Compositeness, A(1405), and kaonic nuclei

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Contents

$\Lambda(1405)$ and $\bar{K}N$ interactions

T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021); Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)

Compositeness

<u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013);</u> <u>T. Kinugawa, T. Hyodo, PRC106, 015205 (2022); in preparation</u>

Kaonic nuclei

<figure>

K中間子原子核の物理

Frontiers in Physics 31

T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics); 永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版)

$\Lambda(1405)$ and $\bar{K}N$ interactions

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD18, 4187 (1978)

Detailed analysis of $\bar{K}N$ - $\pi\Sigma$ scattering is necessary

Current PDG

Analysis by NLO chiral SU(3) dynamics

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021)

- "Λ(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole: two-star resonance $\Lambda(1380)$

NNLO analysis and lattice QCD

Analysis at NNLO chiral SU(3) dynamics (KN and πN included)

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023)

Lattice QCD calculation of $\bar{K}N$ - $\pi\Sigma$ scattering ($m_{\pi} \sim 200 \text{ MeV}$)

J. Bulava, et al. (BaSc), arXiv:2307.10413 [hep-lat]; arXiv:2307.13471 [hep-lat]

Two states are confirmed at NNLO and lattice QCD

 $\Lambda(1405)$ and $\bar{K}N$ interactions

Construction of *KN* **potentials**

Local *KN* potential is useful for various applications

meson-baryon amplitude (chiral SU(3) at NLO)

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

Kyoto *k̄N* potential (single-channel, complex)

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016) Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential (coupled-channel, real)

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

Kaonic nuclei

Kaonic deuterium

K⁻p correlation function

 $\Lambda(1405)$ and $\bar{K}N$ interactions

In memory of Akira Ohnishi

Sep. 13, 2019, after FemTUM19 workshop @ München

$\Lambda(1405)$ and $\underline{\bar{K}N}$ interactions

Correlation functions and femtoscopy

 K^-p correlation function C(q)

$$C(\boldsymbol{q}) = \frac{N_{K^{-p}}(\boldsymbol{p}_{K^{-}}, \boldsymbol{p}_{p})}{N_{K^{-}}(\boldsymbol{p}_{K^{-}})N_{p}(\boldsymbol{p}_{p})} \simeq \int d^{3}\boldsymbol{r} \, S(\boldsymbol{r}) \, |\Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^{2}$$

- Wave function $\Psi_{a}^{(-)}(r)$: Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

<u>Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)</u> S. Acharya *et al.* (ALICE), PLB 822, 136708 (2021)

Correlation functions are well reproduced and predicted

Contents

<u>T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021);</u> <u>Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)</u>

Compositeness

<u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013);</u> <u>T. Kinugawa, T. Hyodo, PRC106, 015205 (2022); in preparation</u>

Kaonic nuclei

T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics); 永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版)

Weak-binding relation for stable states

Compositeness *X* **of stable** bound state

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)</u>

 $|d\rangle = \sqrt{X} |NN\rangle + \sqrt{Z} |\text{others}\rangle, \quad X + Z = 1, \quad 0 \le X \le 1$

range of interaction

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}, \quad R =$$

scattering length

radius of state

(i) The particle must be stable; else Z is undefined. (However, it may be an adequate approximation to ignore the decay modes of a very narrow resonance.)

(ii) The particle must couple to a two-particle channel with threshold not too much above the particle mass.

(iii) It is crucial that this two-body channel have zero orbital angular momentum l, since for $l \neq 0$ the factor $(E)^{1/2}$ in the integrands of (24) and (32) would be $E^{l+(1/2)}$, and the integrals could not be approximated by their low-energy parts.

- applicable only to stable bound states
- for shallow bound state $R \gg R_{typ}$, $X \leftarrow (a_0, B)$

Problem: quantitative estimation -> X = 1.68 ?

Uncertainty and interpretation

Uncertainty estimation with $\mathcal{O}(R_{typ}/R)$ **term**

Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

$$X_{\rm u} = \frac{a_0/R + \xi}{2 - a_0/R - \xi}, \quad X_{\rm l} = \frac{a_0/R - \xi}{2 - a_0/R + \xi}, \quad \xi = \frac{R_{\rm typ}}{R}$$

Interpretation (with finite range correction)

 $R_{\rm typ} = \max\{R_{\rm int}, R_{\rm eff}\}$

- *X* of hadrons, nuclei, and atoms
- X of deuteron is reasonable
- $X \ge 0.5$ in all cases studied

