Theory of resonances and its application to hadron physics

Tetsuo Hyodo

August 27, 2022

Abstract

Lecture note for 2022 YITP molecule workshop

Contents

1	Intr	oduction	2	
2	Basics			
	2.1	Scattering wave functions	3	
	2.2	Properties of the Jost functions	4	
	2.3	Discrete eigenstates	5	
	2.4	Classification of eigenstates	6	
	2.5	Poles and zeros	8	
3	From	n bound states to resonances	10	
	3.1	Motivation in hadron physics	10	
	3.2	Short range interaction	10	
	3.3	Discussion	12	

1 Introduction

Resonance states

- Quasi-stable "state" which decays quantum mechanically
- History
 - 1928 : Complex eiegnenergy (Gamow [1])
 - 1939 : Outgoing boundary condition (Siegert [2])
 - 1965-1968 : Orthogonality, completeness, ... (Hokkyo [3], Berggren [4])
 - 1981 : Rigged Hilbert space (Bohm [5])

Resonances in hadron physics

- Hadrons (p, n, π, \cdots) : more than 380 species
- Most of hadrons are unstable against strong decay (light π as the NG boson).
- Structure of exotic hadrons (multiquarks, hadronic molecules, ...)
 ↔ Structure of unstable states

Resonances in other fields

- Nuclear physics (unstable nuclei, halo structure, ...)
- Atomic physics (Feshbach resonance, ...)
- Astrophysics (black hole quasinormal mode, pole skipping, ...)

Plan of this lecture

- Basics Scattering wave functions, Jost functions, discrete eigenstates, poles of scattering amplitude, ...
- Bound-to-resonance transition Short range interaction [6], Coulomb plus short range interaction? three-body resonances? ...

References

- Resonances in quantum mechanics Textbook : A. Bohm [7], Kukulin-Krasnopol'sky-Horacek [8], N. Moiseyev [9] Review article : Ashida-Gong-Ueda [10]
- Scattering theory Textbook : J.R. Taylor [11], R.G. Newton [12] Review article : Hyodo-Niiyama [13]

2 Basics

2.1 Scattering wave functions

- Setup :
 - Quantum scattering of distinguishable particles with reduced mass $\mu = m_1 m_2 / (m_1 + m_2)$
 - Spatial 3D, nonrelativistic, $\hbar = 1$
 - No internal degrees of freedom (spin, flavor, etc.)
 - Elastic scattering (initial state = final state, no coupled channels)
 - Spherical real potential $V(r) \in \mathbb{R}$
 - $-V(r) \rightarrow 0$ for $r \rightarrow \infty$ (not confining)
- Schrödinger equation

$$\left(-\frac{\boldsymbol{\nabla}^2}{2\mu} + V(r)\right)\psi_{\ell,m}(\boldsymbol{r}) = E\psi_{\ell,m}(\boldsymbol{r}) \tag{1}$$

$$\psi_{\ell,m}(\boldsymbol{r}) = \frac{u_{\ell}(r)}{r} Y_{\ell}^{m}(\hat{\boldsymbol{r}})$$
⁽²⁾

• Radial Schrödinger equation

$$\left(-\frac{1}{2\mu}\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{2\mu r^2} + V(r)\right)u_\ell(r) = Eu_\ell(r), \quad 0 \le r < \infty$$
(3)

• Boundary condition at the origin

$$u_{\ell}(r) \sim r^{\ell+1} \quad (r \to 0) \tag{4}$$

for $V(r) \sim r^{-2+\epsilon} (\epsilon > 0)$ at $r \to 0$

 $\Rightarrow u_{\ell}$ vanishes at the origin.

- Scattering solutions : no boundary condition at $r \to \infty$
 - \Rightarrow continuous spectrum for E > 0
 - \Rightarrow Normalization is not unique.
- For E > 0, the eigenmomentum p > 0 (physical region) is uniquely given by

$$p = \sqrt{2\mu E} \tag{5}$$

 $u_{\ell}(r;p)$: wave function at momentum p

• $r \to \infty$ asymptotic behavior for short range potentials

$$u_{\ell}(r;p) \to \hat{A}j_{\ell}(pr) + B\hat{n}_{\ell}(pr) = C\hat{h}_{\ell}^{+}(pr) + D\hat{h}_{\ell}^{-}(pr)$$
(6)

