
フェムトスコピーによる ハドロン間相互作用の研究

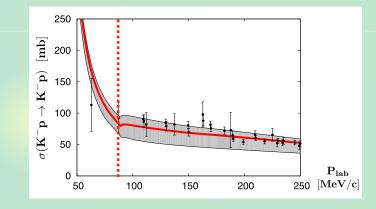
東京都立大学

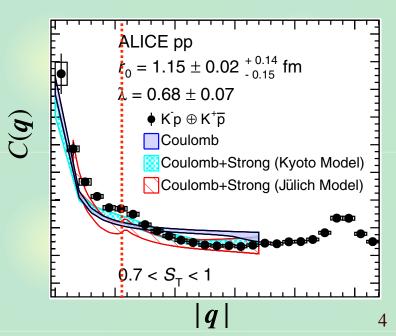
Introduction

In memory of Akira Ohnishi

Sep. 13, 2019, after FemTUM19 workshop @ München

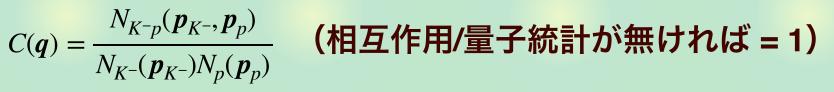
導入:ハドロン物理とフェムトスコピー ↓ バドロン相関関数とエキゾチックハドロン - K⁻p相関と A(1405) Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020) - DD* / DD* 相関と T_{cc} / X(3872) Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022) 🗳 (ハドロン・原子核相関関数とハイパー核物理) A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation; Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation ->神野さんのトーク まとめ


^{導入:ハドロン物理とフェムトスコピー} 散乱実験とフェムトスコピー

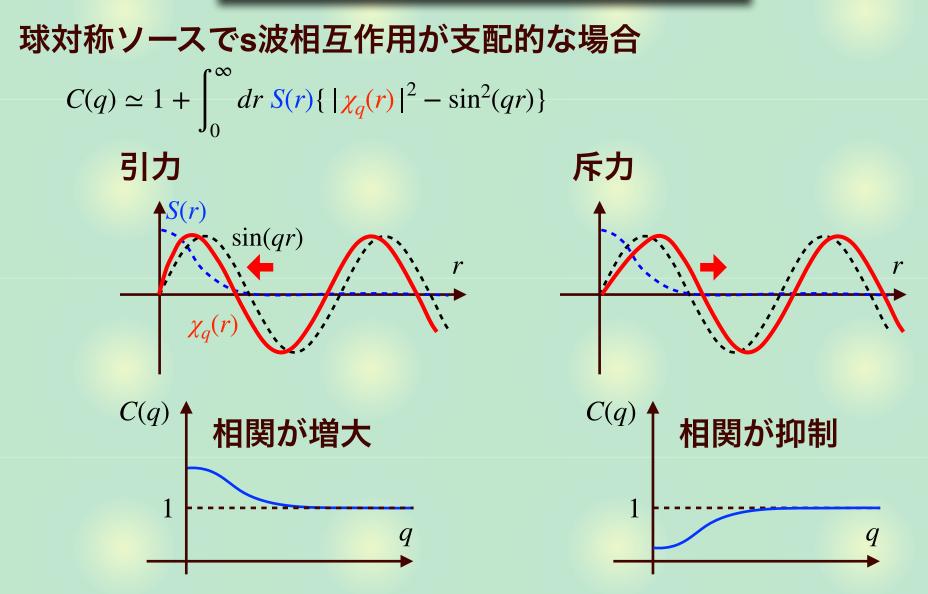

相互作用を調べる従来の方法:2体散乱実験

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

- 統計精度が良くない(低エネルギー)
- 限られた系:*NN*, *ΛN*, *πN*, *KN*, *KN*, ····
- ヘビー (c, b) ハドロン: ほぼ不可能


- フェムトスコピー:相関関数 ALICE collaboration, PRL 124, 092301 (2020)
 - 高い<mark>精度(^衣⁰n カスプ</mark>が見える)
- 様々な系:ΛΛ, ΝΞ, ΝΩ, φN, KΛ, DN, …
- <mark>ヘビーハドロン</mark>:可能!