Near-threshold bound states are mostly composite

Bound state	Compositeness X		
d	$0.74 \leqslant X \leqslant 1$		
X(3872)	$0.53 \leqslant X \leqslant 1$		
$D_{s0}^{*}(2317)$	$0.81 \leqslant X \leqslant 1$		
$D_{s1}(2460)$	$0.55 \leqslant X \leqslant 1$		
$N\Omega$ dibaryon	$0.80 \leqslant X \leqslant 1$		
$\Omega\Omega$ dibaryon	$0.79 \leqslant X \leqslant 1$		
$^{3}_{\Lambda}$ H	$0.74 \leqslant X \leqslant 1$		
⁴ He dimer	$0.93 \leqslant X \leqslant 1$		

11

 $\leq X \leq 1$

<u>205 (2022)</u>

Weak-binding relation for unstable states

Compositeness *X* **of unstable** quasibound state

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

- complex eigenenergy: $-B \rightarrow E_h \in \mathbb{C}$
- $|\Lambda(1405)\rangle = \sqrt{X} |\bar{K}N\rangle + \sqrt{Z} |\text{ others}\rangle, \quad X + Z = 1$ - complex a_0, X

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left| \frac{R_{\text{typ}}}{R} \right| \right) + \mathcal{O}\left(\left| \frac{\ell}{R} \right|^3 \right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_h}}, \quad \ell \equiv \frac{1}{\sqrt{2\mu\nu}}$$

- correction from threshold energy difference
- for near-threshold quasibound state $|R| \gg (R_{typ}, \ell), X \leftarrow (a_0, E_h)$ Interpretation of complex X —> Poster by T. Kinugawa $\tilde{x} = \frac{1 - |Z| + |X|}{2} = \tilde{x} = \frac{1 - |X| + |Z|}{2} = \tilde{x} = \tilde{x} = 1 - \tilde{x}$

$$\tilde{X} = \frac{1 - |Z| + |X|}{2}, \quad \tilde{Z} = \frac{1 - |X| + |Z|}{2}, \quad \tilde{X} + \tilde{Z} = 1, \quad 0 \le \tilde{X} \le 1$$

Compositeness of $\Lambda(1405)$: central values

Generalized weak-binding relation

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left| \frac{R_{\text{typ}}}{R} \right| \right) + \mathcal{O}\left(\left| \frac{\ell}{R} \right|^3 \right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_h}}, \quad \ell \equiv \frac{1}{\sqrt{2\mu L_h}}$$

 (a_0, E_h) determinations by several groups

- Neglecting correction terms:

E_h [MeV]	a_0 [fm]	$X_{ar{K}N}$	$ ilde{X}_{ar{K}N}$	<i>U</i> /2
-10 - i26	1.39 - i0.85	1.2 + i0.1	1.0	0.3
-4-i8	1.81 - i0.92	0.6 + i0.1	0.6	0.0
-13 - i20	1.30 - i0.85	0.9 - i0.2	0.9	0.1
2 - i10	1.21 - i1.47	0.6 + i0.0	0.6	0.0
-3-i12	1.52 - i1.85	1.0 + i0.5	0.8	0.3
	$E_h [MeV] \\ -10 - i26 \\ -4 - i 8 \\ -13 - i20 \\ 2 - i10 \\ -3 - i12$	E_h [MeV] a_0 [fm] $-10 - i26$ $1.39 - i0.85$ $-4 - i$ $1.81 - i0.92$ $-13 - i20$ $1.30 - i0.85$ $2 - i10$ $1.21 - i1.47$ $-3 - i12$ $1.52 - i1.85$	E_h [MeV] a_0 [fm] $X_{\bar{K}N}$ $-10 - i26$ $1.39 - i0.85$ $1.2 + i0.1$ $-4 - i$ 8 $1.81 - i0.92$ $0.6 + i0.1$ $-13 - i20$ $1.30 - i0.85$ $0.9 - i0.2$ $2 - i10$ $1.21 - i1.47$ $0.6 + i0.0$ $-3 - i12$ $1.52 - i1.85$ $1.0 + i0.5$	E_h [MeV] a_0 [fm] $X_{\bar{k}N}$ $\tilde{X}_{\bar{k}N}$ $-10 - i26$ $1.39 - i0.85$ $1.2 + i0.1$ 1.0 $-4 - i$ 8 $1.81 - i0.92$ $0.6 + i0.1$ 0.6 $-13 - i20$ $1.30 - i0.85$ $0.9 - i0.2$ 0.9 $2 - i10$ $1.21 - i1.47$ $0.6 + i0.0$ 0.6 $-3 - i12$ $1.52 - i1.85$ $1.0 + i0.5$ 0.8

- In all cases, $X \sim 1$ and $\tilde{X} \sim 1$

$\Lambda(1405)$: $\bar{K}N$ composite dominance <-- observables

Compositeness of $\Lambda(1405)$: uncertainties

Estimation of correction terms: $|R| \sim 2 \text{ fm}$

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left| \frac{R_{\text{typ}}}{R} \right| \right) + \mathcal{O}\left(\left| \frac{\ell}{R} \right|^3 \right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_h}}, \quad \mathcal{E} \equiv \frac{1}{\sqrt{2\mu\nu}}$$