 $\hat{j}_{\ell}(z) = z j_{\ell}(z)$: Riccati-Bessel function $(\hat{j}_0(z) = \sin z)$ $\hat{n}_{\ell}(z) = z n_{\ell}(z)$: Riccati-Neumann function $(\hat{n}_0(z) = \cos z, \text{ no sign in Ref. [11]})$ $\hat{h}_{\ell}^{\pm}(z) = \hat{n}_{\ell}(z) \pm i \hat{j}_{\ell}(z)$: Riccati-Hankel functions

$$\hat{h}_{\ell}^{\pm}(z) \to \exp\{\pm i(z - \ell \pi/2)\} \quad (z \to \infty)$$
(7)

 $\hat{h}^+_\ell(pr) \sim e^{+ipr} [\hat{h}^-_\ell(pr) \sim e^{-ipr}]$ is outgoing (incoming) wave.

• Partial wave scattering amplitude $f_{\ell}(p)$ and S-matrix $s_{\ell}(p)$

$$u_{\ell}(r;p) \to \hat{j}_{\ell}(pr) + pf_{\ell}(p)\hat{h}_{\ell}^{+}(pr) \quad (r \to \infty)$$
(8)

$$\leftarrow \quad \psi(\mathbf{r}) \to e^{i\mathbf{p}\cdot\mathbf{r}} + f(p,\theta) \frac{e^{ipr}}{r} \tag{9}$$

$$u_{\ell}(r;p) \to \hat{h}_{\ell}^{-}(pr) - s_{\ell}(p)\hat{h}_{\ell}^{+}(pr) \quad (r \to \infty)$$

$$\tag{10}$$

From this, we have

$$f_{\ell}(p) = \frac{s_{\ell}(p) - 1}{2ip}$$
(11)

• Regular solution $u_{\ell,p}(r)$ (normalization is fixed in addition to b.c. (4).)

$$u_{\ell}(r;p) \to \hat{j}_{\ell}(pr) \quad (r \to 0) \tag{12}$$

Integral form (Lippmann-Schwinger eq.)

$$u_{\ell}(r;p) = \hat{j}_{\ell}(pr) + 2\mu \int_0^r dr' g_{\ell}(r,r';p) V(r') u_{\ell}(r';p)$$
(13)

$$g_{\ell}(r,r';p) = \frac{\hat{j}_{\ell}(pr)\hat{n}_{\ell}(pr') - \hat{n}_{\ell}(pr)\hat{j}_{\ell}(pr')}{p}$$
(14)

Regular solution $u_{\ell}(r; p)$ is real (for p > 0)

• Asymptotic form of $u_{\ell}(r; p)$

$$u_{\ell}(r;p) \to \frac{i}{2} \left[\swarrow_{\ell}(p) \hat{h}_{\ell}^{-}(pr) - \left[\swarrow_{\ell}(p) \right]^* \hat{h}_{\ell}^{+}(pr) \right] \quad (r \to \infty)$$

$$\tag{15}$$

• Jost function $\swarrow_{\ell}(p) \in \mathbb{C}$: amplitude of incoming wave

2.2 Properties of the Jost functions

• Integral representation \leftarrow Eqs. (13) and (15)

$$\mathscr{p}_{\ell}(p) = 1 + \frac{2\mu}{p} \int_0^\infty dr \ \hat{h}_{\ell}^+(pr) V(r) u_{\ell}(r;p)$$
(16)

• Small p > 0 expansion

$$\hat{j}_{\ell}(pr) \sim u_{\ell}(r;p) \sim p^{\ell+1}, \quad \hat{n}_{\ell}(pr) \sim p^{-\ell}$$
(17)

therefore

$$\mathscr{p}_{\ell}(p) = 1 + 2\mu \int_{0}^{\infty} dr \; \frac{\hat{n}(pr) + i\hat{j}(pr)}{p} V(r) u_{\ell}(r;p) \tag{18}$$

$$=1+\underbrace{[\alpha_{\ell}+\beta_{\ell}p^{2}+\mathcal{O}(p^{4})]}_{\text{even powers of }p}+i\underbrace{[\gamma_{\ell}p^{2\ell+1}+\mathcal{O}(p^{2\ell+3})]}_{\text{odd powers of }p}, \quad \alpha_{\ell},\beta_{\ell},\gamma_{\ell},\dots\in\mathbb{R}$$
(19)

• Region of analyticity

$$|\mathscr{F}_{\ell}(p) - 1| \le \frac{\text{const}}{|p|} \int_0^\infty dr \ |V(r)| \frac{|pr|}{1 + |pr|} e^{(|\text{Im } p| - \text{Im } p)r}$$
(20)

V(r) with compact support : $\mathscr{F}_{\ell}(p)$ is analytic for all $p \in \mathbb{C}$.