- 定義


- 理論: Koonin-Pratt 公式

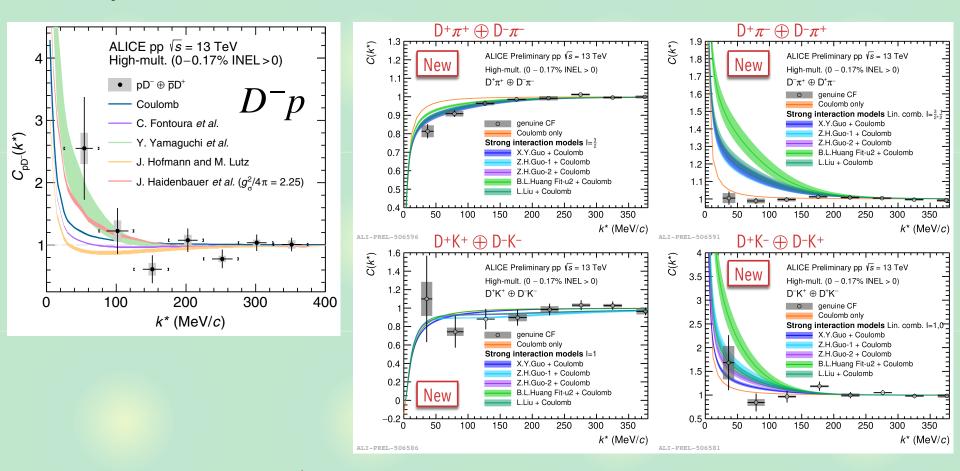
S.E. Koonin PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986) $C(q) \simeq \int d^3 r S(r) |\Psi_q^{(-)}(r)|^2$

ソース関数 S(r)(放出源)<—> 波動関数 $\Psi_q^{(-)}(r)$ (相互作用)

導入:ハドロン物理とフェムトスコピー

波動関数の振る舞いと相関関数

相関の定性的な振る舞いは相互作用の性質を反映


導入:ハドロン物理とフェムトスコピー

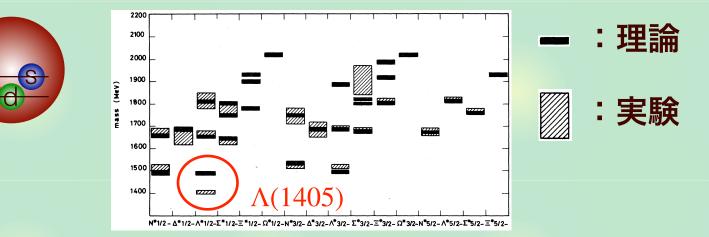
チャームセクターの実験データ

観測されたチャームを含む相関関数:DN, Dπ, DK

ALICE collaboration, PRD 106, 052010 (2022);

Talk by F. Grosa @ Quark Matter 2022

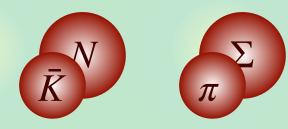
チャーム系で散乱データを得る唯一の方法(統計はまだ低い)


🍦 導入:ハドロン物理とフェムトスコピー
🗳 ハドロン相関関数とエキゾチックハドロン
- K ⁻ p 相関と A(1405)
<u>Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)</u>
- DD* / DD * 相関と T _{cc} / X(3872)
Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)
🗳 (ハドロン・原子核相関関数とハイパー核物理)
<u>A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation;</u> <u>Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation</u>

8

A(1405) と *KN* 散乱

∧(1405) は標準的な描像で記述できない ―> エキゾチック候補


N. Isgur and G. Karl, PRD18, 4187 (1978)

チャンネル結合散乱での共鳴状態

- MB状態との結合:カイラルSU(3)動力学

永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版)

*Ē***N 閾値**

 $\Lambda(1405)$

 $\pi\Sigma$ 閾値

ネルギ

Н

 $\Lambda(1405) \ 1/2^{-1}$

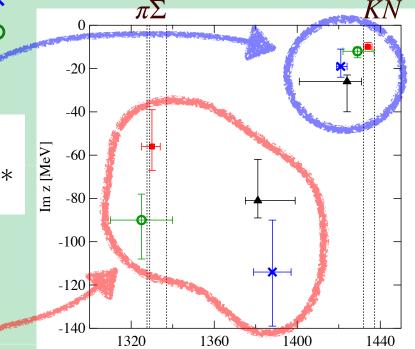
A(1380) 1/2⁻⁻

PDGの2020年の更新

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); ▲

Z.H. Guo, J.A. Oller, PRC87, 035202 (2013); × M. Mai, U.G. Meißner, EPJA51, 30 (2015) ■ ○

- Particle Listing section:


Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

new

 $J^P = \frac{1}{2}^{-1}$

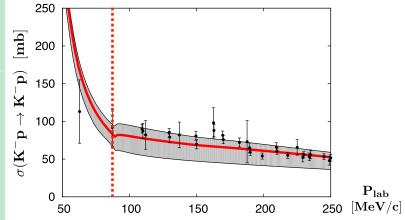
$$(J^P) = 0(\frac{1}{2}^-)$$
 Status: ****

Re z [MeV]

T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021)

- "A(1405)"の極は1405 MeVではなく~1420 MeVに位置する

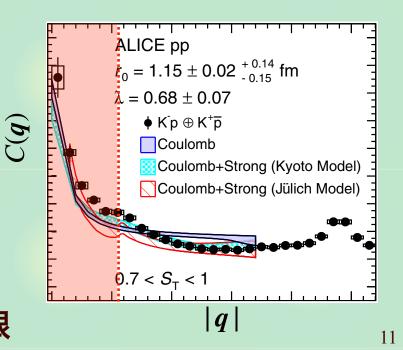
Status: **


- Lower pole : 新しい two-star 共鳴 A(1380)

K⁻p 散乱の全断面積

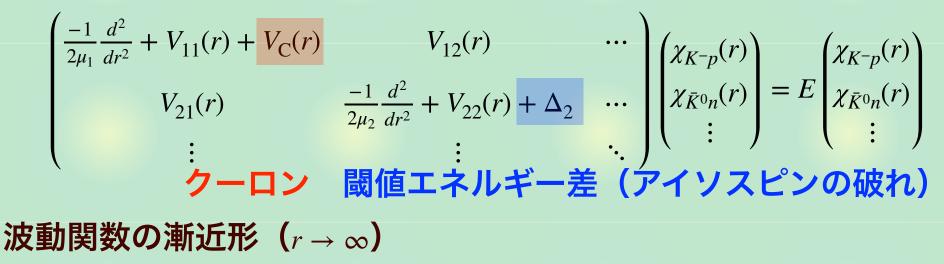
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

- 古い泡箱のデータ
- 統計精度、解像度が良くない
- <u>K⁰n</u> 閾値カスプは見えない

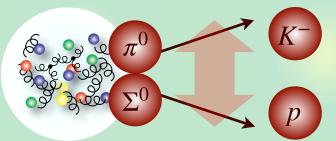


K⁻p 相関関数

ALICE collaboration, PRL 124, 092301 (2020)


- 高い**精度(***k*⁰*n* カスプが見える)
- <u>k⁰n 閾値下のエネルギーでのデータ</u>

-> A(1405)の理論に関する重要な制限

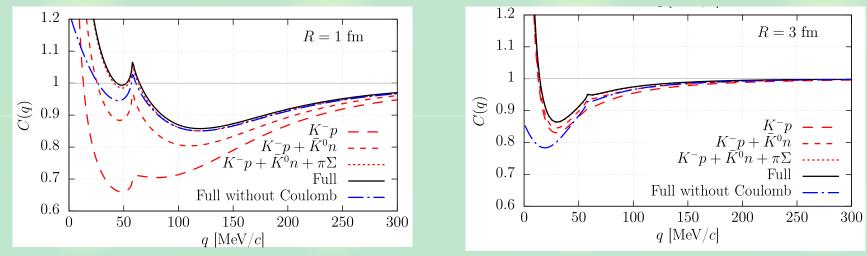


s波Schrödinger方程式

 $\begin{pmatrix} \chi_{K^-p}(r) \\ \chi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_2r} + \#e^{iq_2r} \\ \vdots \end{bmatrix}$ 内向き + 外向き

- $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$ からの遷移が $\chi_i(r) i \neq K^- p$ に含まれる

チャンネル結合と相関関数


チャンネル結合Koonin-Pratt公式

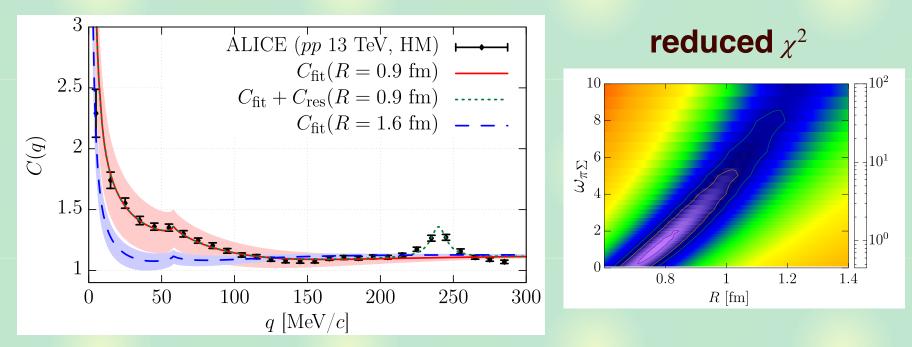
R. Lednicky, V.V. Lyuboshitz, V.L. Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998); J. Haidenbauer, NPA 981, 1 (2019);

