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Abstract. The 9+-intersection is an extension of the 9-intersection, which 
distinguishes the topological relations between various spatial objects by the 
pattern of a nested matrix. This paper develops a small set of constraints on this 
matrix, which is applicable to arbitrary pairs of spatial objects in various spaces. 
Based on this set of universal constraints, the sets of matrix patterns, each 
representing a candidate for topological relations, are derived for every possible 
pair of basic objects (points, directed/non-directed line segments, regions, and 
bodies) embedded in R1, R2, R3, S1, and S2. The derived sets of candidates are 
consistent with the sets of topological relations ever identified, as well as yield 
the identification of some missing sets of topological relations. Finally, the 
topological relations between a region and a region with a hole in R2 and S2 are 
identified to demonstrate the applicability of our approach to deriving 
topological relations between more complicated objects. 

1. Introduction 

Topological relations between two spatial objects, which concern how the objects 
intersect with each other, have been studied extensively in the geographic database 
community, motivated by the necessity of a formal and cognitively-adequate basis of 
spatial query language. Previous studies have identified sets of all possible 
topological relations between various pairs of objects in R2 [1-7], as well as in R1 [8], 
R3 [9], S1 [10], S2 [11], and Z2 [12]. Rn is an n-dimensional Euclidean space, S1 is a 
circle (1-sphere), and S2 is an ordinary sphere (2-sphere), and Z2 is a discrete raster 
space. Each identified set of topological relations has a specific practical value. For 
instance, topological line-region relations in R2 are useful for modeling spatial 
predicates related to motions, such as enter and go across [13], and topological line-
line relations in R1 or S1 are useful for modeling temporal relations [8, 10]. 

As a formal model of topological relations, many studies have adopted the 4-
intersection [1], the 9-intersection [2], or their extension [5, 6, 10, 14]. In these 
models, topological relations between two objects A and B are represented by the 
patterns of a matrix, whose elements represent the intersections between point sets 
associated with A and those associated with B. Usually, candidates for possible 
topological relations between A and B are derived computationally as the set of matrix 
patterns that satisfy certain constraints. The set of candidates, each with at least one 
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geometric realization, is approved as the set of all possible topological relations 
between A and B. Previous studies developed such a constraint set on the matrix for 
each pair of objects in each space [1, 2, 4-7, 9-12]. Although there are certain overlaps 
between such constraint sets [2, 9], it is a hard step to develop a constraint set in order 
to study a new set of topological relations. As a solution to this problem, this paper 
develops a set of universal constraints, which is applicable to arbitrary pairs of 
objects embedded in various spaces. 

Our universal constraints are applied to the matrix of the 9+-intersection [6]. The 
9+-intersection is an extension of the 9-intersection, which supports the subdivision of 
objects’ interior, boundary, and exterior. For instance, the exterior of a region with a 
hole is subdivided into outer and inner exterior subsets. Thanks to the support of such 
subdivisions, the 9+-intersection is able to capture the topological relations between 
various spatial objects, including complicated ones. Accordingly, making use of the 
9+-intersection together with the set of universal constraints, we can easily derive the 
candidates for the topological relations between various pair of objects embedded in 
various spaces. Indeed, this paper derives the sets of such candidates for every 
possible pair of basic objects (points, directed/non-directed lines, regions, and bodies) 
embedded in R1, R2, R3, S1, and S2. In this paper, lines and regions normally refer to 
simple lines and simple regions [4, 15], respectively. Simple lines are lines with no 
self-intersection and no branch, derived by a one-to-one mapping from [0,1] to the 
space. If their two endpoints are ordered, lines are called DLines (directed lines). 
Simple regions are two-dimensional point sets with a connected interior, no hole, and 
no spike, as well as no fin in R3. Finally, bodies refer to simple bodies, which are 
three-dimensional counterparts of simple regions.  

