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1 Introduction

Resonance states

e Quasi-stable “state” which decays quantum mechanically

e History

— 1928 : Complex eiegnenergy (Gamow [1])

— 1939 : Outgoing boundary condition (Siegert [2])

1965-1968 : Orthogonality, completeness, ... (Hokkyo [3], Berggren [4])
1981 : Rigged Hilbert space (Bohm [5])

Resonances in hadron physics

e Hadrons (p,n,m,---) : more than 380 species
e Most of hadrons are unstable against strong decay (light 7 as the NG boson).

e Structure of exotic hadrons (multiquarks, hadronic molecules, ...)
+ Structure of unstable states

Resonances in other fields

e Nuclear physics (unstable nuclei, halo structure, ...)
e Atomic physics (Feshbach resonance, ...)

e Astrophysics (black hole quasinormal mode, pole skipping, ...)

Plan of this lecture

e Basics

Scattering wave functions, Jost functions, discrete eigenstates, poles of scattering amplitude, ...

e Bound-to-resonance transition
Short range interaction [6], Coulomb plus short range interaction? three-body resonances? ...

References

e Resonances in quantum mechanics
Textbook : A. Bohm [7], Kukulin-Krasnopol’sky-Horacek [8], N. Moiseyev [9]
Review article : Ashida-Gong-Ueda [10]

e Scattering theory
Textbook : J.R. Taylor [11], R.G. Newton [12]
Review article : Hyodo-Niiyama [13]



2 Basics

2.1 Scattering wave functions

e Setup :

Quantum scattering of distinguishable particles with reduced mass p = mimsa/(my + ma)
— Spatial 3D, nonrelativistic, h = 1
— No internal degrees of freedom (spin, flavor, etc.)

— Elastic scattering (initial state = final state, no coupled channels)

Spherical real potential V(r) € R

V(r) — 0 for r — oo (not confining)

e Schrodinger equation

2
(-3 + V) brn(r) = B 1)
() = v (2

e Radial Schrodinger equation

E e
2 dr? 27?2

+ V(T)> up(r) = Bug(r), 0<r<oo (3)

e Boundary condition at the origin
up(r) ~ 1 (r = 0) (4)

for V(r) ~r=2T¢(e > 0) at r — 0
= uy vanishes at the origin.

e Scattering solutions : no boundary condition at r — oo
= continuous spectrum for £ > 0
= Normalization is not unique.

e For F > 0, the eigenmomentum p > 0 (physical region) is uniquely given by
p=2uE (5)
ug(r;p) : wave function at momentum p
e 1 — 0o asymptotic behavior for short range potentials
ue(r;p) = Aje(pr) + Biy(pr) = Chy (pr) + Dhy (pr) (6)

Je(2) = zje(2) : Riccati-Bessel function (jo(z) = sin 2)
ng(z) = zng(z) : Riccati-Neumann function (7p(z) = cos z, no sign in Ref. [11])
h;t(z) = fiy(2) £ ij¢(2) : Riccati-Hankel functions

hE(2) — exp{Fi(z — In/2)} (2 — ) (7)

hf (pr) ~ etirr [iLZ (pr) ~ e~%" ] is outgoing (incoming) wave.



2.2

e Partial wave scattering amplitude fy(p) and S-matrix s;(p)

ue(rip) = je(pr) + pfe(p)hf (pr) (1 = o)

) P (.0

ue(r;p) = hy (pr) — se(p)hy (pr)  (r — o0)
From this, we have

felp) = SE(ZEP_ !

