Compositeness of hadrons and its application to baryon resonances

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Introduction: structure of excited hadrons

Compositeness with weak-binding relation

S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013);
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)
T. Kinugawa, T. Hyodo, PRC106, 015205 (2022)

Compositeness of baryon resonances

T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015);
T. Sekihara, T. Arai, J. Yamagata-Sekihara, S. Yasui, PRC93, 035204 (2016)

Summary

Observed hadrons（2020）

Particle Data Group（PDG） 2020 eddition http：／／pdg．lbl．gov／

p	1／2＋	＊＊＊＊	Δ（1232）	$3 / 2^{+}$	＊＊＊＊	Σ^{+}	1／2 ${ }^{+}$	＊＊＊＊	三0	$1 / 2^{+}$	＊＊＊＊	$\Xi_{c c}^{++}$		＊＊＊
n	$1 / 2^{+}$	＊＊＊＊	$\Delta(1600)$	$3 / 2^{+}$	＊＊＊＊	Σ^{0}	$1 / 2^{+}$	＊＊＊＊	三	$1 / 2^{+}$	＊＊＊＊			
$N(1440)$	$1 / 2^{+}$	＊＊＊＊	$\Delta(1620)$	$1 / 2^{-}$	＊＊＊＊	Σ	$1 / 2^{+}$	＊＊＊＊	三（1530）	$3 / 2^{+}$	＊＊＊＊		$1 / 2^{+}$	＊＊＊
$N(1520)$	3／2－	＊＊＊＊	$\Delta(1700)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(1385)$	$3 / 2^{+}$	＊＊＊＊	$\equiv(1620)$		＊	$\Lambda_{b}(5912)^{0}$	$1 / 2^{-}$	＊＊＊
$N(1535)$	1／2 ${ }^{-}$	＊＊＊＊	$\Delta(1750)$	$1 / 2^{+}$	＊	$\Sigma(1580)$	$3 / 2^{-}$	＊	三（1690）		＊＊＊	$\Lambda_{b}(5920)^{0}$	$3 / 2^{-}$	＊＊＊
$N(1650)$	1／2 ${ }^{-}$	＊＊＊＊	$\Delta(1900)$	$1 / 2^{-}$	＊＊＊	$\Sigma(1620)$	1／2 ${ }^{-}$	＊	三（1820）	$3 / 2^{-}$	＊＊＊	$\Lambda_{b}(6146)^{0}$	$3 / 2^{+}$	＊＊＊
$N(1675)$	5／2－	＊＊＊＊	Δ（1905）	5／2 ${ }^{+}$	＊＊＊＊	$\Sigma(1660)$	$1 / 2^{+}$	＊＊＊	三（1950）		＊＊＊	$\Lambda_{b}(6152)^{0}$	5／2＋	＊＊＊
$N(1680)$	5／2＋	＊＊＊＊	$\Delta(1910)$	$1 / 2^{+}$	＊＊＊＊	$\Sigma(1670)$	$3 / 2^{-}$	＊＊＊＊	三（2030）	$\geq \frac{5}{2}$ ？	＊＊＊	Σ_{b}	1／2 ${ }^{+}$	＊＊＊
$N(1700)$	$3 / 2^{-}$	＊＊＊	Δ（1920）	$3 / 2^{+}$	＊＊＊	$\Sigma(1750)$	1／2 ${ }^{-}$	＊＊＊	三（2120）		＊	Σ_{b}^{*}	$3 / 2^{+}$	＊＊＊
$N(1710)$	1／2＋	＊＊＊＊	$\Delta(1930)$	5／2－	＊＊＊	$\Sigma(1775)$	5／2－	＊＊＊＊	三（2250）		＊＊	$\Sigma_{b}(6097)^{+}$		＊＊＊
$N(1720)$	3／2＋	＊＊＊＊	Δ（1940）	$3 / 2^{-}$	＊＊	$\Sigma(1780)$	$3 / 2^{+}$	＊	三（2370）		＊＊	$\Sigma_{b}(6097)^{-}$		＊＊＊
$N(1860)$	5／2＋	＊＊	$\Delta(1950)$	7／2 ${ }^{+}$	＊＊＊＊	$\Sigma(1880)$	$1 / 2^{+}$	＊＊	三（2500）		＊	$\bar{E}_{b}^{0}, \bar{E}_{b}^{-}$	$1 / 2^{+}$	＊＊＊
$N(1875)$	3／2－	＊＊＊	$\Delta(2000)$	5／2 ${ }^{+}$	＊＊	$\Sigma(1900)$	$1 / 2^{-}$	＊＊				$\bar{\prime}_{b}^{\prime}(5935)^{-}$	$1 / 2^{+}$	＊
$N(1880)$	1／2＋	＊＊＊	$\Delta(2150)$	$1 / 2^{-}$	＊	$\Sigma(1910)$	3／2－	＊＊＊	Ω^{-}	$3 / 2^{+}$	＊＊＊＊	$\Xi_{b}(5945)^{0}$	$3 / 2^{+}$	＊＊＊
$N(1895)$	1／2－	＊＊＊＊	$\Delta(2200)$	7／2 ${ }^{-}$	＊＊＊	$\Sigma(1915)$	$5 / 2^{+}$	＊＊＊	$\Omega(2012)^{-}$	？	＊＊＊	$\overline{\#}_{b}(5955)^{-}$	$3 / 2^{+}$	＊＊