- ρ meson exchange picture: $R_{typ} \sim 0.25$ fm
- Energy difference from $\pi\Sigma$: $\ell \sim 1.08 \text{ fm}$

$\bar{K}N$ composite dominance holds even with correction terms $_{1^2}$

Contents

<u>T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021);</u> <u>Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)</u>

Compositeness

<u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013);</u> <u>T. Kinugawa, T. Hyodo, PRC106, 015205 (2022); in preparation</u>

Kaonic nuclei

T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics); 永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版)

Kaonic nuclei

RNN system : simplest kaonic nucleus

Theoretical calculation with realistic *KN* interaction

- Fit to *K*⁻*p* cross sections and branching ratios
- SIDDHARTRA constraint of kaonic hydrogen

[1] J. Revai, N.V. Shevchenko, PRC 90, 034004 (2014)

[2] S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

Potential	$\Lambda(1405)$ [MeV]	$\Lambda(1380)$ [MeV]	$B_{\bar{K}NN}$ [MeV]	$\Gamma_{\bar{K}NN \to \pi YN}$ [MeV]
$V^{1,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	1426 - 48i [3]	-	53.3 [1]	64.8 [1]
$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	1414 - 58i [3]	1386 - 104i [3]	47.4 [1]	49.8 [1]
$V_{\bar{K}N}^{\text{chiral}}$	1417 - 33i [4]	1406 - 89i [4]	$32.2 \ [1]$	48.6 [1]
Kyoto $\bar{K}N$	1424 - 26i [5]	1381 - 81i [5]	25.3-27.9 [2]	30.9-59.4 [2]

- [3] N.V. Shevchenko, NPA 890-891, 50 (2012)
- [4] N.V. Shevchenko, J. Revai, PRC 90, 034003 (2014)
- [5] K. Miyahara. T. Hyodo, PRC 93, 015201 (2016)

- Caution: 2N absorption (Γ_{YN}) is NOT included!!

Kaonic nuclei up to A = 6

Rigorous few-body approach up to A = 6 **systems**

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

- Stochastic variational method with correlated gaussians

 $\hat{V} = \hat{V}^{\bar{K}N}$ (Kyoto $\bar{K}N$) + $\hat{V}^{NN}(AV4')$ (single channel)

Results for kaonic nuclei with A = 2, 3, 4, 6

	$\bar{K}NN$	$\bar{K}NNN$	$\bar{K}NNNN$	$\bar{K}NNNNNN$
$I(J^P)$	$1/2(0^{-})$	$0(1/2^{-})$	$1/2(0^{-})$	$1/2(0^-, 1^-)$
$B [{\rm MeV}]$	25.3 - 27.9	45.3 - 49.7	67.9 - 75.5	69.8 - 80.7
$\Gamma_{\rm mes.}$ [MeV]	30.9-59.4	25.5 - 69.4	28.0-74.5	23.7 - 75.6

- for A = 6 system, 0^- and 1^- are almost degenerated
- quasi-bound state below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy₁₇

Kaonic nuclei

Interplay between NN and KN correlations 1

Two-nucleon system

NN correlation $< \bar{K}N$ correlation

Kaonic nuclei

Interplay between NN and K̄N correlations 2

Four-nucleon system with $J^P = 0^-$, I = 1/2, $I_3 = +1/2$

$$|\bar{K}NNN\rangle = C_1 \left(\begin{array}{c} p & p \\ p & p \\ p & n \end{array} \right) + C_2 \left(\begin{array}{c} p & p \\ p & p \\ n & n \end{array} \right)$$

- *K*N correlation

I = 0 pair in K^-p (3 pairs) or \bar{K}^0n (2 pairs) : $|C_1|^2 > |C_2|^2$

- NN correlation

ppnn **forms** α : $|C_1|^2 < |C_2|^2$

- Numerical result

 $|C_1|^2 = 0.08, |C_2|^2 = 0.92$

NN correlation $> \bar{K}N$ correlation

Summary

Summary

 $\Lambda(1405)$ and $\bar{K}N$ interactions - precise determination of $\Lambda(1405)$ and $\Lambda(1380)$ - K⁻p correlation function Compositeness - applicable to nuclei, atoms, ... - $\bar{K}N$ molecule picture for $\Lambda(1405)$ ntiers in Physics 31 K中間子原子核の物理 **Kaonic nuclei** 永江知文 兵藤哲雄[®] - realistic calculations - interplay between NN and RN 31 永江知文、兵藤哲雄「K中間子原子核の物理」(共立出版)