The remainder of this paper is structured as follows: Section 2 introduces the 9+-
intersection and its matrix-based representation. Section 3 develops a set of universal 
constraints on the matrix of the 9+-intersection. Based on this set of constraints, 
Section 4 derives the candidates for topological relations between every pair of basic 
objects and analyzes the candidates in comparison with the topological relations 
identified in the previous studies. Section 5 derives further candidates of basic 
topological relations by converting the matrix patterns derived in Section 4 and 
analyzes these new candidates. Section 6 demonstrates the applicability of our 
approach to the derivation of topological relations between more complicated objects. 
Finally, Section 7 concludes with the discussion of a future problem.  

2. The 9+-Intersection 

The 9-intersection [2] is a model of topological relations between two spatial objects. 
Based on point-set topology [16], this model distinguishes the interior, boundary, and 
exterior of each object, which are also called the object’s topological parts. Let X be a 
spatial object and X  be X’s closure (the intersection of all closed point sets that 
contain X). Uppercase letters are used because spatial objects are considered sets of 
points. X’s interior °X  is the union of all open sets contained in X, X’s 
boundary X∂  is the difference between X  and °X , and X’s exterior −X  is X ’s 
complement. Accordingly, the boundary of a region refers to its looped edge, the 
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boundary of a line refers to its two endpoints, and the boundary of a point refers to the 
point itself.  

The 9-intersection captures the topological relation between two spatial objects A 
and B based on the intersections of A’s three topological parts and B’s three 
topological parts. These 3 × 3 = 9 types of intersections are concisely represented by 
the 9-intersection matrix in Eqn. 1. Normally, topological relations are distinguished 
by the presence or absence of these nine types of intersections. The use of some 
additional properties of the intersections are also proposed for more detailed 
distinction of topological relations [14, 17]. 
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Each topological part of a spatial object may be subdivided into multiple subparts 
based on their disconnection or qualitative difference (e.g., dimensions [18]). For 
instance, the boundary of a DLine is subdivided into two subparts; start-point and 
end-point [5]. In order to support such subdivision of objects’ topological parts, the 
9+-intersection [6] extends the 9-intersection, considering the intersections between 
the subparts of A’s three topological parts and those of B’s three topological parts. In 
this model, the topological relations between A and B are characterized by the 9+-
intersection matrix in Eqn. 2, whose nine bracketed elements are matrices by 
themselves, each representing the intersections between the subparts of A’s one 
topological part and those of B’s one topological part. iAo , Ai∂ , and iA−  are the ith 
subpart of A’s interior, boundary, and exterior, while jBo , Bj∂ , and jB−  are the jth 
subpart of B’s interior, boundary, and exterior, respectively. If a topological part is not 
subdivided, we consider that this topological part consists of a single subpart. As seen 
from the comparison of the matrices in Eqns. 1-2, the 9+-intersection matrix keeps the 
framework of the 9-intersection matrix; that is, the nine inner matrices in the 9+-
intersection matrix uniquely correspond to the nine elements in the 9-intersection 
matrix. Just like the 9-intersection, topological relations between A and B are 
distinguished by the presence or absence of all intersections listed in the matrix. 
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As an example, Eqn. 3 shows the 9+-intersection matrix for the topological relation 
between a DLine D and a region R. In this matrix, D1∂  and D2∂  represent D’s 
start-point and end-point, respectively. For simplification, if a topological part 
consists of a single subpart, the subscript assigned to this subpart is omitted. In 
addition, brackets of inner matrices are omitted if they have only one element. 
Originally, the 9+-intersection matrix was introduced to capture such topological 
DLine-region relations in [6], where 26 relations are identified using the specific 
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constraints on the patterns of the 9+-intersection matrix in Eqn. 3, instead of the 
universal constraints proposed in this paper. 
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For visualization, the patterns of the 9-/9+-intersection matrix are represented by 
bitmap-like icons [6, 19]. Each icon is partitioned into nine blocks, which correspond 
to the nine elements of the 9-intersection matrix or the nine element sets of the 9+-
intersection matrix (Figs. 1a-b). In the icon of the 9+-intersection matrix, each block 
of the icon is further partitioned if the corresponding element set has multiple 
elements (Fig. 1b). Each block or sub-block is marked out if the corresponding 
intersection is non-empty. Accordingly, topological relations are distinguished by the 
icons’ marking patterns. 

 

Fig. 1. Iconic representations of (a) the pattern of the 9-intersection matrix and (b) that of the 
9+-intersection matrix.  