$N(1900)$	$3 / 2^{+}$	＊＊＊＊	$\Delta(2300)$	9／2＋	＊＊	$\Sigma(1940)$	$3 / 2^{+}$	＊	$\Omega(2250)^{-}$		＊＊＊	$\Xi_{b}(6227)$		＊＊＊
$N(1990)$	7／2＋	＊＊	$\Delta(2350)$	5／2－	＊	$\Sigma(2010)$	3／2－	＊	$\Omega(2380)^{-}$		＊＊		$1 / 2^{+}$	＊＊
$N(2000)$	5／2＋	＊＊	$\Delta(2390)$	7／2 ${ }^{+}$	＊	$\Sigma(2030)$	7／2＋	＊＊＊＊	$\Omega(2470)^{-}$		＊＊			
$N(2040)$	$3 / 2^{+}$	＊	$\Delta(2400)$	9／2 ${ }^{-}$	＊＊	$\Sigma(2070)$	5／2 ${ }^{+}$	＊				$P_{c}(4312)^{+}$		＊
$N(2060)$	5／2－	＊＊＊	$\Delta(2420)$	11／2＋	＊＊＊＊	$\Sigma(2080)$	$3 / 2^{+}$	＊	Λ_{c}^{+}	$1 / 2^{+}$	＊＊＊	$P_{c}(4380)^{+}$		＊
$N(2100)$	$1 / 2^{+}$	＊＊＊	$\Delta(2750)$	13／2－	＊＊	$\Sigma(2100)$	7／2－	＊	$\Lambda_{c}(2595)^{+}$	$1 / 2^{-}$	＊＊＊	$P_{c}(4440)^{+}$		＊
$N(2120)$	3／2－	＊＊＊	$\Delta(2950)$	$15 / 2^{+}$	＊＊	$\Sigma(2160)$	$1 / 2^{-}$	＊	$\Lambda_{c}(2625)^{+}$	$3 / 2^{-}$	＊＊＊	$P_{C}(4457)^{+}$		
$N(2190)$	7／2－	＊＊＊＊				$\Sigma(2230)$	$3 / 2^{+}$	＊	$\Lambda_{c}(2765)^{+}$		＊			
$N(2220)$	9／2＋	＊＊＊＊	1	$1 / 2^{+}$	＊＊＊＊	$\Sigma(2250)$		＊＊＊	$\Lambda_{c}(2860)^{+}$	$3 / 2^{+}$	＊＊＊			
$N(2250)$	9／2－	＊＊＊＊	1	$1 / 2^{-}$	＊＊	$\Sigma(2455)$		＊＊	$\Lambda_{c}(2880)^{+}$	$5 / 2^{+}$	＊＊＊			
$N(2300)$	1／2＋	＊＊	＾（1405）	$1 / 2^{-}$	＊＊＊＊	$\Sigma(2620)$		＊＊	$\Lambda_{c}(2940)^{+}$	$3 / 2^{-}$	＊＊＊			
$N(2570)$	5／2－	＊＊	$\Lambda(1520)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(3000)$		＊	$\Sigma_{c}(2455)$	$1 / 2^{+}$	＊＊＊＊			
$N(2600)$	11／2－	＊＊＊	$\wedge(1600)$	$1 / 2^{+}$	＊＊＊＊	$\Sigma(3170)$		＊	$\Sigma_{c}(2520)$	$3 / 2^{+}$	＊＊＊			
$N(2700)$	13／2＋		$\Lambda(1670)$	$1 / 2^{-}$	＊＊＊＊				$\Sigma_{c}(2800)$		＊＊＊			
			＾（1690）	$3 / 2^{-}$	＊＊＊＊				Ξ_{c}^{+}	$1 / 2^{+}$	＊＊＊			
			$\Lambda(1710)$	$1 / 2^{+}$	＊				Ξ_{c}^{0}		＊＊＊＊			
			1（1800）	$1 / 2^{-}$	＊＊＊				$\Xi_{c}^{\prime+}$	$1 / 2^{+}$	＊＊＊			
			＾（1810）	$1 / 2^{+}$	＊＊＊						＊＊			
			＾（1820）	$5 / 2^{+}$	＊＊＊＊				$\bar{E}_{c}(2645)$	$3 / 2^{+}$				
			＾（1830）	5／2 ${ }^{-}$	＊＊＊＊				$\bar{E}_{c}(2790)$	$1 / 2^{-}$				
			$\Lambda(1890)$	$3 / 2^{+}$	＊＊＊＊				$\bar{E}_{c}(2815)$	$3 / 2^{-}$				
			$\Lambda(2000)$ $\Lambda(2050)$	$1 / 2^{-}$	＊				$\bar{\Xi}^{\prime}(2930)$					
			$\wedge(2050)$ $\wedge(2070)$	$3 / 2$ $3 / 2+$	＊				\bar{E}^{\prime}（2970）					
			＾（2080）	5／2－	＊				$\begin{aligned} & \Xi_{c}(3055) \\ & \bar{E}_{c}(3080) \end{aligned}$					
			＾（2085）	7／2＋	＊＊				$E_{c}(3123)$					
			$\Lambda(2100)$	7／2 ${ }^{-}$	＊＊＊＊				Ω_{C}^{0}					
			$\wedge(2110)$ $\wedge(2325)$	5／2 ${ }^{+}$	＊＊＊				（1077n⿺	sint				
			$\begin{aligned} & \Lambda(2325) \\ & \Lambda(2350) \end{aligned}$	$3 / 2$ $9 / 2+$	＊＊＊									
			$\wedge(2585)$											