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \left| \Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \right|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \left| \Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \right|^2$$

家(n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda \Delta \Bogo B

- ω_i : *K*⁻*p* に対するチャンネル *i* の重み


チャンネル結合効果は小さいソースで顕著

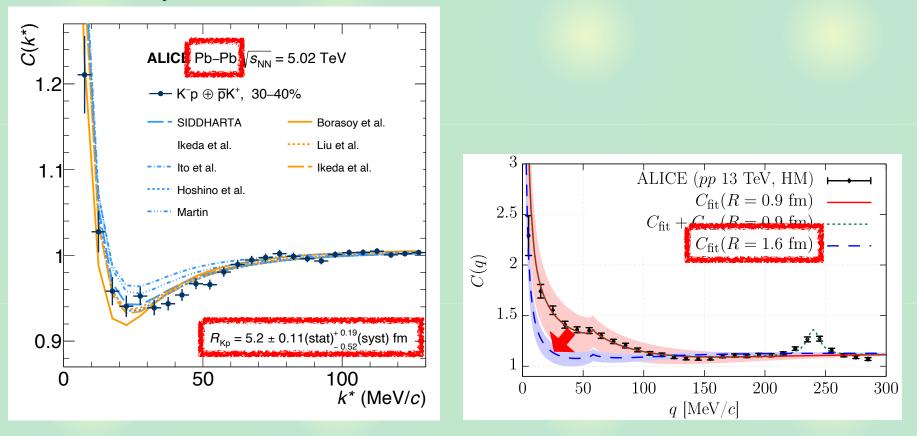
カイラルSU(3)動力学による相関関数

波動関数 $\Psi_{i,q}^{(-)}(\mathbf{r})$: チャンネル結合京都 $\bar{R}N$ - $\pi\Sigma$ - $\pi\Lambda$ ポテンシャル

K. Miyahara, T. Hyodo, W. Weise, PRC98, 025201 (2018)

- ソース関数 S(r): ガウシアン, R ~ 1 fm <-- K⁺p データ
- 重み $\omega_{\pi\Sigma} \sim 2$:統計模型による見積もり

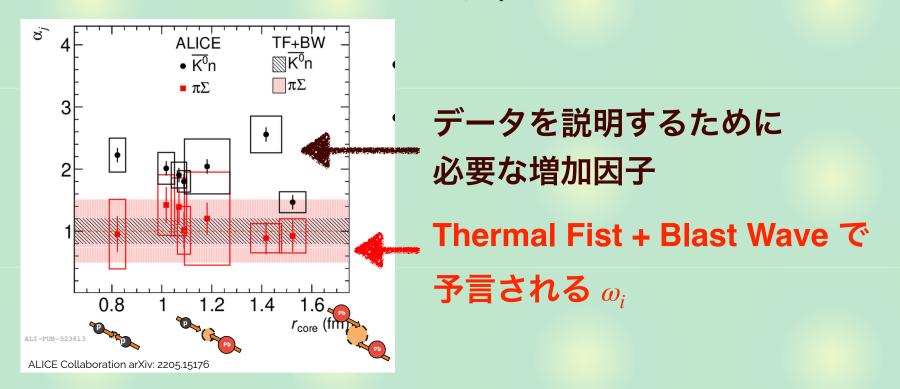
Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)


ALICEの相関関数データをよく再現する

5.02 TeV Pb-Pb 衝突のデータ

ALICE collaboration, PLB 822, 136708 (2021)

- 散乱長 $a_{K^-p} = -0.91 + 0.92i$ fm


サイズ Rの大きいソースで相関が抑制 <-- 理論の予言

ソースサイズ依存性の体系的な研究

pp, p-Pb, Pb-Pb衝突での相関関数

ALICE collaboration, EPJC 83, 340 (2023)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

