

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Contents

$\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021); T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

- Recent developments

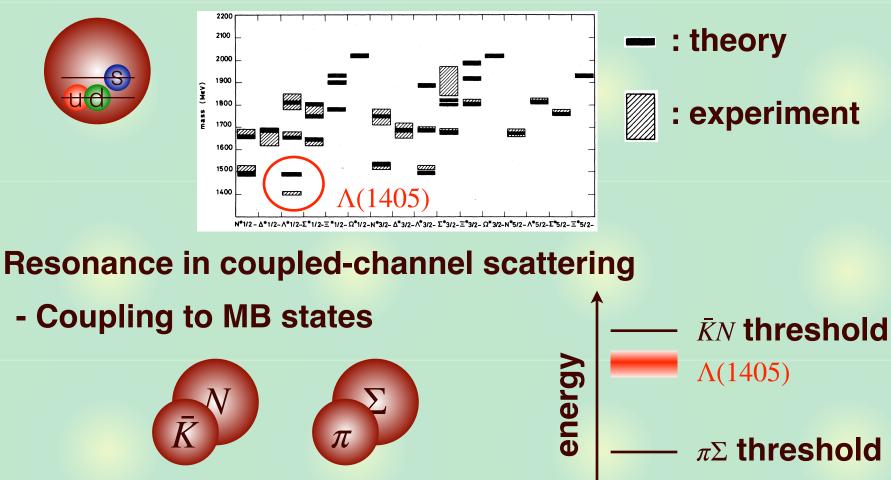
J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); J. Bulava, *et al.* (BaSc), arXiv:2307.10413 [hep-lat]; arXiv:2307.13471 [hep-lat]

K⁻p femtoscopy

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)

- Experimental data

ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)



$\Lambda(1405)$ and $\bar{K}N$ interactions

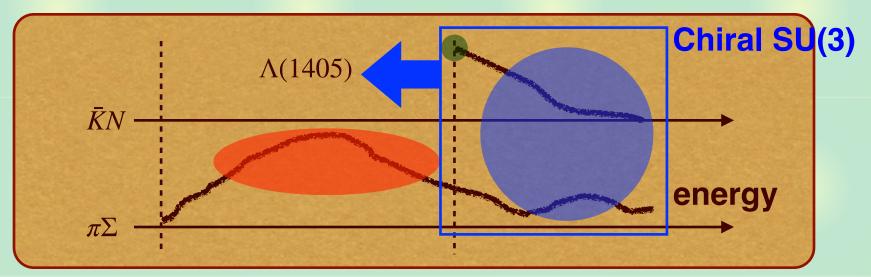
$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD 18, 4187 (1978)

Detailed analysis of $\bar{K}N$ - $\pi\Sigma$ scattering is necessary

$\Lambda(1405)$ and $\bar{K}N$ interactions

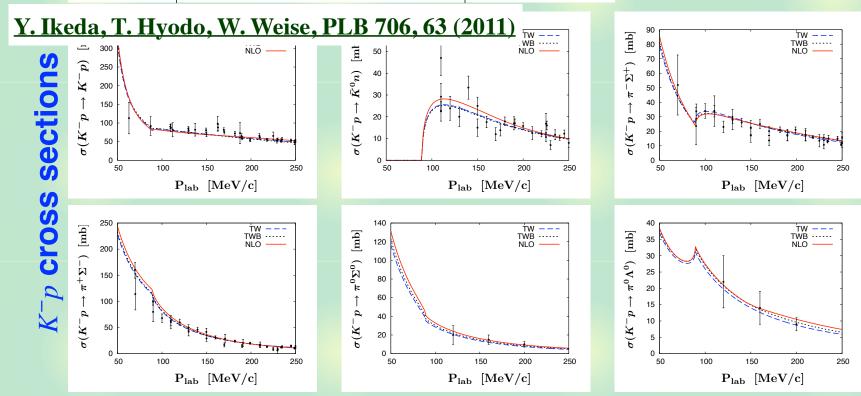

Strategy for *KN* interaction

Above the $\bar{K}N$ threshold : direct constraints

- K⁻p total cross sections (old data)
- *k̄N* threshold branching ratios (old data)
- K⁻p scattering length (new data : SIDDHARTA)

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012)</u>

Below the $\bar{K}N$ threshold: indirect (reaction model needed) - $\pi\Sigma$ mass spectra (LEPS, CLAS, HADES, J-PARC, ...)