Observed hadrons (2022)

Particle Data Group (PDG) 2022 eddition http://pdg.lbl.gov/

All ~ 380 hadrons emerge from single QCD Lagrangian

Unstable states via strong interaction

Stable／unstable hadrons

p	1／2	＊＊＊＊	$\Delta(1232)$	$3 / 2^{+}$	＊＊＊＊	Σ^{+}	$1 / 2^{+}$	＊＊＊＊	Λ_{c}^{+}	$1 / 2^{+}$	＊＊＊＊	Λ_{b}^{0}	$1 / 2^{+}$	＊＊＊
n	$1 / 2^{+}$	＊＊＊＊	$\Delta(1600)$	$3 / 2^{+}$	＊＊＊＊	Σ^{0}	$1 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2595)^{+}$	1／2	＊＊＊	$\Lambda_{b}(5912)^{0}$	1／2	
$N(1440)$	$1 / 2^{+}$	＊＊＊＊	$\Delta(1620)$	$1 / 2^{-}$	＊＊＊＊	Σ	$1 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2625)^{+}$	$3 / 2^{-}$	＊＊＊	$\Lambda_{b}(5920)^{0}$	3／2－	＊＊＊
$N(1520)$	3／2－	＊＊＊＊	$\Delta(1700)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(1385)$	$3 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2765)^{+}$		＊	$\Lambda_{b}(6146)^{0}$	$3 / 2^{+}$	＊＊＊
$N(1535)$	$1 / 2^{-}$	＊＊＊＊	$\Delta(1750)$	$1 / 2^{+}$	＊	$\Sigma(1580)$	$3 / 2^{-}$	＊	$\Lambda_{c}(2860)^{+}$	$3 / 2^{+}$	＊＊＊	$\Lambda_{b}(6152)^{0}$	5／2 ${ }^{+}$	＊＊＊
$N(1650)$	$1 / 2^{-}$	＊＊＊＊	$\Delta(1900)$	$1 / 2^{-}$	＊＊＊	$\Sigma(1620)$	$1 / 2^{-}$	＊	$\Lambda_{c}(2880)^{+}$	$5 / 2^{+}$	＊＊＊	Σ_{b}	$1 / 2^{+}$	＊＊＊
$N(1675)$	5／2－	＊＊＊＊	$\Delta(1905)$	5／2 ${ }^{+}$	＊＊＊＊	$\Sigma(1660)$	$1 / 2^{+}$	＊＊＊	$\Lambda_{c}(2940)^{+}$	$3 / 2^{-}$	＊＊＊	Σ_{b}^{*}	$3 / 2^{+}$	＊＊＊
$N(1680)$	$5 / 2^{+}$	＊＊＊＊	$\Delta(1910)$	$1 / 2^{+}$	＊＊＊＊	$\Sigma(1670)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma_{C}(2455)$	$1 / 2^{+}$	＊＊＊＊	$\Sigma_{b}(6097)^{+}$		＊＊＊
$N(1700)$	$3 / 2^{-}$	＊＊＊	$\Delta(1920)$	$3 / 2^{+}$	＊＊＊	$\Sigma(1750)$	$1 / 2^{-}$	＊＊＊	$\Sigma_{C}(2520)$	$3 / 2^{+}$	＊＊＊	$\Sigma_{b}(6097)^{-}$		＊＊＊
$N(1710)$	$1 / 2^{+}$	＊＊＊	$\Delta(1930)$	$5 / 2^{-}$	＊＊＊	$\Sigma(1775)$	5／2－	＊＊＊＊	$\Sigma_{c}(2800)$		＊＊＊	\bar{E}_{b}^{-}	$1 / 2^{+}$	＊＊＊
$N(1720)$	$3 / 2^{+}$	＊＊＊＊	$\Delta(1940)$	$3 / 2^{-}$	＊＊	$\Sigma(1780)$	$3 / 2^{+}$	＊	$\overline{\text { E }}^{+}$	$1 / 2^{+}$	＊＊＊	\＃${ }_{b}$	$1 / 2^{+}$	＊＊＊
$N(1860)$	$5 / 2^{+}$	＊＊	$\Delta(1950)$	7／2 ${ }^{+}$	＊＊＊＊	$\Sigma(1880)$	$1 / 2^{+}$	＊＊	${ }_{=0}$	$1 / 2^{+}$	＊＊＊＊	$\Xi_{b}^{\prime}(5935){ }^{-}$	$1 / 2^{+}$	＊＊＊
$N(1875)$	$3 / 2^{-}$	＊＊＊	$\Delta(2000)$	5／2 ${ }^{+}$	＊＊	$\Sigma(1900)$	$1 / 2^{-}$	＊＊	$\Xi_{c}^{\text {ct }}$	$1 / 2^{+}$	＊＊＊	$\bar{D}_{b}(5945)^{0}$	$3 / 2^{+}$	＊＊＊
$N(1880)$	$1 / 2^{+}$	＊＊＊	$\Delta(2150)$	$1 / 2^{-}$	＊	$\Sigma(1910)$	3／2－	＊＊＊	$\#_{c}^{0}$	$1 / 2^{+}$	＊＊＊	$\bar{\square}^{\prime}(5955)^{-}$	$3 / 2^{+}$	＊
$N(1895)$	$1 / 2^{-}$	＊＊＊＊	$\Delta(2200)$	7／2 ${ }^{-}$	＊＊＊	$\Sigma(1915)$	$5 / 2^{+}$	＊＊＊＊	\bar{E}_{c}（2645）	$3 / 2^{+}$	＊＊＊	$\bar{\Xi}_{b}(6100)^{-}$	$3 / 2^{-}$	＊＊＊