3. Universal Constraints on the 9+-Intersection Matrix 

The primitives of a spatial object X are defined as the subparts of X’s interior, 
boundary, or exterior that are each self-connected and mutually disjoint. For instance, 
the interior, boundary, and exterior of a DLine in R1 consist of one, two, and two 
primitives, respectively, as its boundary consists of two distinctive points (i.e., start-
point and end-point) and its exterior consists of two distinctive half-lines (i.e., front 
and back exterior subparts). Primitives of spatial objects are classified by their 
dimension and spatial extent (Table 1). For instance, the primitives that form the 
interior, boundary, and exterior of the DLine in R1 are classified into B-1D (bounded, 
non-looped one-dimensional primitive), 0D (zero-dimensional primitive), and U-1D 
(unbounded one-dimensional primitive), respectively.  

By illustrating the class of all primitives that form the interior, boundary, and 
exterior of a spatial object X, as well as the adjacency among these primitives, X’s 
topological structure is represented as a graph. For instance, Fig. 2 illustrates the 
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topological structures of points, DLines, and regions embedded in R1, R2, R3, S1, and 
S2. These topological structures have the following features: 

• Every primitive has at least one adjacent primitive; and 

• Every pair of adjacent primitives has different dimensions and belongs to different 
topological parts. 

Table 1. Classes of basic primitives. 

Class  Dim. Spatial extent  Class  Dim. Spatial extent 
0D 0D –  B-2D 2D bounded, non-looped 

B-1D 1D bounded, non-looped  L-2D 2D spherically looped 
L-1D 1D circularly looped  U-2D 2D unbounded 
U-1D 1D unbounded  B-3D 3D bounded non-looped 

    U-3D 3D unbounded 
 

exterior

interior

boundary 0D

U-2D

Point in R2

0D 0D

U-2D

B-1D

DLine in R2

B-2D

L-1D

U-2D

Region in R2

exterior

interior

boundary

0D

U-1D

Point in R1

U-1D

0D 0D

U-1D

B-1D

DLine in R1

U-1D

0D

B-1D

Point in S1

0D

B-2D

Point in S2

0D 0D

B-2D

B-1D

DLine in S2

B-2D

L-1D

B-2D

Region in S2

0D

U-3D

Point in R3

0D 0D

U-3D

B-1D

DLine in R3 Region in R3

B-2D

L-1D

U-3D

B-3D

L-1D

U-3D

Body in R3

0D 0D

B-1D

B-1D

DLine in S1
 

Fig. 2. Topological structures of points, DLines, and regions embedded in R1, R2, R3, S1, and 
S2, based on the class and adjacency of their primitives. 

Assume that two spatial objects A and B are embedded in the space S. Then, A’s 
primitives and B’s primitives must satisfy the following nine conditions (see 
Appendix for their proofs): 

• Condition 1: Each of A’s primitives intersects with at least one of B’s primitives, 
and vice versa. 

• Condition 2: If A has a zero-dimensional primitive (0D), then it intersects with 
only one of B’s primitives, and vice versa. 

• Condition 3: If A’s primitive Pi intersects with more than one of B’s primitives, 
then these primitives jointly form a connected point set, and vice versa. 

• Condition 4: A’s bounded primitives, either looped or non-looped, cannot contain a 
B’s unbounded primitives, and vice versa. 
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• Condition 5: A’s non-looped primitives cannot contain a B’s looped primitive of 
the same dimension, and vice versa.  

• Condition 6: If A’s primitive Pi intersects with B’s primitive Qj, then all of Pi’s 
adjacent higher-dimensional primitives intersect with Qj or at least one of Qj’s 
adjacent higher-dimensional primitives, and vice versa (Fig. 3a).  

• Condition 7: If A’s primitive Pi is contained by B’s primitive Qj and they belong to 
the same primitive class, then at least one of Pi’s adjacent lower-dimensional 
primitives intersects with Qj, and vice versa (Fig. 3b). 