$\Lambda(1405)$ and \overline{KN} interactions

Best-fit results by chiral SU(3) dynamics

	TW	TWB	NLO	Experiment	_	
$\Delta E [\mathrm{eV}]$	373	377	306	$283\pm36\pm6$	[10]	
$\Gamma \ [eV]$	495	514	591	$541 \pm 89 \pm 22$	[10]	
γ	2.36	2.36	2.37	2.36 ± 0.04	[11]	
R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]	
R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]	
$\chi^2/{ m d.o.f}$	1.12	1.15	0.96			
	$\Gamma [eV]$ γ R_n R_c	ΔE [eV] 373 Γ [eV] 495 γ 2.36 R_n 0.20 R_c 0.66	ΔE [eV] 373 377 Γ [eV] 495 514 γ 2.36 2.36 R_n 0.20 0.19 R_c 0.66 0.66	ΔE [eV] 373 377 306 Γ [eV] 495 514 591 γ 2.36 2.36 2.37 R_n 0.20 0.19 0.19 R_c 0.66 0.66 0.66	ΔE [eV] 373 377 306 283 ± 36 ± 6 Γ [eV] 495 514 591 541 ± 89 ± 22 γ 2.36 2.36 2.37 2.36 ± 0.04 R_n 0.20 0.19 0.19 0.189 ± 0.015 R_c 0.66 0.66 0.66 0.664 ± 0.011	ΔE [eV] 373 377 306 $283 \pm 36 \pm 6$ [10] Γ Γ [eV] 495 514 591 541 $\pm 89 \pm 22$ [10] γ 2.36 2.36 2.37 2.36 ± 0.04 [11] R_n 0.20 0.19 0.19 0.189 ± 0.015 [11] R_c 0.66 0.66 0.66 0.664 ± 0.011 [11]

SIDDHARTA

Branching ratios

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

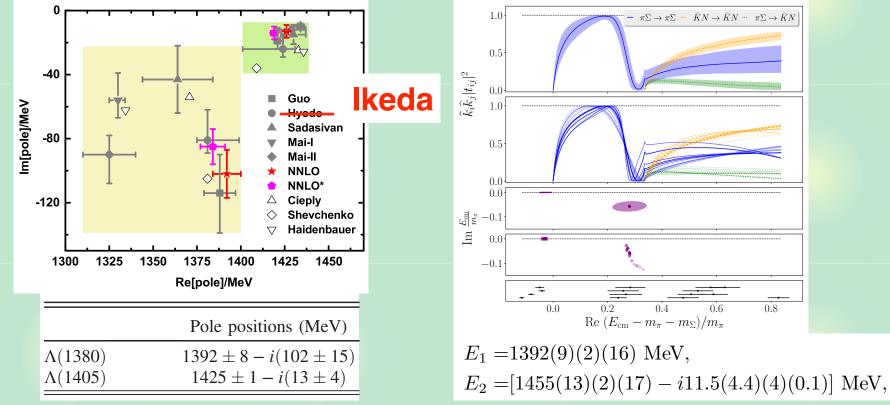
PDG has changed

2020 update of PDG

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> Z.H. Guo, J.A. Oller, PRC 87, 035202 (2013); × $\pi\Sigma$ M. Mai, U.G. Meißner, EPJA 51, 30 (2015) 0 -20 - Particle Listing section: -40 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) [m z [MeV] -60 $I(J^P) = 0(\frac{1}{2})$ Status: **** $\Lambda(1405) \ 1/2^{-1}$ -80 -100 Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) -120 $J^{P} = \frac{1}{2}^{-}$ A(1380) 1/2⁻⁻ Status: ** -140 new 1320 1360 1400 1440 Re z [MeV]

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021)

- "Λ(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole : two-star resonance $\Lambda(1380)$


NNLO analysis and lattice QCD

Analysis at NNLO chiral SU(3) dynamics (KN and πN included)

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023)

Lattice QCD calculation of $\bar{K}N$ - $\pi\Sigma$ scattering ($m_{\pi} \sim 200 \text{ MeV}$)

J. Bulava, et al. (BaSc), arXiv:2307.10413 [hep-lat]; arXiv:2307.13471 [hep-lat]

Two states are confirmed at NNLO and lattice QCD

 $\Lambda(1405)$ and $\bar{K}N$ interactions

Construction of *kN* **potentials**

Local *KN* potential is useful for various applications

meson-baryon amplitude (chiral SU(3) EFT)

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

Kyoto *k̄N* potential (single-channel, complex)

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016) Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential (coupled-channel, real)

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

Kaonic nuclei

Kaonic deuterium

K⁻p correlation function

Contents

Contents

$\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021); T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

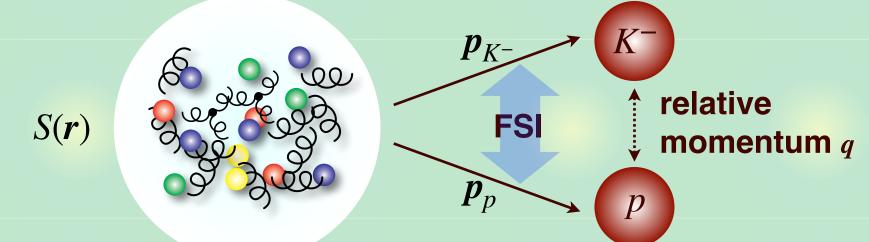
- Recent developments

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); J. Bulava, *et al.* (BaSc), arXiv:2307.10413 [hep-lat]; arXiv:2307.13471 [hep-lat]