$N(1900)$	$3 / 2^{+}$	＊＊＊＊	$\Delta(2300)$	9／2 ${ }^{+}$	＊＊	$\Sigma(1940)$	$3 / 2^{+}$	＊	$\bar{E}_{c}(2790)$	$1 / 2^{-}$	＊＊＊	$\bar{\Xi}_{b}(6227)^{-}$		＊＊＊
$N(1990)$	$7 / 2^{+}$	＊＊	$\Delta(2350)$	5／2 ${ }^{-}$	＊	$\Sigma(2010)$	$3 / 2^{-}$	＊	$\bar{E}_{c}(2815)$	$3 / 2^{-}$	＊＊＊	$\overline{-b}^{\prime}(6227)^{0}$		＊＊＊
$N(2000)$	5／2＋		$\Delta(2390)$	7／2＋		$\Sigma(2030)$	7／2 ${ }^{+}$	＊＊＊＊	$\overline{\#}_{c}$（2923）		＊＊		$1 / 2^{+}$	＊＊＊
$N(2040)$	$3 / 2^{+}$		$\Delta(2400)$	9／2 ${ }^{-}$	＊＊	$\Sigma(2070)$	5／2 ${ }^{+}$	＊	\bar{E}_{c}（2930）		＊＊	$\Omega_{b}(6316)$		＊
$N(2060)$	$5 / 2^{-}$	＊＊＊	$\Delta(2420)$	11／2＋	＊＊＊＊	$\Sigma(2080)$	3／2 ${ }^{+}$	＊	\bar{E}_{C}（2970）	$1 / 2^{+}$	＊＊＊	$\Omega_{b}(6330)^{-}$		＊
$N(2100)$	$1 / 2^{+}$	＊＊＊	$\Delta(2750)$	13／2－	＊＊	$\Sigma(2100)$	7／2－	＊	$\bar{\Xi}^{-c}(3055)$		＊＊＊	$\Omega_{b}(6340)^{-}$		＊
$N(2120)$	$3 / 2^{-}$	＊＊＊	$\Delta(2950)$	15／2＋	＊＊	$\Sigma(2110)$	$1 / 2^{-}$	＊	$\bar{\Xi}_{C}(3080)$		＊＊＊	$\Omega_{b}(6350)^{-}$		＊
$N(2190)$	$7 / 2^{-}$	＊＊＊＊				$\Sigma(2230)$	$3 / 2^{+}$	＊	$\bar{E}_{c}(3123)$		＊			
$N(2220)$	9／2＋	＊＊＊＊	1	$1 / 2^{+}$	＊＊＊＊	$\Sigma(2250)$		＊＊	Ω_{C}^{0}	$1 / 2^{+}$	＊＊＊	$P_{c}(4312)^{+}$		＊
$N(2250)$	9／2－	＊＊＊＊	1（1380）	1／2－	＊＊＊＊	$\Sigma(2455)$			$\Omega_{c}(2770)^{0}$	$3 / 2^{+}$	＊＊＊	$P_{C}(4380)^{+}$		＊
$N(2300)$	$1 / 2^{+}$	＊＊	\wedge（1405）	$1 / 2^{-}$	＊＊＊＊	$\Sigma(2620)$			$\Omega_{c}(3000)^{0}$		＊＊＊	$P_{C}(4440)^{+}$		＊
$N(2570)$	$5 / 2^{-}$	＊＊	＾（1520）	3／2－	＊＊＊＊＊	$\Sigma(3000)$		＊	$\begin{aligned} & د_{c}(3050)^{0} \\ & \Omega_{0} \end{aligned}$		＊＊＊	$P_{C}(4457)^{+}$		＊
$N(2600)$	11／2－	＊＊＊	＾（1600）	$1 / 2^{+}$	＊＊＊＊	$\Sigma(3170)$		＊	$\begin{aligned} & s_{c}(3065)^{0} \\ & \Omega_{0} \end{aligned}$		＊＊＊			
$N(2700)$	$13 / 2^{+}$		＾（1670）	$1 / 2^{-}$	＊＊＊＊						＊＊＊			
			＾（1690）	$3 / 2^{-}$	＊＊＊＊	三	$1 / 2^{+}$	＊＊＊＊	$\begin{aligned} & \Omega_{c}(3090)^{0} \\ & \Omega_{c}(3120)^{0} \end{aligned}$		＊＊＊			
			＾（1710）	$1 / 2^{+}$	＊		$1 / 2^{+}$	＊＊＊＊	$\Omega_{c}(3120)^{0}$					
			\wedge（1800）	$1 / 2^{-}$	＊＊＊	三（1530）	$3 / 2^{+}$	＊＊＊＊						
			\wedge（1810）	$1 / 2^{+}$	＊＊＊	三（1620）			$\begin{aligned} & =c c \\ & \equiv \\ & \hline+ \end{aligned}$		＊＊＊			
			＾（1820）	5／2 ${ }^{+}$	＊＊＊＊	三（1690）		＊＊＊						
			\wedge（1830）	5／2 ${ }^{-}$	＊＊＊＊	三（1820）	$3 / 2^{-}$	＊＊＊						
			＾（1890）	$3 / 2^{+}$	＊＊＊＊	三（1950）		＊＊＊						
			$1(2000)$	$1 / 2^{-}$	＊	三（2030）	$\geq \frac{5}{2}$ ？	＊＊＊						
			1 （2050）	$3 / 2^{-}$	＊	三（2120）								
			$1(2070)$	$3 / 2^{+}$	＊	三（2250）		＊＊				，		
			1（2080）	5／2－	＊	三（2370）		＊＊						
			＾（2085）	7／2 ${ }^{+}$	＊＊	三（2500）		＊						
			＾（2100）	7／2－	＊＊＊＊									
			1 （2110）	$5 / 2^{+}$	＊＊＊	Ω	$3 / 2^{+}$	＊＊＊＊						
			＾（2325）	3／2 ${ }^{-}$	＊	Ω（201：								
			$\begin{aligned} & \Lambda(2350) \\ & \Lambda(2585) \end{aligned}$	$9 / 2^{+}$	＊＊＊ ＊	$\Omega(2251$								