Regular solution wuy,(r) (normalization is fixed in addition to b.c. (4).)
ue(r;p) = Je(pr)  (r —0)

Integral form (Lippmann-Schwinger eq.)

wvunzjamﬂ+2n/'M@Anwmndﬂmawm>
0

ge(r,7';p) = Je(pr)ing(pr') — fve(pr)je(pr’)
p

Regular solution wuy(r;p) is real (for p > 0)

Asymptotic form of wu,(r;p)
u(rip) = 5 L0y (or) = LA REer)] - (= o0)

Jost function /(p) € C : amplitude of incoming wave

Properties of the Jost functions

Integral representation <— Eqs. (13) and (15)
2 RS
) =142 [T i on)V (i)

Small p > 0 expansion

(41 -/

Je(pr) ~ ue(r;p) ~ ptr dg(pr) ~p
therefore
> A(pr) +ij(pr
i) =L [ ar PPy

=1+ [Oé@ + BKPQ + O(p4)] +i [7@]9264’_1 + O(p2£+3)]7 Qy, 6@7 Yo, € R

even powers of p odd powers of p

Region of analyticity

const [ Tl (1t pl—m p)
p)—1] < / dr |V (r)|7————=e'" P pr
Vp) — 1 ; | ()|1+\pr\

V(r) with compact support : /,(p) is analytic for all p € C.
V(r)=e""/r: /,(p) has a branch cut from p = —im/2 to —ioo.

In the following we consider the region of p on which Jost functions are analytic.

9)
(10)

(11)

(17)

(18)

(19)

(20)



2.3

Complex conjugate of Jost function

/0] =/(-p") peC

Schwarz reflection principle with /(p) being real on the imaginary p axis
— reflection symmetry with respect to the imaginary p axis

For real p:
)= 2 e or) -] o0)

Explicit form for attractive square well potential with £ =0 (V(r) = =V for 0 < r < b)

/o) = [cos VP2 + 2uVpb) — i——=sin(/p? + 2uVpd)

Entirely analytic (polynomial in p, no pole)

Discrete eigenstates

Bound state solution : eigenenrgy F < 0 < pure imaginary eigenmomentum p = /2uF
p=1iKk, k>0

Wave function at r — oo behaves as
up(r;p) oc/g(in)eJ”“" —/2(—7:&)67'” (r — o00)

Boundary condition : wuy(r; p) is square integrable — eliminate diverging component e
i) =0

Eq. (23) = k = —kcot(kb) with k = \/2uVy — k2.

Outgoing boundary condition : zero of the Jost function

/ip) =0

Incoming wave (e~"P") vanishes, leaving outgoing wave (e*%") only

+KT

Bound state solution is obtained by analytic continuation of (27).
Resonance states : solution of Eq. (27) with complex p

Attractive square well potential have infinitely many resonance solutions
q. (27) with Vo = 10627t

Flg. 1 : Poles of 1/| /,(p)| in complex p plane

Table 1 : numerical Solutions

Imaginary part of eigenmomentum is negative :

P =DPRr—1p1, PRr,P1 >0

behavior of wave function

) j ‘ +
up(r;p) oc/i(—p)e”‘"’ o ePRT  eTPIT

oscillation increasing

ug(r; p) diverges with oscillation for » — oo, not square integrable

(21)

(22)

(27)
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Figure 1: Contour plot of inverse of the Jost function of square well potential with Vy = 106~ 2u 1.

Table 1: Discrete eigenstates of attractive square well potential with Vy = 1062~ 1.

p[b”"] E=p*/2u [b~2p]
Bound state B + 3.68¢ | — 6.78

1st resonance Ry | 1.06 — 1.02¢ 0.05 — 1.08¢
2nd resonance Ry | 6.29 — 1.41% 18.8 — 8.867%
3rd resonance R3 | 9.90 — 1.691 47.6 —16.8¢

e S matrix : Egs. (22) and (10)

. ~ /(=p)
«(p) = YA (30)

= discrete eigenstates are represented by poles of S matrix

e Scattering amplitude : from Eq. (11)

Csip) =1 (=p) — /(D)
flp) = =5 = 2ip/,(p) (51

= discrete eigenstates are represented by poles of scattering amplitude
(p in the denominator cancels with /,(—p) — /,(p) ~ O(p))

e s¢(p) and f;(p) are meromorphic functions of p (~ no singularity except for poles)

2.4 Classification of eigenstates
e Analytic continuation of /;(p), s¢(p), f¢(p) defined in physical region p > 0 to complex plane

e Complex momentum p, complex energy F

p=pler, E=|E[e"" (32)
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Figure 2: Poles in complex plane. (a) : p plane, (b) : E plane (1st Riemann sheet), (c¢) : E plane (2nd
Riemann sheet). B, V, R, and R represent bound state, virtual state, resonance, and anti-resonance.

e Relations

2 2
o 0 _ 1P i, (33)
2u 2u

2

— When 6, varies 0 — 27, 0 moves 0 — 47

— p and —p (0, and 6, + 7) are mapped onto the same E

e Meromorphic functions of p (s¢(p), fe(p)) are defined on two-sheeted Riemann surface of E
0 < 0g < 27 : 1st Riemann sheet of £ (upper half plane of p, 0 <6, < )
21 < 0p < 4m : 2nd Riemann sheet of E (lower half plane of p, 7 < 8, < 2m)

e Complex p and F planes : Fig. 2
Cut on real axis of F plane (branch point at £ = 0)

e Eigenstate of Hamiltonian : zero of Jost function /,(p) =0
e From Eq. (21), when /,(p) = 0,
Si=p") = LA =0 (35)
= If p is a solution, —p* (point which is symmetric about imaginary axis) is also a solution
e Solutions with p = —p* (on imaginary axis)
— bound state (B) : X in Fig. 2
Re [pp] =0, Im [pg] >0 (36)

Energy Ep is real and negative (1st Riemann sheet)

— Virtual state (anti-bound state, V) : $
Re [pv] =0, Im [py] <0 (37)

Energy Ey is real and negative (2nd Riemann sheet)
Residue of pole (~ norm) is negative [14] : non-physical degree of freedom?
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Figure 3: Poles and zeros in the complex p plane. Left : poles (crosses) and zeros (circles) of the S matrix
s¢(p). Right : poles (crosses) and zeros (circles) of the scattering amplitude fy(p).

e Solutions with p # —p* (always appear in pairs)

— Solutions exist only in lower half plane of p
< complex F is allowed only for non-square-integrable wave function

— Resonance (R) : A
Re [pr] >0, TIm [pg] <0 (38)

Energy Re [Eg] > 0, Im [Er] < 0 (2nd Riemann sheet)

— Anti-resonance (R) : v/
Re [pg] <0, Im [pp] <0 (39)
appears together with resonance
Growing solution with time [15] (“conjugate” of resonance)
2.5 Poles and zeros

e Motivation : pole trajectory with respect to a potential parameter A
e Meromorphic function F(p) can be expressed by poles {p;} and zeros {z;}.

Flp) = (polynomial in p) _ IL(p — ) (40)

(polynomial in p)  [[;(p —pj)

(assume that z;(\) and p;(\) are continuous in \)
e Poles of s¢(p) and fy(p) are the same [zero of /,(p)] but zeros are different.

e Zeros of S matrix (Fig. 3, left)

sufzs) =225
RS

z; does not appear in the physical region p > 0 < |s¢(p)| =1 for p > 0

=0 < %(—ZZ’) =0 & z= —Pi (41)



e Zeros of scattering amplitude : (Castillejo-Dalitz-Dyson) CDD zero [16]

f(ziPP) =0 & AP =GP0 e fl(=27PP) =0

ziCDD appears symmetric with p = 0, not correlated with p;

Physical interpretation
fi(zFPPY =0 o 5p(2PP) =1 (no scattering)
Realizable for physical scattering p > 0 : Ramsauer-Townsend effect

e Argument principle (assuming simple zeros and poles)

1 j{ dpdarg F(p)
c

- =Ny —NMp=n
o dp z P C

C : counterclockwisely closed contour
nyz : number of zeros in C

np : number of poles in C'

e n¢ is stable against the continuous variation of parameters

+ Topological invariant m1(U(1)) = Z (vortices/antivortices in 2d XY model)

e A pole can disappear only when it encounter a zero (Fig. 4).

(nz,np) =(1,0) < (ngz,np)=(0,0
(nZvnP) = (17 1) A (nZvnP) = (07

(=)
~— ~—

e When z; — p; :

(p — 2i)
(r—pj)

F(p) ~

— pole skipping (indefinite of 0/0) [17]

e Example : s-wave S matrix in the zero range limit

1 .
—5 +wp
so(pia) = —F——
1
lim lim so(p;a) = lim —¢ =1
a—o00 p—0 a—00 -3
1
lim lim so(p;a) = lim P
p—0a—00 p—0 —1p

zero energy limit / unitary limit do not commute

e fu(p) in the zero coupling limit (decoupling limit of bare state) [18]

(42)

(43)

(44)

(47)

(49)

(50)
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Figure 4: Poles and zeros in the complex p plane. Left : poles (crosses) and zeros (circles) of the S matrix

s¢(p). Right : poles (crosses) and zeros (circles) of the scattering amplitude fy(p).
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Figure 5: Schematic figure of bound-to-resonance transition.

3 From bound states to resonances

3.1 Motivation in hadron physics
e Hadron mass scaling with respect to QCD parameters (Fig. 5)
mp(x), x=mg, 1/Ne, T, p,---
What happens when my(x) crosses a threshold?

e Coulomb plus short range potential

— Kaonic atoms (K~ +nuclei) : interplay between nuclear bound states and atomic bound states

— pQ~ system : shallow bound state, B ~ 1.54 MeV, ag ~ 5.30 fm [19]

3.2 Short range interaction
e Eigenstate at p=0: 1+ ay, =0 in Eq. (19)
) = {mg + O(pz) (=0
B +O0@°) L#0
= zero of /,(p) at p =0 is simple (double) for £ =0 (£ # 0)
e Double zero : exceptional point (degeneracy of two eigenstates)
e Perturbation around p =0 :
Vo >1+0N)V
ag(0A), Be(OA), 7e(8A), -
a(0) =0, Be(0) # 0, 7(0) #0

10
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Figure 6: Schematic illustration of the near-threshold eigenenergy. Left : ¢ = 0. Middle : ¢ # 0. Right :
¢ =0 in larger § M region

Eigenmomentum

p=i2Wsy =0

70(0) (56)
2 _ _ (0
p° = —5&0)6)\ (#0
Eigenenergy (stronger attraction)
—Fy0X? (=0
p={" SA >0 (57)
—FpdA  £#0
ah(0))? al(0
po P ao) 9
211[70(0)] 2113¢(0)
Eigenenergy (weaker attraction)
E = —Fyd\? (=0
Re F = —F;0\ 0#0 0A<0 (59)
Im E o (0A)¢1/2
s-wave : bound to virtual, other partial waves : bound to resonance
Schematic illustration (Fig. 6)
e Slope at E =0 : field renormalization constant [6]
e s-wave case with larger energy region : virtual state turns into resonance
e Effective range expansion
pZE
felp) = : (60)
_aié + %pQ 4o — ,Lp2€+1
Pole condition up to p? [14]
0=—L —ip+3p* (=0
{ o o
0= T + 7’]9 y4 7é 0

11
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Figure 7: Pole trajectory in the effective range expansion with r, < 0. Left : ¢ = 0. Middle : ¢ # 0.
The right panel shows the result with £ # 0 with the —ip?*! term. Inverted triangles, squares, circles,
crosses, and triangles correspond to 1/a; = 4+00,0,2/7p,1/ry, —00, respectively. Solid (dashed) line with
filled (empty) symbols stands for p~ (p™).

Solution

L L i1 (=0 (62)
P+ =
+, /-2 0#0

aeTe

Trajectory along with 1/ay (r/ fixed) : Fig. 7

3.3 Discussion

e Coulomb plus short range (strong) interaction

— Strong interaction (MeV) scale : same with §3.2

— EM (eV) scale : infinitely many Coulomb bound states

— Coulomb plus square well [R.R. Lucchese, T. N. Rescigno, C.W. McCurdy, J. Phys. Chem. A
123, 82 (2019)]

T +1+4+1iZ/p) ,sr

Sﬁ(p) - F(£+ 1_ ZZ/p) 14 (p) (63)
S (p) = %E(_zf))) (64)
De(p) = .. (65)

e Three-body resonances

— Efimov state (s-wave three-body bound state) directly goes to resonance [20] (Fig. 8).

— General classification?

12
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Figure 8: Bound-to-resonance transition of the Efimov state
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