K⁻p femtoscopy

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)

- Experimental data


ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)

Summary

Correlation function and hadron interaction

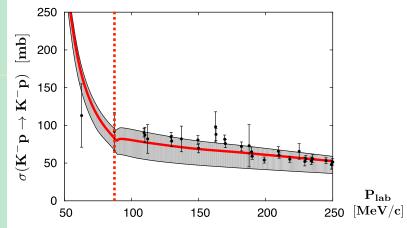
High-energy collision: chaotic source S(r) of hadron emission

- Definition

$$C(\boldsymbol{q}) = \frac{N_{K^-p}(\boldsymbol{p}_{K^-}, \boldsymbol{p}_p)}{N_{K^-}(\boldsymbol{p}_{K^-})N_p(\boldsymbol{p}_p)} \quad \text{(= 1 in the absence of FSI/QS)}$$

- Theory (Koonin-Pratt formula)

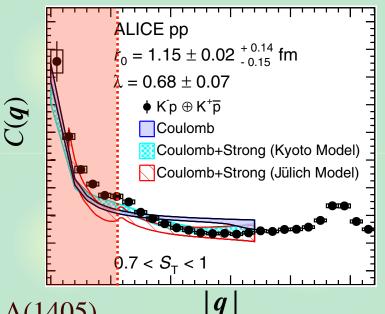
S.E. Koonin PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (2986) $C(q) \simeq \int d^3 r S(r) |\Psi_q^{(-)}(r)|^2$


Source function S(r) < -> wave function $\Psi_q^{(-)}(r)$ (FSI)

Experimental data of *K*⁻*p* **correlation**

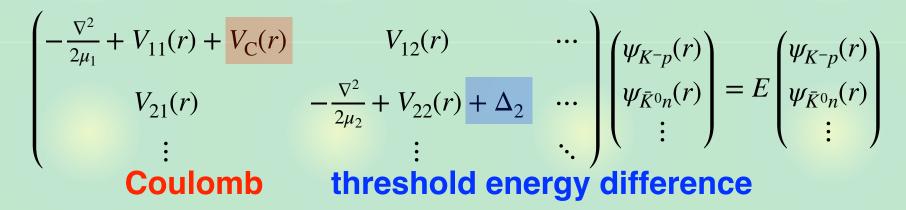
K⁻*p* total cross sections

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)</u>


- Old bubble chamber data
- Resolution is not good
- Threshold cusp is not visible

K⁻p correlation function

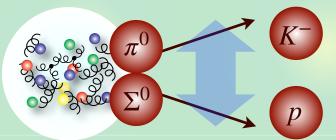
ALICE collaboration, PRL 124, 092301 (2020)


- Excellent precision ($\bar{K}^0 n$ cusp)
- Low-energy data below $\bar{K}^0 n$

-> Important constraint on $\bar{K}N$ and $\Lambda(1405)$

Coupled-channel effects

Schrödinger equation (s-wave)



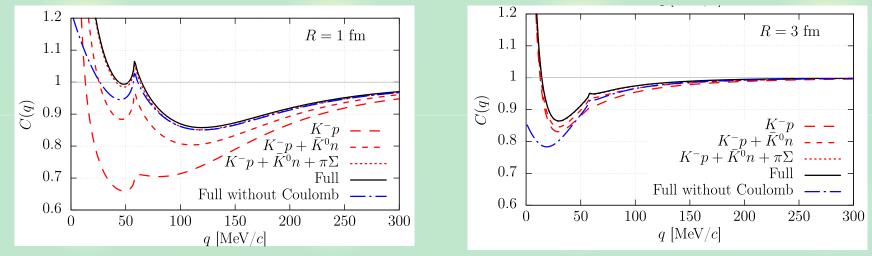
Asymptotic ($r \rightarrow \infty$) wave function

$$\begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_2r} + \#e^{iq_2r} \\ \vdots \end{pmatrix}$$

incoming + outgoing

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$ is in $\psi_i(r)$ with $i \neq K^- p$

Coupled-channel correlation function


Coupled-channel Koonin-Pratt formula

R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998); J. Haidenbauer, NPA 981, 1 (2019);