Most of hadrons are unstable（above two－hadron threshold）
http：／／pdg．lbl．gov／

	LIGHT UNFLAVORED $(S=C=B=0)$			$\begin{gathered} \text { STRANGE } \\ (S= \pm 1, C=B=0) \\ \left(f^{P}\right) \end{gathered}$		CHARMED，STRANGE$(C= \pm 1, S= \pm 1)$$(+$ possibly non－$q \bar{q}$ states）		$\bar{C} \bar{c}$ continued ${ }_{I^{G}(P)}(P C)$			
	$F^{\prime}\left(P^{(P C)}\right.$		$F_{(}\left({ }^{P C}\right)$			－$v_{2}(3823)$	$0^{-}\left(2^{-}\right.$				
	$1^{-}\left(0^{-}\right)$	－$\pi_{2}(1670)$	$1^{-}(2$	－K	1／2（0）			－$\psi_{3}(3842)$	0^{-}		
－ 0^{0}	$1^{-}\left(0^{-+}\right)$	－$¢$（1680）	$0^{-}(1$	－K^{0}	1／2（2）			－$D_{s}^{ \pm}$	${ }^{0}\left(0^{-}\right.$）	$\chi_{\text {coo（3860）}}$	$0^{+}\left(0^{+}\right.$
	${ }^{+}$（0	－p3（1690）	$1^{+}($	－K_{S}^{0}	$1 / 2\left(0^{-}\right)$	－$D_{s}^{\text {st }}$	$0\left(? ?^{\text {a }}\right.$ ）	－$\chi_{c}(3872)$	$0^{+}(1$		
－$f_{0}(500)$	$0^{+}\left(00^{++}\right)$	－$P(1700)$	$1^{+}(1$	－K ${ }_{L}^{0}$	1／2（ 0^{-}）	－$D_{\text {so }}(2317)$	$0\left(0^{+}\right)$	－$z_{c}(3900)$	$1^{+}(1$		
－\cdot（770）	$1^{+}\left(1^{--}\right)$	－$a_{2}(1700)$	1^{-1}	－ $\mathrm{K}_{0}^{2}(700)$	1／2（0＋）	－ St $^{\text {S }}$（2460）	$0\left(1^{+}\right)$	－\times co（ 3915 ）	0^{+}		
－ω（782）	0^{-1}	－$f_{0}(1710)$	$0^{+}(0+$	－K^{*}（892）	1／2（ 1^{-}）	－ $\mathrm{D}_{51}(2536)$	$0\left(1^{+}\right)$	－＜＜e（3930）			
－$\eta^{\prime}(958)$	0^{+}（0	$x(1750)$	？－（1	－ $\mathrm{K}_{1}(1270)$	1／2（1＋）	－$D_{52}^{52}(2573)$	$0\left(2^{+}\right)$	X（3940）			
－$f_{0}(980)$	$0^{+}(0$	$\eta(1760)$	${ }^{+}+$	－$K_{1}(1400)$	$1 / 2\left(1^{+}\right)$	D_{50}（2590）	$0\left(0^{-}\right)$	－$\times(4020)^{ \pm}$	1^{+}（？？		
－क（980）	$1^{-}\left(0^{++}\right)$	－π（1800）	$1^{-}(0$	－$K^{*}(1410)$	1／2（ 1^{-}）	－$D_{51}^{*}(2700)$	$0\left(1^{-}\right)$	－（4040）	$0^{-(1--)}$		
－${ }^{(1020)}$	$0^{-}(1$	$f_{2}(1810)$	$0^{+}\left(2^{++}\right)$	－ $\mathrm{K}_{0}^{*}(1430)$	1／2（2＋）	$D_{51}^{\text {S }}$（2860）	$0\left(1^{-}\right)$	$X(4050)^{ \pm}$	$1^{-\left(?+?^{+}\right.}$		
－$h_{1}(1170)$	$0^{-}(1$	X（1835）	？？ 0^{-+}）	－$K_{2}^{\prime}(1430)$	$1 / 2\left(2^{+}\right)$	－$D_{53}^{4}(2860)$	$0\left(3^{-}\right)$	$X(4055)^{ \pm}$	${ }^{1+(? ?-}$ ？$)$		
－$b_{1}(1235)$	1^{+}	－$\phi_{3}(1850)$	$0^{-}\left(3^{--}\right)$	－K（1460）	1／2（ 0^{-}）	－${ }_{0}$	$?\left(0^{+}\right)$	$X(4100)^{ \pm}$			
－$a_{1}(1260)$	$1^{1-(1++)}$	－$r_{2}(1870)$	$0^{+}(2$	$K_{2}(1580)$	1／2（2－）	$\chi_{1}(2900)$	？$\left.{ }^{\left(11^{-}\right.}\right)$	－$\chi_{\text {c }}(4140)$			
－ $\mathrm{f}_{2}(1270)$	${ }^{0+(2++)}$	－$\pi_{2}(1880)$	$1^{1+}{ }^{+}$	$K(1630)$	1／2（？？）	$\mathrm{D}_{\text {st }}(3040)$	$0(?$ ？$)$	－ $\begin{array}{r}(4160) \\ X(4160)\end{array}$			
－$f_{1}(1285)$ －$\eta(1295)$	${ }^{0+}{ }^{+}(10$	${ }_{p}^{\rho(1900)}{ }_{\text {f }}(1910)$	$\begin{aligned} & { }^{1+(1} \\ & 0^{+}(2) \end{aligned}$	－$K_{1}(1650)$ －$K^{*}(1680)$	$1 / 2\left(1^{+}\right)$ $1 / 2\left(1^{-}\right)$			$\begin{aligned} & X(4160) \\ & Z_{C}(4200) \end{aligned}$	$\begin{aligned} & ? ? ? ? ?) \\ & 1^{+}\left(1^{+}\right. \end{aligned}$		
－$\pi(1300)$	$1^{-}\left(0^{-+}\right)$	$\mathrm{a}_{0}(1950)$	$1^{-}\left(0^{++}\right)$	- K	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$			－（4230）	0 （1		
－a2（1320）	$1^{-(2++)}$	－$f_{2}(1950)$	$0^{+}\left(2^{++}\right)$	－$K_{3}(1780)$	1／2（3）	－$B^{ \pm}$	1／2（0－）	$R_{\text {co（4240）}}$	${ }^{1+(0--)}$		
－$f_{0}(1370)$	${ }^{0^{+}\left(0^{++}\right)}$	－at（1970）	$1^{+}\left(4^{++}\right)$	－K2（1820）	$1 / 2\left(2^{-}\right)$	－B^{0}	1／2（0－）	$X(4250)^{ \pm}$	1^{-1} ？$?$		
－$\pi_{1}(1400)$	${ }^{1-1}$	$p_{3}(1990)$	$1^{+}\left(3^{-}\right.$	K（1830）	1／2（ 0^{-}）	－$B^{ \pm} / B^{0} \mathrm{AD}$	IXTURE	－$\chi_{C}(4274)$	${ }^{0+}(1++)$		