 $V(r) = e^{-mr}/r$: $\swarrow_{\ell}(p)$ has a branch cut from p = -im/2 to $-i\infty$.

In the following we consider the region of p on which Jost functions are analytic.

• Complex conjugate of Jost function

$$\left[\swarrow_{\ell}(p) \right]^* = \swarrow_{\ell}(-p^*) \quad p \in \mathbb{C}$$
⁽²¹⁾

Schwarz reflection principle with $\swarrow_{\ell}(p)$ being real on the imaginary p axis

 \rightarrow reflection symmetry with respect to the imaginary p axis

• For real p:

$$u_{\ell}(r;p) \to \frac{i}{2} \left[\swarrow_{\ell}(p) \hat{h}_{\ell}^{-}(pr) - \swarrow_{\ell}(-p) \hat{h}_{\ell}^{+}(pr) \right] \quad (r \to \infty)$$

$$\tag{22}$$

• Explicit form for attractive square well potential with $\ell = 0$ $(V(r) = -V_0$ for $0 \le r \le b)$

$$\mathscr{N}_{0}(p) = \left[\cos(\sqrt{p^{2} + 2\mu V_{0}}b) - i\frac{p}{\sqrt{p^{2} + 2\mu V_{0}}}\sin(\sqrt{p^{2} + 2\mu V_{0}}b)\right]e^{ipb}$$
(23)

Entirely analytic (polynomial in p, no pole)

2.3 Discrete eigenstates

• Bound state solution : eigenenrgy $E < 0 \Leftrightarrow$ pure imaginary eigenmomentum $p = \sqrt{2\mu E}$

$$p = i\kappa, \quad \kappa > 0 \tag{24}$$

Wave function at $r \to \infty$ behaves as

$$u_{\ell}(r;p) \propto \mathscr{J}_{\ell}(i\kappa)e^{+\kappa r} - \mathscr{J}_{\ell}(-i\kappa)e^{-\kappa r} \quad (r \to \infty)$$
⁽²⁵⁾

• Boundary condition : $u_{\ell}(r;p)$ is square integrable \rightarrow eliminate diverging component $e^{+\kappa r}$

$$\mathscr{J}_{\ell}(i\kappa) = 0 \tag{26}$$

Eq. (23) $\Rightarrow \kappa = -k \cot(kb)$ with $k = \sqrt{2\mu V_0 - \kappa^2}$.

• Outgoing boundary condition : zero of the Jost function

$$\mathscr{L}_{\ell}(p) = 0 \tag{27}$$

Incoming wave (e^{-ipr}) vanishes, leaving outgoing wave (e^{+ipr}) only Bound state solution is obtained by analytic continuation of (27).

- Resonance states : solution of Eq. (27) with complex p
- Attractive square well potential have infinitely many resonance solutions Eq. (27) with $V_0 = 10b^{-2}\mu^{-1}$ Fig. 1 : Poles of $1/|\swarrow_{\ell}(p)|$ in complex p plane Table 1 : numerical solutions
- Imaginary part of eigenmomentum is negative :

$$p = p_R - ip_I, \quad p_R, p_I > 0 \tag{28}$$

behavior of wave function

$$u_{\ell}(r;p) \propto \mathscr{I}_{\ell}(-p)e^{ipr} \propto \underbrace{e^{ip_{R}r}}_{\text{oscillation increasing}} \underbrace{e^{+p_{I}r}}_{\text{oscillation increasing}}$$
(29)

 $u_{\ell}(r;p)$ diverges with oscillation for $r \to \infty$, not square integrable

Figure 1: Contour plot of inverse of the Jost function of square well potential with $V_0 = 10b^{-2}\mu^{-1}$.

	$p \ [b^{-1}]$	$E = p^2/2\mu \ [b^{-2}\mu^{-1}]$
Bound state B	+ 3.68i	-6.78
1st resonance R_1	1.06 - 1.02i	0.05 - 1.08i
2nd resonance R_2	6.29 - 1.41i	18.8 - 8.86i
3rd resonance R_3	9.90 - 1.69i	47.6 - 16.8i
:		

Table 1: Discrete eigenstates of attractive square well potential with $V_0 = 10b^{-2}\mu^{-1}$.

• S matrix : Eqs. (22) and (10)

$$s_{\ell}(p) = \frac{\swarrow(-p)}{\swarrow(p)}$$
(30)

 \Rightarrow discrete eigenstates are represented by **poles of** S **matrix**

• Scattering amplitude : from Eq. (11)

$$f_{\ell}(p) = \frac{s_{\ell}(p) - 1}{2ip} = \frac{f_{\ell}(-p) - f_{\ell}(p)}{2ipf_{\ell}(p)}$$
(31)

 \Rightarrow discrete eigenstates are represented by **poles of scattering amplitude** (*p* in the denominator cancels with $\swarrow_{\ell}(-p) - \swarrow_{\ell}(p) \sim \mathcal{O}(p)$)

• $s_{\ell}(p)$ and $f_{\ell}(p)$ are meromorphic functions of p (~ no singularity except for poles)

2.4 Classification of eigenstates

- Analytic continuation of $\swarrow_{\ell}(p), s_{\ell}(p), f_{\ell}(p)$ defined in physical region p > 0 to complex plane
- Complex momentum p, complex energy E

$$p = |p|e^{i\theta_p}, \quad E = |E|e^{i\theta_E} \tag{32}$$

Figure 2: Poles in complex plane. (a) : p plane, (b) : E plane (1st Riemann sheet), (c) : E plane (2nd Riemann sheet). B, V, R, and \overline{R} represent bound state, virtual state, resonance, and anti-resonance.

• Relations

$$E = \frac{p^2}{2\mu} = \frac{|p|^2}{2\mu} e^{2i\theta_p}$$
(33)

$$\Rightarrow |E| = \frac{|p|^2}{2\mu}, \quad 2\theta_p = \theta_E \tag{34}$$

- When θ_p varies $0 \to 2\pi$, θ_E moves $0 \to 4\pi$
- -p and $-p(\theta_p \text{ and } \theta_p + \pi)$ are mapped onto the same E
- Meromorphic functions of p ($s_{\ell}(p)$, $f_{\ell}(p)$) are defined on two-sheeted Riemann surface of E $0 \le \theta_E < 2\pi$: 1st Riemann sheet of E (upper half plane of p, $0 \le \theta_p < \pi$) $2\pi \le \theta_E < 4\pi$: 2nd Riemann sheet of E (lower half plane of p, $\pi \le \theta_p < 2\pi$)
- Complex p and E planes : Fig. 2
 Cut on real axis of E plane (branch point at E = 0)
- Eigenstate of Hamiltonian : zero of Jost function $\swarrow_{\ell}(p) = 0$
- From Eq. (21), when $\swarrow_{\ell}(p) = 0$,

$$\mathscr{J}_{\ell}(-p^{*}) = [\mathscr{J}_{\ell}(p)]^{*} = 0 \tag{35}$$

 \Rightarrow If p is a solution, $-p^*$ (point which is symmetric about imaginary axis) is also a solution

- Solutions with $p = -p^*$ (on imaginary axis)
 - bound state (B) : \times in Fig. 2

$$\operatorname{Re}\left[p_B\right] = 0, \quad \operatorname{Im}\left[p_B\right] > 0 \tag{36}$$

Energy E_B is real and negative (1st Riemann sheet)

- Virtual state (anti-bound state, V) : \diamondsuit

$$\operatorname{Re}\left[p_{V}\right] = 0, \quad \operatorname{Im}\left[p_{V}\right] < 0 \tag{37}$$

Energy E_V is real and negative (2nd Riemann sheet) Residue of pole (~ norm) is negative [14] : non-physical degree of freedom?

Figure 3: Poles and zeros in the complex p plane. Left : poles (crosses) and zeros (circles) of the S matrix $s_{\ell}(p)$. Right : poles (crosses) and zeros (circles) of the scattering amplitude $f_{\ell}(p)$.