• Condition 8: If A’s primitive Pi intersects with B’s primitive Qj that is lower 
dimensional than Pi, then Pi intersects with at least one of Qj’s adjacent higher-
dimensional primitives (Fig. 3c) or at least two of them including one of Qj’s 
adjacent primitives that are bounded, non-looped, and one-dimensionally higher 
than Qj (Fig. 3d), and vice versa. 

• Condition 9: If A has only one unbounded primitive whose dimension is the same 
with S, then this primitive intersects with all of B’s unbounded primitives, and vice 
versa. 
 

Pi

Qj

P’s adjacent higher-
dimensional primitives

Qj’s adjacent higher-
dimensional primitive Pi

Qj

Pi’s adjacent
lower-dimensional

primitives  
(a) (b) 

 

Qj

Pi 

Qj’s adjacent
higher-dimensional

primitive  

Qj’s other 
adjacent 
primitive

Qj

Pi

Qj’s adjacent primitives that 
are non-looped and one-

dimensionally higher than Qj

 
(c) (d) 

Fig. 3. Intersection of two primitives Pi and Qj determines the presence of intersections of Pi’s 
certain adjacent primitives and Qj or Qj’s adjacent primitives 

When the 9+-intersection illustrates the intersections of A’s primitives and B’s 
primitives, Conditions 1-9 serve as the constraints on the patterns of the 9+-
intersection matrix. For instance, the 9+-intersection matrix in Eqn. 3 illustrates the 
intersections of the primitives of a DLine D ( °D , D1∂ , D2∂  and −D ) and the 
primitives of a region R ( °R , R∂  and −R ). This matrix may distinguish 4096 patterns, 
as it has 4×3 two-valued elements, but only 26 patterns among the 4096 patterns 
satisfy Conditions 1-9. Consequently, we can conclude that these 26 patterns of the 
9+-intersection matrix represent the candidates for the topological relations between a 
DLine D and a region R. 
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4. Deriving Topological Relations between Basic Objects  

For every possible pair of basic objects (points, DLines, regions, and bodies) 
embedded in R1, R2, R3, S1, and S2, we derived the patterns of the 9+-intersection 
matrix that satisfy Conditions 1-9, making use of their structural information 
illustrated in Fig. 2. Table 2 shows the number of the derived matrix patterns. Since 
each matrix pattern represents a candidate for topological relations, the number of all 
possible topological relations between each pair of objects in each space is equal or 
possibly less than the number in Table 2. 

Table 2. Numbers of the derived patterns of the 9+-intersection matrix for every possible pair of 
basic objects embedded in R1, R2, R3, S1, and S2. 

 R1 R2 R3 S1 S2 
Point-Point 6 2 2 2 2 
Point-DLine 10 4 4 4 4 
Point-Region – 3 3 – 3 
Point-Body – – 3 – – 

DLine-DLine 26 80 80 28 80 
DLine-Region – 26 45 – 26 
DLine-Body – – 26 – – 

Region-Region – 8 43 – 11 
Region-Body – – 19 – – 
Body-Body – – 8 – – 

 
For point-point relations in R2, R3, S1, and S2, the same two patterns of the 9+-

intersection matrix are derived. These two matrix patterns correspond to the two 
scenarios—two points coincide or not. Meanwhile, point-point relations in R1 yielded 
a larger number of matrix patterns, because in R1 the exterior of each point is 
subdivided into two primitives (i.e., front and back exterior subparts) and their order 
influences the distinction of topological relations. Similarly, the same four matrix 
patterns are derived for point-DLine relations in R2, R3, S1, and S2, but not for those 
in R1. These four matrix patterns correspond to the four scenarios where the point is 
located at the DLine’s interior, exterior, start-point, or end-point. For point-region 
relations in R2, R3, and S2 and point-body relations in R3, we derived the same three 
matrix patterns, which correspond to the three scenarios where the point is located at 
the interior, exterior, or boundary of the region/body.  

For DLine-DLine relations in R1, we derived 26 patterns of the 9+-intersection 
matrix. These 26 patterns correspond to the 26 relations between two directed 
intervals in R1 [20], because directed intervals are essentially DLines. 

For DLine-DLine relations in R2, 80 patterns of the 9+-intersection matrix are 
derived. Kurata and Egenhofer [5] identified only 68 DLine-DLine relations in R2, as 
they used an extension of the 4-intersection. They also speculated that additional 12 
relations appear if they distinguish the collapsed configurations (i.e., the 
configurations where one DLine contains another DLine). Our 80 patterns of the 9+-
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intersection matrix successfully distinguish these 68 + 12 = 80 DLine-DLine 
relations. 

For DLine-region relations in R2, we derived 26 patterns of the 9+-intersection 
matrix. This successfully corresponds to the result in [6], which identified 26 DLine-
region relations based on the 9+-intersection. 

DLine-DLine relations in R2, R3, and S2 yielded the same 80 matrix patterns. This 
result indicates that the set of 80 DLine-DLine relations in R2 are also seen in R3 and 
S2. Similarly, from the result that DLine-region relations in R2, DLine-region 
relations in S2, and DLine-body relations in R3 has yielded the same 26 matrix 
patterns, it is concluded that the set of 26 DLine-region relations in R2 are also seen in 
S2, and have a one-to-one correspondence with DLine-body relations in R3. This 
correspondence stems from the structural similarity between a region in R2 and a 
body in R3 (Fig. 2).  

For DLine-Region relations in R3, we derived 45 patterns of the 9+-intersection 
matrix, among which 26 patterns are identical to the 26 matrix patterns derived for 
DLine-Region relations in R2. We confirmed that each of the remaining 19 patterns 
has at least one geometrical realization in R3 (Fig. 4). Consequently, we identified 
that topological DLine-Region relations in R3 consist of 19 relations peculiar to R3 
(Fig. 4) and 26 relations common to R2, R3, and S2 (see [6] for the list). Such DLine-
Region relations in R3 are useful for categorizing the movement patterns in 
association with region-like landmarks—for instance, how a bird moves around a 
pond. The newly identified 19 relations capture the bird’s movement patterns that 
realize only in a three-dimensional space. 

 

    

  
  

   

   

   

   

Fig. 4. 19 topological DLine-region relations, which are peculiar to R3.  

For region-region relations in R2, eight patterns of the 9+-intersection matrix are 
derived. In this case, the matrix is essentially the 9-intersection matrix, because no 
topological part of a region is subdivided into multiple primitives. These eight matrix 
patterns are exactly the same as those derived in [2]. Similarly, the following 
correspondences to the findings of the previous studies are observed: 
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• the eleven matrix patterns derived for region-region relations in S2 are the same as 
those derived in [11]; 

• the nineteen matrix patterns derived for region-body in R3 are the same as those 
derived in [9]; and 

• the eight matrix patterns derived for body-body relations in R3 are the same as 
those derived in [9].  
 

Meanwhile, for region-region relations in R3, we derived 43 patterns of the 9-
intersection matrix, while only 38 patterns are reported in [9]. Through the 
comparison the matrix patterns, we identified five missing relations (Fig. 5). In [21], 
43 region-region relations in R3 are derived based on another spatial model, called 
Dimensional Model [18]. The 43 region-region relations in the Dimensional Model 
are equivalent to the region-region relations characterized by our 43 patterns of the 9-
intersection matrix. 

 

 
  

 
 

 
 

(and its converse) 

   

Fig. 5. Five topological region-region relations in R3 that should be added to the list in [9]. 

5. Topological Relations Derived by Matrix Conversion 

A unique feature of the 9+-intersection is that the 9+-intersection matrix can be 
converted to the 9-intersection matrix, simply by integrating the elements of its nine 
element sets by union operation (Fig. 6). If the original 9+-intersection matrix captures 
the topological relation between a DLine and another object X, the 9-intersection 
matrix derived by the conversion captures the topological line-X relations, as the 
distinction of the DLine’s start-point and end-point is lost. Similarly, for the relations 
in R1, the distinction of objects’ front and back exterior subparts is lost by the matrix 
conversion (Fig. 6b). Making use of this matrix conversion, the sets of candidates for 
topological line-X relations and the modified candidate sets for topological relations 
in R1 are derived from the matrix patterns derived in Section 4. Table 3 shows the 
number of the derived patterns of the 9-intersection matrix.  
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Fig. 6. Conversion from the 9+-intersection matrix to the 9-intersection matrix. In the left 
figure, DLines D1 and D2 are represented by two arrows.  

Table 3. Numbers of the patterns of the 9-intersection matrix derived by matrix conversion. 

 R1 R2 R3 S1 S2 
Point-Point 2 – – – – 
Point-Line 3 – – – – 
Line-Line 8 33 33 11 33 

Line-Region – 19 31 – 19 
Line-Body – – 19 – – 

 
For line-line relations in R1, eight patterns of the 9-intersection matrix are derived. 

These eight patterns correspond to the eight line-line relations in R1, identified in 
[22]. In addition, these eight matrix patterns are the same as the matrix patterns for 
region-region relations in R2. This indicates a one-to-one correspondence between the 
eight line-line relations in R1 and the eight region-region relations in R2. Similarly, 
we found a one-to-one correspondence between the eleven line-line relations in S1 
and the eleven region-region relations in S2. 

For line-line and line-region relations in R2, we derived 33 and 19 patterns of the 
9-intersection matrix. These two sets of matrix patterns are the same as those in [2]. 
Similarly, for line-line, line-region, and line-body relations in R3, we derived 33, 31, 
and 19 patterns of the 9-intersection matrix, which are the same as those in [9].  

 
The 9+-intersection matrix allows another type of matrix conversion when both 

objects have topological parts that can be subdivided into multiple primitives. This 
conversion removes the subdivision of topological parts with respect to only one of 
the two objects (Fig. 7). Accordingly, the matrix derived by the conversion is still the 
9+-intersection matrix. Making use of this matrix conversion, we derived additional 
sets of patterns of the 9+-intersection matrix from those of the 9+-intersection matrix 
in Section 4. Table 4 shows the numbers of the derived matrix patterns.  
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Fig. 7. Conversion of the 9+-intersection matrix that removes the subdivision of the second 
object’s topological parts.  

Table 4. Numbers of the patterns of the 9+-intersection matrix that are newly derived by the 
matrix conversion in Fig. 7. 

 R1 R2 R3 S1 S2 
Point-Point 3 – – – – 
Point-Line 5 – – – – 
DLine-Line 13 49 49 16 49 

 
For point-point relations in R1, three patterns of the 9+-intersection matrix are 

derived. These three matrix patterns correspond to the three scenarios where one point 
precedes, coincides, or succeeds another point on the same axis. In the previous step, 
we derived only two patterns for the same relations , because the 9-intersection matrix 
does not distinguish whether one point precedes or succeeds another point. For the 
same reason, the number of the patterns of the 9+-intersection matrix derived for 
point-line relation in R1 is larger than that of the 9-intersection matrix.  

For DLine-line relations in R1, 13 patterns of the 9+-intersection matrix are 
derived. Interestingly, these 13 matrix patterns correspond to the 13 interval relations 
in Allen’s interval algebra [8], because DLine-Line relations in R1 essentially 
illustrate how one line (interval) extends with respect to another line (interval) on the 
same axis with the distinction of front and back. Similarly, for DLine-Line relations in 
S1, we derived 16 matrix patterns, which correspond to the 16 interval relations in a 
cyclic temporal frame identified in [10].  

For DLine-line relations in R2, R3, and S2, the same 49 patterns of the 9+-
intersection matrix are derived. We confirmed that each of these 49 matrix patterns 
has at least one geometric realization (Fig. 8). Thus, it is concluded that these 49 
matrix patterns represent the set of all possible DLine-line relations in R2, R3, and S2 
under the 9+-intersection. Such DLine-line relations are useful for categorizing the 
movement patterns associated with a linear landmark, such as a wall or a trench. 
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Fig. 8. 49 topological DLine-line relations, common to R2, R3, and S2, each with an example of 
geometric realizations.  

Finally, through the comparison of Tables 2-4, we found the following features:  

• The number of matrix patterns for line-line/DLine-line/DLine-DLine relations in 
S1 are larger than that for the counterparts in R1, because S1 allows the relation 
where one line/DLine includes the entire exterior of another line/DLine, but R1 
does not. 

• The number of topological relations between two spatial objects is invariant to the 
embedding space, as long as these two objects are lower dimensional than the 
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space. One exception is point-point relations in R1 distinguished by the 9+-
intersection (Table 2), because the distinction of the points’ front and back 
exteriors increases the number of point-point relations. 

6. Deriving Topological Relations related to Complicated Objects  

The combination of the 9+-intersection and the universal constraints are effective also 
for deriving the possible topological relations between a basic object and a more 
complicated object, or even the relations between two complicated objects (here, 
complicated objects mean the objects that are derived by a set operation on multiple 
basic objects). As a demonstration, this section derives all possible topological 
relations between a simple region (so far we have called this a region) and a simple 
region with a hole. For simplification, these relations are called topological region-
region+1H relations. In [7], 23 topological region-region+1H relations in R2 are already 
identified, but those in S2 are not yet. 

A simple region with a hole X is defined as the difference between two simple 
regions X* and XH, where X* contains XH entirely. X* is called X’s generalized 
region, while XH is called X’s hole [23]. A simple region with a hole in S2 may 
represent a ring-like object on a sphere (Fig. 9a) or a belt-like object that surrounds 
the sphere (Fig. 9b) Accordingly, region-region+1H relations in S2 can be used for 
modeling, for instance, the spatial arrangement of an island and a typhoon, that of the 
iris and the covered surface of a human eye, or that of the Earth’s surface receiving 
sunlight and a certain latitude zone. 

 

 
(a) (b) 

Fig. 9. Examples of simple regions with a hole embedded in S2. 

The topological relation between a simple region A and a simple region with a hole 
B are characterized by the 9+-intersection matrix in Eqn. 4, where B1∂ , B2∂ , 1−B , 
and 2−B  are B’s outer boundary, hole-side boundary, outer exterior, and hole-side 
exterior, respectively. In S2, the outer exterior and the hole-side exterior have no 
geometric difference (Fig. 9b) and, accordingly, their distinction depends on the 
observer’s view. 
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Instead of the 9+-intersection matrix in Eqn. 4, the same topological region-
region+1H relation is characterized by a pair of the 9-intersection matrices, which 
represent the topological region-region relation between A and B’s generalized region 
B* and that between A and B’s hole BH, respectively [7, 23]. The patterns of these two 
9-intersection matrices are determined uniquely from the pattern of the corresponding 
9+-intersection matrix (Fig. 10). 
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Fig. 10. Conversion from the 9+-intersection matrix for a topological region-region+1H relation 
to a pair of the 9-intersection matrices. This figure shows the conversion of the elements in the 
matrix’s first row. The elements in the second and third rows are converted in the same way. 

Fig. 11 shows the topological structures of simple regions and simple regions with 
a hole embedded in R2 and S2. Based on this structural information and Conditions 1-
9 (i.e., universal constraints), we computationally derived 23 and 37 matrix patterns 
for topological region-region+1H relations in R2 and S2, respectively. It is confirmed by 
the matrix conversion in Fig. 10 that the former 23 matrix patterns perfectly 
correspond to the 23 region-region+1H relations in R2 identified in [7]. Among the 
latter 37 matrix patterns, 23 patterns are the same as those for region-region+1H 
relations in R2. Meanwhile, we confirmed that each of the remaining 14 matrix 
patterns has at least one geometric realization in S2 (Fig. 12). Thus, it is confirmed 
that topological region-region+1H relations in S2 consist of 14 relations peculiar to S2 
(Fig. 12) and 23 relations that are also seen in R2 (see [7] for the list). 
 

Simple Region 
with a Hole in R2

B-2D

L-1D

U-2D B-2D

L-1D

Simple Region 
with a Hole in S2
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Simple Region 
in R2

B-2D
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Simple Region 
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Fig. 11. Topological structures of simple regions and simple regions with a hole, embedded in 
R2 and S2. 
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Fig. 12. 14 topological relations between a region A and a region with a hole B, which are 
peculiar to S2, together with an example configuration and its cross section. The name given to 
each relation combines the name of the topological relation between A and B’s generalized 
region and that between A and B’s hole, following the notation of [7]. 

In the same way, it is possible to derive the candidates for topological relations 
between a basic object and a complicated object (e.g., DLine-region+1H relations), as 
well as the relations between two complicated objects (e.g., region+1H-region+1H 
relations). 

7. Conclusions 

Topological relations, which concern how two objects intersect with each other, have 
been studied for decades in pursuit of cognitively adequate models of the objects’ 
spatial arrangement. The 9+-intersection captures such topological relations in a 
systematic way using a nested matrix, called the 9+-intersection matrix. This paper 
developed a set of universal constraints on the patterns of the 9+-intersection matrix. 
These constraints allow us to derive the candidates for the topological relations 
between a given pair of objects, regardless of their geometric types. The combination 
of the 9+-intersection and the universal constraints is, therefore, highly useful when 
we study new sets of topological relations. Indeed, we newly identified DLine-Region 
relations in R3, DLine-Line relations in R2, R3, and S2, and region-region+1H relations 
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in S2, as well as found that many sets of topological relations in S1 and S2 are 
equivalent to those in R1 and R2. 

A remaining issue is to answer whether our universal constraints are always 
sufficient, in the sense that every pattern of the 9+-intersection matrix, determined by 
the universal constraints, always has at least one geometric realization. The 
constraints’ sufficiency is empirically confirmed with respect to the relation between 
every possible pair of basic objects embedded in R1, R2, R3, S1, and S2. For the 
relations between complicated objects, however, it becomes hard to check the validity 
of all derived matrix patterns due to its large number. Thus, a mathematical 
examination of the constraints’ sufficiency is left for future work.  
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Appendix: Proofs of Conditions 1-9 in Section 3 

Conditions 1-3:  
These three conditions are satisfied because the primitives of a spatial object are 
jointly exhaustive, mutually exclusive, and self-connected, respectively.  

Conditions 4-5: 
These two conditions are basic properties of topology. 

Condition 6: 
Let Pk be a Pi’s adjacent higher-dimensional primitive. Pk is adjacent to Pi ∩ Qj as 
well. On the other hand, Pi ∩ Qj is surrounded entirely by the set of all Qj’s adjacent 
higher-dimensional primitives and ij PQ \ . Accordingly, Pk intersects with at least 
one of Qj’s adjacent higher-dimensional primitives or Qj. 
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Condition 7: 
Let us consider a subspace of S, called S', which embeds Qj and whose dimension is 
the same with Qj. Since Qj contains Pi, S' also embeds Pi. Pi’s adjacent primitives in 
S', which are always lower-dimensional than Pi, is identical with the set of Pi’s 
adjacent lower-dimensional primitives in S. Since Qj contains Pi in S', Qj intersect 
with at least one of Pi’s adjacent primitives in S'. Accordingly, Qj intersect with at 
least one of Pi’s adjacent lower-dimensional primitives in S.  

Condition 8: 
Let Q be the set of all of Qj’s adjacent higher-dimensional primitives. Pi ∩ Qj is 
surrounded entirely by Q and ij PQ \ . Accordingly, Pi, which contains Pi ∩ Qj and 
higher dimensional than ij PQ \ , intersects with at least one of primitives in Q. Let us 
assume that Qj has an adjacent primitive that is bounded, non-looped, and one-
dimensionally higher than Qj, called Qk. Qk is an element of Q. Let S' be a sub-space 
of S, which embeds Pi and whose dimension is the same with Pi. Since Qj cannot split 
the Qk, Qj must be located at the end of Qk. Accordingly, Pi ∩ Qj is not surrounded 
entirely by Qk in S', but by the combination of Qk,, some other elements in Q, and 

ij PQ \  in S'. On the other hand, Pi ∩ Qj is surrounded entirely by ji QP \  and ij PQ \  
in S'. Consequently, if Qk exists, Pi intersects with not only Qk, but also another 
element in Q.  

Condition 9: 
Let Pi be A’s only one unbounded primitive whose dimension is the same with S. 
Since Pi’s complement iP  is bounded, each of B’s unbounded primitive is not entirely 
included in iP . Consequently, Pi intersects with B’s unbounded primitives. Note Pi 
refers to the exterior of a spatial object in Rn (n ≥ 2). 