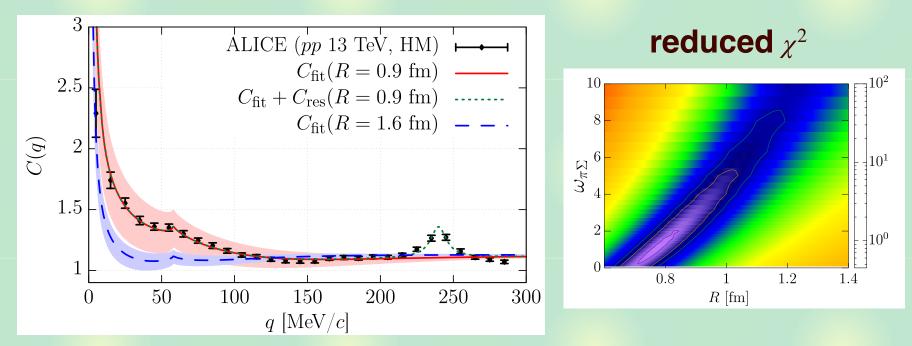
Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

Fransition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$

- ω_i : weight of source channel *i* relative to K^-p

Coupled-channel effect is enhanced for small sources


K⁻p femtos<u>copy</u>

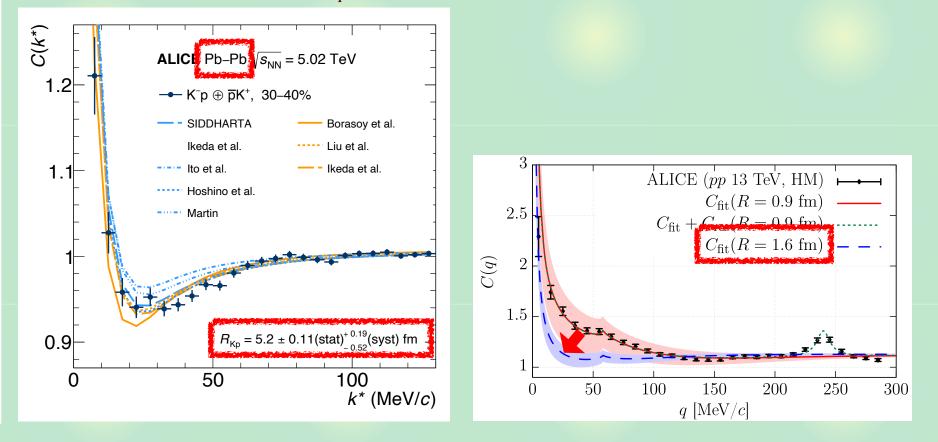
Correlation from chiral SU(3) dynamics

Wave function $\Psi_{i,q}^{(-)}(r)$: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

- Source function S(r): Gaussian, $R \sim 1$ fm in K^+p data
- Source weight $\omega_{\pi\Sigma} \sim 2$ by simple statistical model estimate

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL 124, 132501 (2020)

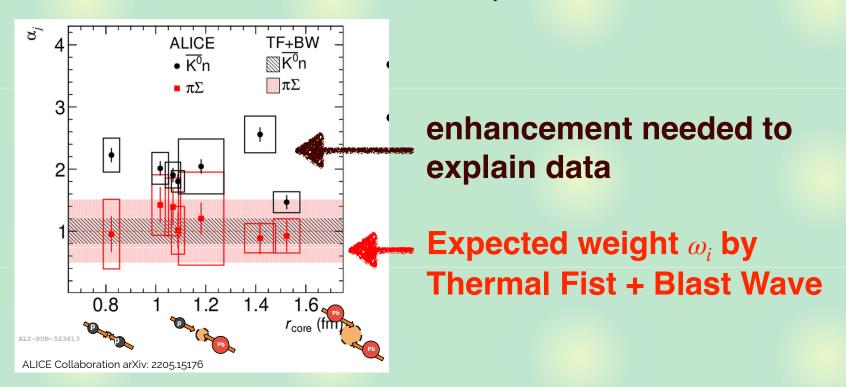

Correlation function by ALICE is well reproduced

Source size dependence

New data with Pb-Pb collisions at 5.02 TeV

ALICE collaboration, PLB 822, 136708 (2021)

- Scattering length $a_{K^-p} = -0.91 + 0.92i$ fm


Correlation is suppressed at larger *R***, as predicted**

Systematic study of source size dependence

Correlations in *pp*, *p*-Pb, Pb-Pb **by Kyoto** $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ **potential**

ALICE collaboration, EPJC 83, 340 (2023)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

More strength is needed in the $\bar{K}^0 n$ channel

Summary

K⁻p scattering and kaonic hydrogen are well described by NLO chiral SU(3) dynamics. Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012) - NNLO, scattering on the lattice, ... J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); J. Bulava, et al. (BaSc), arXiv:2307.10413 [hep-lat]; arXiv:2307.13471 [hep-lat] **Global structures of** K⁻p **correlation functions** are reproduced by Kyoto $\bar{K}N-\pi\Sigma-\pi\Lambda$ potential. Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020) - Source size dependence ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)