- Solutions with $p \neq -p^*$ (always appear in pairs)
 - Solutions exist only in lower half plane of p \leftarrow complex E is allowed only for non-square-integrable wave function
 - Resonance (R) : \triangle

Re
$$[p_R] > 0$$
, Im $[p_R] < 0$ (38)

Energy Re $[E_R] > 0$, Im $[E_R] < 0$ (2nd Riemann sheet)

– Anti-resonance (\bar{R}) : \bigtriangledown

$$\operatorname{Re}\left[p_{\bar{B}}\right] < 0, \quad \operatorname{Im}\left[p_{\bar{B}}\right] < 0 \tag{39}$$

appears together with resonance Growing solution with time [15] ("conjugate" of resonance)

2.5 Poles and zeros

- Motivation : pole trajectory with respect to a potential parameter λ
- Meromorphic function $\mathcal{F}(p)$ can be expressed by poles $\{p_j\}$ and zeros $\{z_i\}$.

$$\mathcal{F}(p) = \frac{\text{(polynomial in } p)}{\text{(polynomial in } p)} = \frac{\prod_i (p - z_i)}{\prod_j (p - p_j)} \tag{40}$$

(assume that $z_i(\lambda)$ and $p_i(\lambda)$ are continuous in λ)

- Poles of $s_{\ell}(p)$ and $f_{\ell}(p)$ are the same [zero of $\swarrow_{\ell}(p)$] but zeros are different.
- Zeros of S matrix (Fig. 3, left)

$$s_{\ell}(z_i) = \frac{\mathscr{F}_{\ell}(-z_i)}{\mathscr{F}_{\ell}(z_i)} = 0 \quad \Leftrightarrow \quad \mathscr{F}_{\ell}(-z_i) = 0 \quad \Leftrightarrow \quad z_i = -p_i \tag{41}$$

 z_i does not appear in the physical region $p > 0 \leftarrow |s_\ell(p)| = 1$ for p > 0

• Zeros of scattering amplitude : (Castillejo-Dalitz-Dyson) CDD zero [16]

$$f_{\ell}(z_i^{\text{CDD}}) = 0 \quad \Leftrightarrow \quad \swarrow_{\ell}(-z_i^{\text{CDD}}) = \swarrow_{\ell}(z_i^{\text{CDD}}) \quad \Leftrightarrow \quad f_{\ell}(-z_i^{\text{CDD}}) = 0 \tag{42}$$

 z_i^{CDD} appears symmetric with p = 0, not correlated with p_i Physical interpretation

$$f_{\ell}(z_i^{\text{CDD}}) = 0 \quad \Leftrightarrow \quad s_{\ell}(z_i^{\text{CDD}}) = 1 \text{ (no scattering)}$$

$$\tag{43}$$

Realizable for physical scattering p > 0: Ramsauer-Townsend effect

• Argument principle (assuming simple zeros and poles)

$$\frac{1}{2\pi} \oint_C dp \frac{d \arg \mathcal{F}(p)}{dp} = n_Z - n_P \equiv n_C$$

$$C : \text{counterclockwisely closed contour}$$

$$n_Z : \text{number of zeros in } C$$

$$n_P : \text{number of poles in } C$$
(44)

- n_C is stable against the continuous variation of parameters \leftarrow Topological invariant $\pi_1(U(1)) \cong \mathbb{Z}$ (vortices/antivortices in 2d XY model)
- A pole can disappear only when it encounter a zero (Fig. 4).

$$(n_Z, n_P) = (1, 0) \quad \nleftrightarrow \quad (n_Z, n_P) = (0, 0) \tag{45}$$

$$(n_Z, n_P) = (1, 1) \quad \leftrightarrow \quad (n_Z, n_P) = (0, 0) \tag{46}$$

• When $z_i \to p_i$:

$$\mathcal{F}(p) \sim \frac{(p-z_i)}{(p-p_j)} \tag{47}$$

- \rightarrow pole skipping (indefinite of 0/0) [17]
- Example : s-wave S matrix in the zero range limit

$$s_0(p;a) = \frac{-\frac{1}{a} + ip}{-\frac{1}{a} - ip}$$
(48)

$$\lim_{a \to \infty} \lim_{p \to 0} s_0(p; a) = \lim_{a \to \infty} \frac{-\frac{1}{a}}{-\frac{1}{a}} = 1$$
(49)

$$\lim_{p \to 0} \lim_{a \to \infty} s_0(p; a) = \lim_{p \to 0} \frac{ip}{-ip} = -1$$
(50)

zero energy limit / unitary limit do not commute

• $f_{\ell}(p)$ in the zero coupling limit (decoupling limit of bare state) [18]

Figure 4: Poles and zeros in the complex p plane. Left : poles (crosses) and zeros (circles) of the S matrix $s_{\ell}(p)$. Right : poles (crosses) and zeros (circles) of the scattering amplitude $f_{\ell}(p)$.