－ 7 （1405）	$0^{0^{+}\left(00^{-+}\right.}$	$\pi_{2}(2005)$	$1^{-}\left(2^{-}\right.$	$K_{0}^{*}(1950)$	1／2（2＋）	$\text { - } B^{ \pm} \mid B^{0}$	－baryon	X（4350）	$0^{0+(?+)}$		
－$h_{1}(1415)$	$0^{-}\left(1^{+-}\right)$	－$f_{2}(2010)$	$0^{+}\left(2^{++}\right)$	－ $\mathrm{K}_{2}^{\prime}(1980)$	1／2（2＋）			－（4360）	0^{-}－ 1		
－$f_{1}(1420)$	$0^{+}(1$	$f_{0}(2020)$	$0^{+}\left(0^{++}\right)$	－$K_{4}^{*}(2045)$	$1 / 2\left(4^{+}\right)$	trix Elem		－（4415）	0^{-}－ 1		
－ω（1420）	$0^{-}(1$	－$f_{4}(2050)$	$0^{+}\left(4^{++}\right)$	$K_{2}(2250)$		－B^{*}	1／2（1＋）	－$z_{c}(4430)$	1^{+}		
$\mathrm{f}_{2}(1430)$	$0^{+}(2$	$\pi_{2}(2100)$	$1^{-}\left(2^{-+}\right)$	$\begin{aligned} & K_{2}(2250) \\ & K_{3}(2320) \end{aligned}$	$1 / 2\left(3^{+}\right)$	－$B_{1}(5721)$	1／2（ 1^{+}）	χ xco（4500）	${ }^{0+}\left(0^{++}\right)$		
－ 2 （1450）	$1^{1-\left(0^{++}\right)}$	$f_{0}(2100)$	${ }^{0+}\left(0^{++}\right)$	$K_{5}^{(2380)}$	1／2（5）	$B^{3}(5732)$		X（4630）	${ }^{0+}{ }^{0+}{ }^{\text {？}}+$		
－$\rho(1450)$	${ }^{1+}(1$	$f_{2}(2150)$	${ }^{0}+$	$K_{5}(2500)$	1／2（ 4^{-}）	－$B_{2}^{\prime 2}(5747)$	1／2（2＋）	－4（4660）			
－ $\boldsymbol{\text {－}}$（ (1475)		ρ o（2150）		$K(3100)$	？？（？？$)$	B， B $^{\text {（5440）}}$	1／2（？？）	$x_{c 1}(4685)$			
$\mathrm{f}_{1}(1510)$	0^{+}（1	$\mathrm{fo}_{0}(2200)$									
－${ }^{\prime}$（1525）	$0^{+}\left(2^{++}\right)$	${ }_{\text {for }}(2220)$				TTO	ANGE				
$\mathrm{f}_{2}(1565)$	$0^{+}\left(2^{++}\right)$		or 4	－D		（ $B= \pm \pm$		（＋possit			
$\rho(1570)$	$1^{+}(1$	$\eta(2225)$	$0^{0+}\left(0^{-+}\right)$	－D^{0}	$1 / 2\left(0^{-}\right)$	－B_{s}^{0}	$0\left(0^{-}\right)$	－$\square_{b}(15)$	$0^{+}(0$		
$h_{1}(1595)$	0^{-}	$p_{3}(2250)$	$1^{+}(3$	－$D^{\prime}(2007)^{0}$	1／2（1－）	－B_{s}^{*}	$0\left(1^{-}\right)$	－$r(15)$	$0-1$		
－$\pi_{1}(1600)$	1^{-1}	－$f_{2}(2300)$	${ }^{+}+$	－D＇$(2010)^{ \pm}$	1／2（1－）	X（5568）	？（？？）	－\times bo（1P）			
－$a_{1}(1640)$	$1^{-}\left(1^{++}\right)$	$f_{4}(2300)$	$0^{+}\left(4^{++}\right)$	－$D_{0}^{0}(2300)$	1／2（20）	－ $\mathrm{B}_{51}(5830)$	$0\left(1^{+}\right)$	－$x_{01}(1 P)$	$0^{+}(1++)$		
$f_{2}(1640)$	（2	$f_{0}(2330)$	${ }^{+}$	－ $\mathrm{D}_{1}(2420)$	1／2（ 1^{+}＋	－$B_{52}(5844)^{\prime}$	$0\left(2^{+}\right)$	－$h_{b}\left(1{ }^{(1 P)}\right.$	$0^{0-(1+-)}$		
－$\eta_{2}(1645)$		－$f_{2}(2340)$		－$D_{1}(2430)^{\circ}$	1／2（1＋）	$B_{32}{ }^{2}(5850)$	？（？？）	－$\chi_{62}\left(1{ }^{(1 P)}\right.$	）		
		$p_{5}(2350)$		－D ${ }_{2}^{2}(2460)$	$1 / 2\left(2^{+}\right)$	$B_{s, ~(6063)}$	o（？？	${ }^{\eta} \eta_{0}(2 S)$	${ }^{0+} 0^{-}\left(0^{-+}\right)$		
		（2370）		$D_{0}(2550)^{0}$	$1 / 2\left(0^{-}\right)$	$B_{s,}(6114)$	$0(? ?)$	－$r_{2}(10)$	0^{-}（2		
				$\begin{aligned} & D_{J}^{*}(2600)^{0} \\ & D^{+}(2640)^{ \pm} \end{aligned}$	$\begin{aligned} & 1 / 2\left(1^{-}\right) \\ & 1 / 2\left(?^{?}\right) \end{aligned}$	$\underset{(B=C}{B O T T O M}$	HARMED $\pm 1)$	－$x_{00}(2 P)$	${ }^{0+}{ }^{0+}\left(0^{++}\right)$		
					1／2（2）			－$h_{b}(2 P)$	$0^{-}\left(1^{+-}\right)$		
					1／2	－$B_{c}(25)^{ \pm}$	$0\left(0^{-}\right)$	－ b $^{2}(2 P)$	$0^{+}\left(2^{++}\right)$		
				$D(3000)^{0}$	1／2（？？）			－r（3S）	$0^{-}\left(1^{--}\right)$		
						（＋possibly n	－qव states）	－$\chi_{01}(3 P)$			
						$\left.{ }^{-1}\right]_{c}(15)$	${ }^{+}$（0	－$r(45)$	0^{-}－ 1		
						－J／w（15）	${ }^{-}$（1	－$Z_{b}(10610)$	＋		
						（1P）	${ }^{+}(0+$	－$z_{b}(10650)$	$1^{+}\left(1^{+-}\right)$		
						（1P）	${ }^{+}(1$	r（10753）	$? ?$ ？ 1^{--}）		
						1P）	$0^{-(1+-)}$	－$r(10860)$	$0^{-}(1$		
						（1P）	${ }^{+}\left(2^{++}\right)$	－r（11020）	0^{-}		
								OTH			
						－ 4 （3770）	${ }^{-1}$	Further			

Introduction: structure of excited hadrons

Aim of this talk

Various excitations of hadrons

quark model

multiquarks hadronic molecules
$q \bar{q}$ pair creation

Issues:

- Quantitative discussion of internal structure
- Unstable nature of excited hadrons

Contents

Introduction: structure of excited hadrons

Compositeness with weak-binding relation

S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013);
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)
T. Kinugawa, T. Hyodo, PRC106, 015205 (2022)

Compositeness of baryon resonances

T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015);
T. Sekihara, T. Arai, J. Yamagata-Sekihara, S. Yasui, PRC93, 035204 (2016)

Summary

Weak-binding relation for stable states

Compositeness X of stable bound state
S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

$$
|d\rangle=\sqrt{X}|N N\rangle+\sqrt{Z} \mid \text { others }\rangle, \quad X+Z=1, \quad 0 \leq X \leq 1
$$

 range of interaction

scattering length
radius of bound state

- for shallow bound state $R \gg R_{\text {typ }}, X \leftarrow\left(a_{0}, B\right)$

Problem1: applicable only to stable states
(i) The particle must be stable; else Z is undefined. (However, it maymarde approximation to ignore the decay modes of a very narrow resonance.) (ii) The particle must couple to a two-particle channel with threshold not too much above the particle mass.
(iii) It is crucial that this two-body channel have zero orbital angular momentum l, since for $l \neq 0$ the factor $(E)^{1 / 2}$ in the integrands of (24) and (32) would be $E^{l+(1 / 2)}$, and the integrals could not be approximated by their low-energy parts.

Problem2: empirical $\left(a_{0}, B\right) \rightarrow X=1.68$?

Compositeness with weak-binding relation

Uncertainty and interpretation

Uncertainty estimation with $\mathcal{O}\left(R_{\text {typ }} / R\right)$ term
Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

$$
X_{\mathrm{u}}=\frac{a_{0} / R+\xi}{2-a_{0} / R-\xi}, \quad X_{1}=\frac{a_{0} / R-\xi}{2-a_{0} / R+\xi}, \quad \xi=\frac{R_{\mathrm{typ}}}{R}
$$

Interpretation (with finite range correction)
T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022)

- exclude region outside $0 \leq X \leq 1$

$$
R_{\mathrm{typ}}=\max \left\{R_{\mathrm{int}}, R_{\mathrm{eff}}\right\}
$$

- X of hadrons, nuclei, and atoms
- X of deuteron is reasonable
- $X \geq 0.5$ in all cases studied

Weak-binding relation for unstable states

Compositeness X of unstable quasibound state
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

- complex eigenenergy: $-B \rightarrow E_{h} \in \mathbb{C}$

$$
|\Lambda(1405)\rangle=\sqrt{X}|\bar{K} N\rangle+\sqrt{Z} \mid \text { others }\rangle, \quad X+Z=1
$$

- complex a_{0}, X

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\mathrm{ypp}}}{R}\right|\right)+\mathcal{O}\left(\left|\frac{\ell}{R}\right|^{3}\right)\right\}, \quad R=\frac{1}{\sqrt{-2 \mu E_{h}}}, \quad \ell \equiv \frac{1}{\sqrt{2 \mu \nu}}
$$

- correction from threshold energy difference
- for near-threshold quasibound state $|R| \gg\left(R_{\mathrm{typ}}, \ell\right), X \leftarrow\left(a_{0}, E_{h}\right)$ Interpretation of complex X

$$
\tilde{X}=\frac{1-|Z|+|X|}{2}, \quad \tilde{Z}=\frac{1-|X|+|Z|}{2}, \quad \tilde{X}+\tilde{Z}=1, \quad 0 \leq \tilde{X} \leq 1
$$

Compositeness with weak-binding relation

Compositeness of Λ (1405): central values

Generalized weak-binding relation

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\text {vep }}}{R}\right|\right)+\mathcal{O}\left(\left|\frac{\ell}{R}\right|^{3}\right)\right\}, \quad R=\frac{1}{\sqrt{-2 \mu E_{h}}}, \quad \ell \equiv \frac{1}{\sqrt{2 \mu \nu}}
$$

$\left(a_{0}, E_{h}\right)$ determinations by several groups

- Neglecting correction terms:

	$E_{h}[\mathrm{MeV}]$	$a_{0}[\mathrm{fm}]$	$X_{\bar{K} N}$	$\tilde{X}_{\bar{K} N}$	$U / 2$
Set 1 [35]	$-10-i 26$	$1.39-i 0.85$	$1.2+i 0.1$	1.0	0.3
Set 2 [36]	$-4-i 8$	$1.81-i 0.92$	$0.6+i 0.1$	0.6	0.0
Set 3 [37]	$-13-i 20$	$1.30-i 0.85$	$0.9-i 0.2$	0.9	0.1
Set 4 [38]	$2-i 10$	$1.21-i 1.47$	$0.6+i 0.0$	0.6	0.0
Set 5 [38]	$-3-i 12$	$1.52-i 1.85$	$1.0+i 0.5$	0.8	0.3

- In all cases, $X \sim 1$ and $\tilde{X} \sim 1$

Compositeness with weak-binding relation

Compositeness of $\Lambda(1405)$: uncertainties

Estimation of correction terms: $|R| \sim 2 \mathrm{fm}$

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\text {ypp }}}{R}\right|\right)+\mathcal{O}\left(\left|\frac{\ell}{R}\right|^{3}\right)\right\}, \quad R=\frac{1}{\sqrt{-2 \mu E_{h}}}, \quad \ell \equiv \frac{1}{\sqrt{2 \mu \nu}}
$$

- ρ meson exchange picture: $R_{\mathrm{typ}} \sim 0.25 \mathrm{fm}$
- Energy difference from $\pi \Sigma: \ell \sim 1.08 \mathrm{fm}$

Contents

Introduction: structure of excited hadrons

Compositeness with weak-binding relation

S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int.J. Mod. Phys. A 28, 1330045 (2013);
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)
T. Kinugawa, T. Hyodo, PRC106, 015205 (2022)

Compositeness of baryon resonances

T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015);
T. Sekihara, T. Arai, J. Yamagata-Sekihara, S. Yasui, PRC93, 035204 (2016)

Summary

Compositeness of baryon resonances

Two methods to evaluate compositeness

Weak-binding relation

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\text {ypp }}}{R}\right|\right)+\mathcal{O}\left(\left|\frac{\ell}{R}\right|^{3}\right)\right\}, \quad R=\frac{1}{\sqrt{-2 \mu E_{h}}}, \quad \ell \equiv \frac{1}{\sqrt{2 \mu \nu}}
$$

- Pro: model independent, determined by observables
- Con: uncertainty, near-threshold s-wave state only

Evaluation from residue of resonance pole T. Hyodo, D. Jido, A. Hosaka, PRC85, 015201 (2012);
F. Aceti. E. Oset, PRD86, 014012 (2012)

- Pro: no uncertainty, applicable to any states (e.g. p wave)
- Con: model dependent (off-shell nature)

Two methods are complementary with each other

Compositeness of baryon resonances

Comparison of two methods

Compositeness of $\Lambda(1405)$ with NLO chiral SU(3) dynamics
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA881, 98 (2012)

$$
E_{h}=-10-26 i[\mathrm{MeV}]
$$

- Weak-binding relation
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

$$
X=1.2+0.1 i
$$

- Evaluation from residue of resonance pole

Good agreement <- $\Lambda(1405)$ is sufficiently close to threshold

- model dependence/uncertainty reduces as $\left|E_{h}\right| \rightarrow 0$
see also T. Kinugawa, T. Hyodo, arXiv: 2303.07038 [hep-ph]

Compositeness of baryon resonances

Compositeness of baryon resonances

Unitarized NLO cihral (coupled-channel) amplitude

T. Sekihara, T. Arai, J. Yamagata-Sekihara, S. Yasui, PRC93, 035204 (2016)

TABLE II. Properties of $\Delta(1232)$ and $N(940)$. We do not calculate $U, \tilde{X}_{\pi N}$, and \tilde{Z} for $N(940)$ because it is a stable state.

	Naive			Constrained	
	$\Delta(1232)$	$N(940)$		$\Delta(1232)$	$N(940)$
$w_{\text {pole }}(\mathrm{MeV})$	$1209.8-47.6 i$	938.9		$1206.9-49.6 i$	938.9
$g\left(\mathrm{MeV}^{-1 / 2}\right)$	$0.383-0.053 i$	0.560		$0.395-0.061 i$	0.516
$X_{\pi N}$	$0.69+0.39 i$	-0.18		$0.87+0.35 i$	0.00
Z	$0.31-0.39 i$	1.18		$0.13-0.35 i$	1.00
U	0.30	-		0.31	-
$\tilde{X}_{\pi N}$	0.61	-		0.71	-
\tilde{Z}	0.39	-	0.29	-	

- $N(940):$ Z dominance (qqq like)

TABLE IV. Properties of $N(1535)$ and $N(1650)$.

	$N(1535)$	$N(1650)$
$w_{\text {pole }}(\mathrm{MeV})$	$1496.4-58.7 i$	$1660.7-70.0 i$
$g_{\pi N}\left(\mathrm{MeV}^{1 / 2}\right)$	$47.1-7.3 i$	$49.8-23.1 i$
$g_{\eta N}\left(\mathrm{MeV}^{1 / 2}\right)$	$68.9-42.4 i$	$-19.0+11.1 i$
$g_{K \Lambda}\left(\mathrm{MeV}^{1 / 2}\right)$	$85.0+14.4 i$	$-29.9+37.1 i$
$g_{K \Sigma}\left(\mathrm{MeV}^{1 / 2}\right)$	$-31.4+17.5 i$	$-73.8+6.0 i$
$X_{\pi N}$	$-0.02+0.03 i$	$0.00+0.04 i$
$X_{\eta N}$	$0.04+0.37 i$	$0.00+0.01 i$
$X_{K \Lambda}$	$0.14+0.00 i$	$0.08+0.05 i$
$X_{K \Sigma}$	$0.01-0.02 i$	$0.09-0.12 i$
Z	$0.84-0.38 i$	$0.84+0.01 i$
U	0.48	0.13
$\tilde{X}_{\pi N}$	0.03	0.04
$\tilde{X}_{\eta N}$	0.25	0.01
$\tilde{X}_{K \Lambda}$	0.09	0.08
$\tilde{X}_{K \Sigma}$	0.01	0.13
\tilde{Z}	0.62	0.74

- $\Delta(1232): X_{\pi N}$ dominance (molecule like)
- $N(1535), N(1650): Z$ dominance (qqq like)

Compositeness of baryon resonances

What to measure

Determination of (partial wave) scattering amplitude

- cross sections, angular dependence, ...
- pole position (eigenenergy) \rightarrow weak-binding relation
- dynamical coupled-channel model \rightarrow residue method

Determination of scattering length

- ΛK^{+}scattering length by femtoscopy

$$
a_{0}^{\Lambda K^{+}}=0.61-0.23 i[\mathrm{fm}]
$$

ALICE collaboration, PRC 103, 055201 (2021); PLB 845, 138145 (2023)
Accumulation of data will sharpen the evaluation of X

Summary
 Summary

$\ddot{\Perp}$
Structure of hadrons should be studied

- in quantitative manner, and
- with unstable nature taken into account.

Compositeness is a quantitative measure of hadron structure, applicable to unstable states.

- weak-binding relation (model-independent)
- residue method (no uncertainty)

Compositeness of baryon resonances have been evaluated. More experimental data are welcome to improve the estimations.

be studied

\square

8

