z}E^{*} \rightarrow {}^{A}_{z}E + \gamma$ $^{A}_{Z}E \rightarrow ^{A}_{Z-1}E' + e^{+} + v$ 核異性体転移 α 線 $^{A}_{Z}E + e^{-} \rightarrow ^{A}_{Z-1}E' + v$ *γ*線, 転換電子 B線, ア線 自発核分裂 中性子線

確率的現象

dN $=\lambda N$ 壊変速度: dt 単位時間に壊変する数 N: 放射性核種の数, λ: 壊変定数, t: 時間 $N = N_0 e^{-\lambda t}$ $N_0: t = 0 のときのN$

半減期

 $N = N_0 e^{-\lambda t}$

 $N_0 M N_0 / 2 になるまでの時間: T_{1/2}$

放射線を出す能力

単位時間に壊変する核種の数

単位: ベクレル(Bq), 1秒間あたりに壊変する核種の数

 $\left(\begin{array}{c} + \scriptstyle \square U - (Ci): ^{226}Ra 1g & E 同じ壊変数\\ 1 Ci = 3.7 \times 10^{10} Bq \end{array}\right)$

$A = \lambda N = -dN / dt$

A:放射能 [Bq], λ:壊変定数[s⁻¹], N:核種数

$$A = A_0 e^{-\lambda t}$$

- ・放射性物質(放射性核種,放射性核種を含む物)
- ・放射線
- ・放射能 (放射線を出す能力. 放射性核種の量. 物質を示す用語ではない)

(例) カリウムの放射能

$A = \lambda N$

³⁹K:93.3%, ⁴⁰K:0.012%, ⁴¹K:6.7% 半減期:1.28×10⁹年

K 1g中には. . . $\left(\frac{0.693}{1.28 \times 10^9 \times 365 \times 24 \times 3600}\right) \times \left(\frac{1}{39.1} \times 6.02 \times 10^{23} \times 0.012 \times 10^{-2}\right)$ = 32 Bq 人体中のK濃度 = 0.35 % 体重が60 kgだと, 6.7 kBq 比放射能

比放射能

[Bq / g]

放射性核種を含む元素の単位質量あたりの放射能

32P: (a) ${}^{31}P(n, \gamma){}^{32}P, T_{1/2}=14 \square$ 1 mg照射すると60 MBq生成 → 6×10⁴ MBq/g (b) ${}^{32}S(n, p){}^{32}P$, ${}^{32}POO = {}^{31}Pee含まない [無担体]$ $60 \text{ MBq} = 1.0 \times 10^{14} \text{ atoms} = 5.2 \times 10^{-9} \text{ g}$ $\rightarrow 1.2 \times 10^{10} \text{ MBg/g}$ $A_{S} = \frac{A}{W} = \frac{A}{(A/\lambda)/N_{A} \times M} = \frac{\lambda \times N_{A}}{M}$ 時間によらず一定

[Bq / g, Bq / mL]

放射性核種を含む物質(試料)の単位質量あたり の放射能

人体中の⁴⁰K 食品中の¹³⁷Cs

度 純

化学的純度 = 着目する放射性化学種の量 全体の量

<u>放射性核種純度</u> = 着目する放射性化学種の放射能 (放射純度) 全放射能

³²P, ³³P

特定の化学形に見いだされる放射能

放射化学的純度 = -PO₄³⁻

その核種の全放射能

度 純

特定の化学形に見いだされる放射能

その核種の全放射能

PO₄³⁻

放射化学的純度 =

度 純

化学的純度 = _____着目する放射性化学種の量 全体の量

-15-

度 純

特定の化学形に見いだされる放射能

その核種の全放射能

PO₄³⁻

放射化学的純度 =

-16-

墵変系列

壊変生成物が放射性核種であるとき,壊変が連続的 に生じる。この一連の壊変を起こす核種のつながり を壊変系列という

 ${}^{99}\text{Mo} \xrightarrow{\beta^{-}}_{66.0 \text{ h}} {}^{99\text{m}}\text{Tc} \xrightarrow{\text{IT}}_{6.0 \text{ h}} {}^{99\text{g}}\text{Tc} \xrightarrow{\beta^{-}}_{2.1\text{x}10^{5} \text{ y}} {}^{99}\text{Ru}$ ${}^{238}\text{U} \xrightarrow{\alpha}_{4.5\text{x}10^{9} \text{ y}} {}^{228}\text{Ra} \xrightarrow{\beta^{-}}_{5.7 \text{ y}} {}^{228}\text{Ac} \xrightarrow{\beta^{-}}_{6.13 \text{ h}} \dots \longrightarrow {}^{212}\text{Po} \xrightarrow{\alpha}_{0.3\mu\text{s}} {}^{208}\text{Pb}$

親

娘 孫

-17-

放射平衡

壊変系列核種の壊変率

$$\frac{A_{P}}{Z_{P}} E_{P} \xrightarrow{\lambda_{p}} A_{D} E_{D} \xrightarrow{\lambda_{D}} A_{GD} E_{GD}$$

$$t = 0; \qquad N_{P}^{0} \qquad N_{D}^{0} \qquad N_{GD}^{0}$$

$$t; \qquad N_{P} \qquad N_{D} \qquad N_{GD}$$

$$\frac{dN_{P}}{dt} = -\lambda_{P} N_{P} \qquad \qquad \frac{dN_{D}}{dt} = -\lambda_{D} N_{D} + \lambda_{P} N_{P}$$

放射平衡
$$\frac{dN_P}{dt} = -\lambda_P N_P$$
 $\frac{dN_D}{dt} = \lambda_P N_P - \lambda_D N_D$

$$\begin{cases} N_{P} = N_{P}^{0}e^{-\lambda_{P}t} \\ N_{D} = \frac{\lambda_{P}}{\lambda_{D} - \lambda_{P}} N_{P}^{0} \left(e^{-\lambda_{P}t} - e^{-\lambda_{D}t}\right) + N_{D}^{0}e^{-\lambda_{D}t} \\ \hline \square \square \begin{bmatrix} \lambda_{P} \neq f_{c} \end{bmatrix} \\ A_{P} = A_{P}^{0}e^{-\lambda_{P}t} \\ A_{D} = \frac{\lambda_{D}}{\lambda_{D} - \lambda_{P}} A_{P}^{0} \left(e^{-\lambda_{P}t} - e^{-\lambda_{D}t}\right) + A_{D}^{0}e^{-\lambda_{D}t} \end{cases}$$

$$\begin{cases} A_P = A_P^0 e^{-\lambda_P t} \\ A_D = \frac{\lambda_D}{\lambda_D - \lambda_P} A_P^0 \left(e^{-\lambda_P t} - e^{-\lambda_D t} \right) + A_D^0 e^{-\lambda_D t} \end{cases}$$

1)
$$\lambda_{\mathrm{P}} < \lambda_{\mathrm{D}}$$
 $\left[T_{1/2}^{P} > T_{1/2}^{D}\right]$

2)
$$\lambda_{\mathrm{P}} \ll \lambda_{\mathrm{D}} \qquad \left[T_{1/2}^{P} \gg T_{1/2}^{D}\right]$$

3)
$$\lambda_{\mathrm{P}} > \lambda_{\mathrm{D}}$$
 $\left[T_{1/2}^{P} < T_{1/2}^{D}\right]$

ここでは
$$A_D^0 = 0$$
 とする

1)
$$\lambda_{\mathbf{P}} < \lambda_{\mathbf{D}}$$
 $\begin{bmatrix} T_{1/2}^{P} > T_{1/2}^{D} \end{bmatrix}$ (概ね T^{P}/T^{D} = 10倍~数10倍くらいまで)

$$e^{-\lambda_P t} >> e^{-\lambda_D t}$$

$$A_D \approx \frac{\lambda_D}{\lambda_D - \lambda_P} A_P^0 e^{-\lambda_P t} = \frac{\lambda_D}{\lambda_D - \lambda_P} A_P$$

$$\frac{A_D}{A_P} = \frac{\lambda_D}{\lambda_D - \lambda_P}$$

 $\begin{cases} A_P = A_P^0 e^{-\lambda_P t} \\ A_D = \frac{\lambda_D}{\lambda_D - \lambda_P} A_P^0 \left(e^{-\lambda_P t} - e^{-\lambda_D t} \right) \end{cases}$

2)
$$\lambda_{\mathbf{P}} \ll \lambda_{\mathbf{D}}$$
 $\begin{bmatrix} T_{1/2}^{P} >> T_{1/2}^{D} \end{bmatrix}$ $\begin{cases} A_{P} = A_{P}^{0} e^{-\lambda_{P}t} \\ A_{D} = \frac{\lambda_{D}}{\lambda_{D} - \lambda_{P}} A_{P}^{0} \left(e^{-\lambda_{P}t} - e^{-\lambda_{D}t} \right) \end{cases}$ (概ね T_{1}/T_{2} = 数100倍以上)

-23-

充分時間が経過すると、
$$e^{-\lambda_P t} >> e^{-\lambda_D t}$$
. また、 $\lambda_D - \lambda_P \approx \lambda_D$

$$A_D \approx \frac{\lambda_D}{\lambda_D - \lambda_P} A_P^0 e^{-\lambda_P t} = \frac{\lambda_D}{\lambda_D - \lambda_P} A_P \approx \frac{\lambda_D}{\lambda_D} A_P$$

$$A_D = A_P$$
 親核種と娘核種の放射能が等しい

例)
$${}^{90}Sr \xrightarrow{\beta^{-1}}{28.7 \text{ y}} {}^{90}Y \xrightarrow{\beta^{-1}}{90}Zr$$

放射平衡の性質を利用して親核種から生成 する娘核種を繰り返し抽出すること

$^{99}Mo(66 h) \rightarrow ^{99m}Tc (6h)$

http://fri.fujifilm.co.jp/med/products/
diagnosis/brain/utk/

Tcジェネレータ

http://fri.fujifilm.co.jp/med/products/diagnosis/brain/utk/p ack/pdf/fri_med_utk_attach.pdf

・一次放射性核種

・二次放射性核種

·誘導放射性核種

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Уb	Lu
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

天然放射性元素

一次放射性核種

太陽系ができた時に既に存在し,長半減期のため壊変しつくさ ずに現在も存在する核種

・壊変系列をつくる

²³⁸U(4.5×10⁹年), ²³⁵U(7.0×10⁸年), ²³²Th(1.4×10¹⁰年)

・壊変系列をつくらない

 40 K (1.3×10⁹年) ¹¹⁵In (4.4×10¹⁴年) ¹⁴²Ce (>5×10¹⁵年) ¹⁴⁸Sm (7×10¹⁵年) ¹⁷⁴Hf (2.0×10¹⁵年) ¹⁹⁰Pt (6.5×10¹¹年) ⁵⁰V (1.4×10¹⁷年)
¹²³Te (1.2×10¹³年)
¹⁴⁴Nd (2.3×10¹⁵年)
¹⁵²Gd (1.1×10¹⁴年)
¹⁸⁷Re (5×10¹⁰年),

87Rb (4.8×10¹⁰年)
¹³⁸La (1.1×10¹¹年)
¹⁴⁷Sm (1.1×10¹¹年)
¹⁷⁶Lu (3.8×10¹⁰年)
¹⁸⁶Os (2.0×10¹⁵年)

同位体存在度 > 10%

二次放射性核種

- ・一次放射性核種の壊変系列に属する短寿命核種
- ・自発核分裂により生成した核種

ウラン系列: ²³⁸U
$$\rightarrow$$
 ²⁰⁶Pb, 質量数 4n+2
トリウム系列: ²³²Th \rightarrow ²⁰⁸Pb, 質量数 4n
アクチニウム系列: ²³⁵U \rightarrow ²⁰⁷Pb, 質量数 4n+3

誘導放射性核種

天然において主に宇宙線との核反応により常に大気中で生成して いる核種

NやOの核破砕反応

³H (12.3 y), ⁷Be (53.3 d), ¹⁰Be (1.5×10⁶ y), ¹⁴C (5.7×10³ y)

Arの核破砕反応

²²Na (2.6 y), ³²Si (172 y), ³²P (14.3 d), ³⁵S (87.5 d), ³⁶Cl (3.0×10⁵ y)

天然において主に宇宙線との核反応により常に大気中で生成して いる核種

原子核反応により製造

研究用原子炉

陽日	子娄	攵		無担	体	
Z+2		(α,3n)	(α,2n)	(α,n)		2.40
Z+1		(p, n)	(p, γ) (d, n)	(α,pn)		249
Z		(γ,n) (n, 2n)	TARGET	(n, γ) (d, p)		
Z-1		(γ, pn) (d, α)	(γ,p) (n, pn)	(n, p)		
Z-2		(n, α)	核	分裂 核	破砕	
		N-1	N	N+1		中性子数

市販RI 放射性医薬品

 $^{18}\text{O} + p \rightarrow ^{18}\text{F} + n$ $^{249}Cf + ^{48}Ca \rightarrow ^{294}118 + 3n$

核反応による生成量

$$N = n\phi\sigma t$$
 $N/n = \phi\sigma t$
 $A = n\phi\sigma(1 - e^{-\lambda t})$
 _{飽和係数}

(例) ³¹P(n, γ)³²P, T_{1/2}=14日 φ : 10¹³ cm⁻²s⁻¹ σ : 0.17 b = 0.17×10⁻²⁴ cm² λ : 0.049 d⁻¹ = 5.7×10⁻⁷ s⁻¹ t: 14 d = 1.2×10⁶ s A = 1.6×10¹⁰ Bq/g $N/n = 2.0 \times 10^{-6}$

1.2 飽和係数 1 0.8 1 - e^{-λt} 0.6 0.4 0.2 0 0 2 4 6 8 10 12 t / T_{1/2}

$^{209}\text{Bi} + ^{70}\text{Zn} \rightarrow ^{278}\text{Nh} + \text{n}$

気体充填型反跳核分離装置 (GARIS)

http://www.riken.jp/r-world/info/release/press/2004/040928_2/index.html

 $^{209}\text{Bi} + ^{70}\text{Zn} \rightarrow ^{278}\text{Nh} + \text{n}$

放射線の照射効果と産業利用

- (1) 原子のたたき出し → 放射線損傷 格子欠陥 (金属, 半導体) (2) イオン化, 励起, ラジカル生成 化学結合の解裂/形成→分解/合成 酸化還元.架橋.重合 (3) 生物の殺傷,不妊化 殺菌、滅菌、害虫根絶、食品照射、放射線治療 (4) 突然変異 穀類 → (例) レイメイ [稲] 果物 → (例) ゴールド20世紀 [梨] 花→(例)きらり [カーネーション]
 - https://www.pref.ibaraki.jp/nourinsuisan/seikoken/hinsyu/documents/h27kirari2.pdf

品種 ・系統	切花 長 (cm)	切花 重 (g)	分枝 数 (本)	茎径 (mm)	花径 (cm
きらり	77.9	46.7	10.4	4.6	5.7
常陸野 ひよこ	82.0	53.7	10.8	5.1	5.6
ライトクリーム キャント゛ル	87.8	50.6	18.1	4.6	5.0

放射線による改質・加工

フッ素樹脂(PTFE)の粒子化 [放射線分解] ラジアルタイヤ, 耐熱性電線, 発泡プラスチック [放射線架橋] セメント瓦の塗装, ラミネート鋼板, 粘着ラベルの剥離紙 [放射線硬化]