*k*⁰*n* チャンネルの強度を増加させる必要がある

🍑 導入:ハドロン物理とフェムトスコピー ✓ ハドロン相関関数とエキゾチックハドロン - K⁻p相関と A(1405) Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020) - DD* / DD* 相関と T_{cc} / X(3872) Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022) 🍑 (ハドロン・原子核相関関数とハイパー核物理) A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation; Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation ->神野さんのトーク まとめ

 $D^0D^0\pi^+$ スペクトル中で T_{cc} が観測される

LHCb collaboration, Nature Phys., 18, 751 (2022); Nature Comm., 13, 3351 (2022)

field/(200 keV/ c^2

3.874

3.89

 $m_{{\rm D}^0{\rm D}^0\pi^+}$

3.876

 $[\text{GeV}/c^{2}]$

3.9 [GeV/ c^2]

18

LHCb

 $9\,{\rm fb}^{-1}$

Data

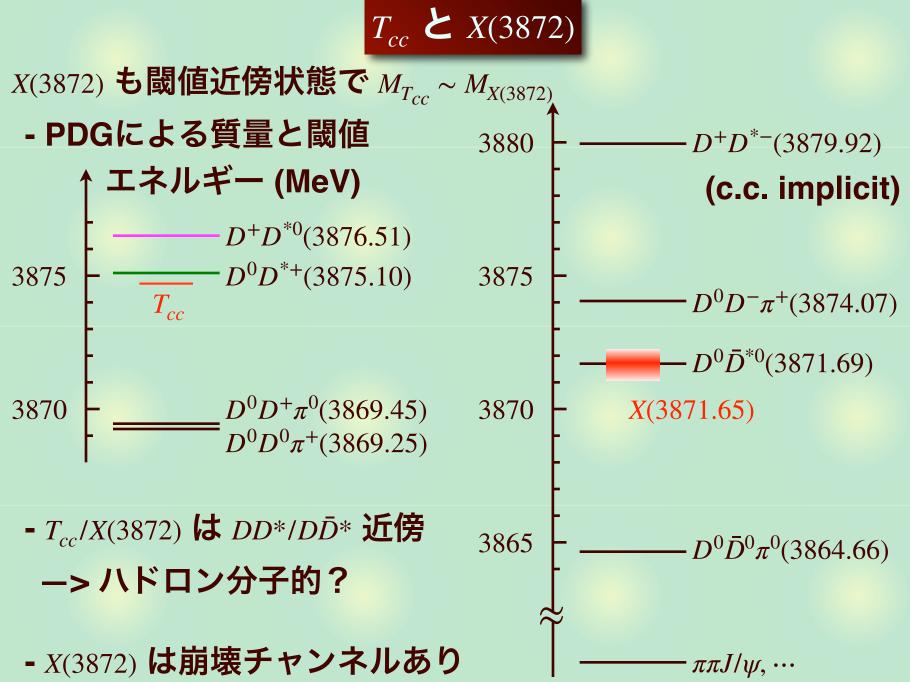
 $T_{cc}^+ \rightarrow D^0 D^0 \pi^+$

 $D^{*+}D^0$ threshold

D^{*0}D⁺ threshold

 $m_{\mathrm{D}^0\mathrm{D}^0\pi^+}$

Background Total


- DD* 閾値近傍にピーク
- $\mathcal{F} \mathcal{P} \mathcal{L} C = +2 : \sim cc\bar{u}\bar{d}$

- 準位構造

 $\begin{array}{c} \text{Yield}/(500\,\text{keV}/c^2) \\ \textbf{10} \\ \textbf{1$ エネルギー (MeV) 30 20 $D^+D^{*0}(3876.51)$ 10 $D^0 D^{*+}(3875.10)$ 3875 T_{cc} 3.87 3.88 $D^0 D^+ \pi^0 (3869.45)$ 3870 $D^0 D^0 \pi^+ (3869.25)$

- 非常に小さい(few MeV ~ keV)エネルギースケールを含む

DD*/DD
^{*}相関と T_{cc}/X(3872)