Figure 5: Schematic figure of bound-to-resonance transition.

3 From bound states to resonances

3.1 Motivation in hadron physics

• Hadron mass scaling with respect to QCD parameters (Fig. 5)

$$m_H(x), \quad x = m_q, \ 1/N_c, \ T, \ \mu, \cdots$$
 (51)

What happens when $m_H(x)$ crosses a threshold?

- Coulomb plus short range potential
 - Kaonic atoms $(K^-+$ nuclei): interplay between nuclear bound states and atomic bound states
 - $-~p\Omega^-$ system : shallow bound state, $B\sim 1.54$ MeV, $a_0\sim 5.30$ fm [19]

3.2 Short range interaction

• Eigenstate at p = 0: $1 + \alpha_{\ell} = 0$ in Eq. (19)

$$\mathscr{J}_{\ell}(p) = \begin{cases} i\gamma_0 p + \mathcal{O}(p^2) & \ell = 0\\ \beta_l p^2 + \mathcal{O}(p^3) & \ell \neq 0 \end{cases}$$
(52)

 \Rightarrow zero of $\swarrow_\ell(p)$ at p=0 is simple (double) for $\ell=0~(\ell\neq 0)$

- Double zero : exceptional point (degeneracy of two eigenstates)
- Perturbation around p = 0:

$$V \to (1 + \delta\lambda)V \tag{53}$$

$$\alpha_{\ell}(\delta\lambda), \ \beta_{\ell}(\delta\lambda), \ \gamma_{\ell}(\delta\lambda), \cdots$$
 (54)

 $\alpha_{\ell}(0) = 0, \ \beta_{\ell}(0) \neq 0, \ \gamma_{\ell}(0) \neq 0 \tag{55}$

Figure 6: Schematic illustration of the near-threshold eigenenergy. Left : $\ell = 0$. Middle : $\ell \neq 0$. Right : $\ell = 0$ in larger δM region

Eigenmomentum

$$\begin{cases} p = i \frac{\alpha'_0(0)}{\gamma_0(0)} \delta \lambda & \ell = 0\\ p^2 = -\frac{\alpha'_\ell(0)}{\beta_\ell(0)} \delta \lambda & \ell \neq 0 \end{cases}$$
(56)

Eigenenergy (stronger attraction)

$$E = \begin{cases} -F_0 \delta \lambda^2 & \ell = 0\\ -F_\ell \delta \lambda & \ell \neq 0 \end{cases} \quad \delta \lambda > 0 \tag{57}$$

$$F_0 = \frac{[\alpha'_0(0)]^2}{2\mu[\gamma_0(0)]^2}, \quad F_\ell = \frac{\alpha'_\ell(0)}{2\mu\beta_\ell(0)}$$
(58)

Eigenenergy (weaker attraction)

$$\begin{cases} E = -F_0 \delta \lambda^2 & \ell = 0\\ \operatorname{Re} E = -F_\ell \delta \lambda & \ell \neq 0 \quad \delta \lambda < 0\\ \operatorname{Im} E \propto (\delta \lambda)^{\ell+1/2} \end{cases}$$
(59)

 $s\mbox{-wave}$: bound to virtual, other partial waves : bound to resonance Schematic illustration (Fig. 6)

- Slope at E = 0: field renormalization constant [6]
- s-wave case with larger energy region : virtual state turns into resonance
- Effective range expansion

$$f_{\ell}(p) = \frac{p^{2\ell}}{-\frac{1}{a_{\ell}} + \frac{r_{\ell}}{2}p^2 + \dots - ip^{2\ell+1}}$$
(60)

Pole condition up to p^2 [14]

$$\begin{cases} 0 = -\frac{1}{a_0} - ip + \frac{r_0}{2}p^2 & \ell = 0\\ 0 = -\frac{1}{a_\ell} + \frac{r_\ell}{2}p^2 & \ell \neq 0 \end{cases}$$
(61)

Figure 7: Pole trajectory in the effective range expansion with $r_{\ell} < 0$. Left : $\ell = 0$. Middle : $\ell \neq 0$. The right panel shows the result with $\ell \neq 0$ with the $-ip^{2\ell+1}$ term. Inverted triangles, squares, circles, crosses, and triangles correspond to $1/a_{\ell} = +\infty, 0, 2/r_{\ell}, 1/r_{\ell}, -\infty$, respectively. Solid (dashed) line with filled (empty) symbols stands for p^{-} (p^{+}).

Solution

$$p_{\pm} = \begin{cases} \frac{i}{r_0} \pm \frac{1}{r_0} \sqrt{\frac{2r_0}{a_0} - 1} & \ell = 0\\ \pm \sqrt{\frac{2}{a_\ell r_\ell}} & \ell \neq 0 \end{cases}$$
(62)

Trajectory along with $1/a_{\ell}$ (r_{ℓ} fixed) : Fig. 7

3.3 Discussion

- Coulomb plus short range (strong) interaction
 - Strong interaction (MeV) scale : same with §3.2
 - EM (eV) scale : infinitely many Coulomb bound states
 - Coulomb plus square well [R.R. Lucchese, T. N. Rescigno, C.W. McCurdy, J. Phys. Chem. A 123, 82 (2019)]

$$S_{\ell}(p) = \frac{\Gamma(\ell+1+iZ/p)}{\Gamma(\ell+1-iZ/p)} S_{\ell}^{\mathrm{SR}}(p)$$
(63)

$$S_{\ell}^{\rm SR}(p) = \frac{D_{\ell}(-p)}{D_{\ell}(p)} \tag{64}$$

$$D_{\ell}(p) = \dots \tag{65}$$

- Three-body resonances
 - Efimov state (s-wave three-body bound state) directly goes to resonance [20] (Fig. 8).
 - General classification?

Figure 8: Bound-to-resonance transition of the Efimov state

References

- [1] G. Gamow, Z. Phys. **51**, 204 (1928).
- [2] A. J. F. Siegert, Phys. Rev. 56, 750 (1939).
- [3] N. Hokkyo, Prog. Theor. Phys. **33**, 1116 (1965).
- [4] T. Berggren, Nucl. Phys. A **109**, 265 (1968).
- [5] A. Bohm, J. Math. Phys. **22**, 2813 (1981).
- [6] T. Hyodo, Phys. Rev. C 90, 055208 (2014), 1407.2372.
- [7] A. Bohm, Quantum Mechanics: Foundations and Applications, 3rd edition (Springer, 2001).
- [8] V. I. Kukulin, V. M. Krasnopol'sky, and J. Horacek, *Theory of Resonances* (Kluwer Academic Publishers, Dordrecht, 1989).
- [9] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, Cambridge, 2011).
- [10] Y. Ashida, Z. Gong, and M. Ueda, Adv. Phys. 69, 249 (2021), 2006.01837.
- [11] J. R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (Wiley, New York, 1972).
- [12] R. Newton, Scattering theory of waves and particles, 2nd edition (Springer, Berlin, 2014).
- [13] T. Hyodo and M. Niiyama, Prog. Part. Nucl. Phys. **120**, 103868 (2021), 2010.07592.
- [14] T. Hyodo, Phys. Rev. Lett. **111**, 132002 (2013), 1305.1999.
- [15] N. Hatano, K. Sasada, H. Nakamura, and T. Petrosky, Prog. Theor. Phys. 119, 187 (2008), 0705.1388.

- [16] L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 453 (1956).
- [17] M. Natsuume and T. Okamura, Phys. Rev. D 104, 126007 (2021), 2108.07832.
- [18] Y. Kamiya and T. Hyodo, Phys. Rev. D97, 054019 (2018), 1711.04558.
- [19] HAL QCD, T. Iritani et al., Phys. Lett. B 792, 284 (2019), 1810.03416.
- [20] T. Hyodo, T. Hatsuda, and Y. Nishida, Phys. Rev. C 89, 032201 (2014), 1311.6289.