19

DD*/DD * ポテンシャル

チャンネル結合ポテンシャル

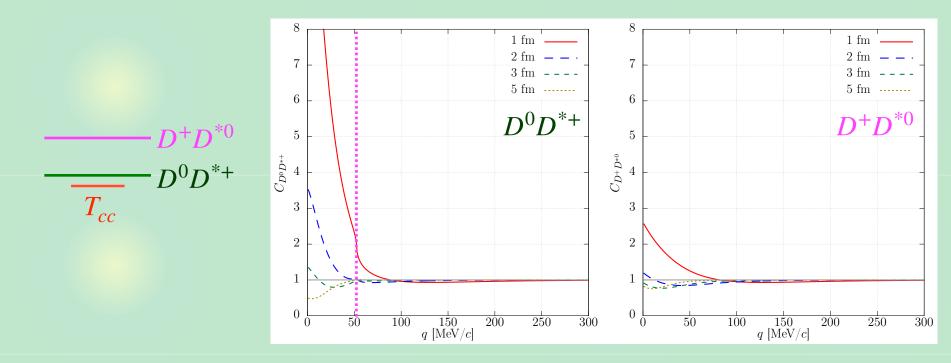
$$V_{DD^*/D\bar{D}^*} = \frac{1}{2} \begin{pmatrix} V_{I=1} + V_{I=0} & V_{I=1} - V_{I=0} \\ V_{I=1} - V_{I=0} & V_{I=1} + V_{I=0} + V_c \end{pmatrix} \frac{D^0 D^{*+} / \{D^0 \bar{D}^{*0}\}}{D^+ D^{*0} / \{D^+ D^{*-}\}}$$

$$\uparrow \{D^+ D^{*-}\} \ \mathsf{List} \ \mathsf$$

- I = 0: 1レンジガウス型ポテンシャル、I = 1 は無視 $V_{I=0} = V_0 \exp\{-m_{\pi}^2 r^2\}, V_{I=1} = 0$ $\uparrow \pi$ 交換に基づくレンジ

 $V_0 \in \mathbb{C} < -$ 散乱長 (ハドロン分子描像)

- T_{cc} : $a_0^{D^0 D^{*+}} = -7.16 + i1.85$ fm :LHCbの解析

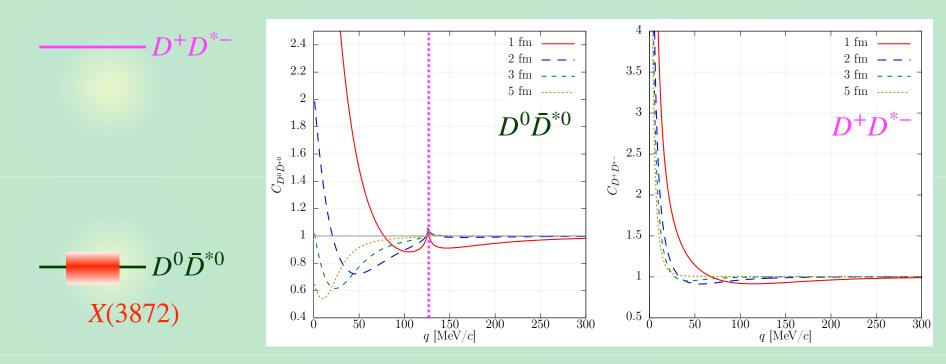

LHCb collaboration, Nature Comm., 13, 3351 (2022)

- X(3872): $a_0^{D^0 \bar{D}^{*0}} = -4.23 + i3.95 \text{ fm} (a_0 = -i/\sqrt{2\mu E_h} < -\text{PDGO} E_h)_{20}$

*DD** ~ *T_{cc}* チャンネル

D^0D^{*+} 、 D^+D^{*0} 相関関数 ($cc\bar{u}\bar{d}$ エキゾチックチャンネル)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)



- 両方のチャンネルで束縛状態の性質(ソースサイズ依存性)
- *D*⁰*D*^{*+}で強いシグナル、*D*⁺*D*^{*0} 相関は比較的小さいシグナル
- *D*⁰*D*^{*+} 相関中に弱い *D*⁺*D*^{*0} 閾値カスプ (*q* ~ 52 MeV)

<u>DD</u>* ~ X(3872) チャンネル

$D^{0}\bar{D}^{*0}$ 、 $D^{+}\bar{D}^{*-}$ 相関関数 ($c\bar{c}q\bar{q}$ チャンネル)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

- D⁰ *D*^{*0} 相関に束縛状態の性質
- D⁰D^{*0} 相関中に強い D⁺D^{*-} 閾値カスプ (q~126 MeV)
- *D*+*D*^{*-} 相関:クーロン引力が支配的

🗳 高エネルギー衝突実験での相関関数はエキゾチッ クハドロン・原子核の相互作用の研究に有用 - A(1405) と KN 相互作用の精密な検証 Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020) - (準) 束縛状態 T_{cc} / X(3872) の性質を反映 Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022) **Λα. Ξα**相関 —> 神野さんのトーク

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation; Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation