
Femtoscopy for exotic hadrons and nuclei

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Introduction — Femtoscopy primer

Correlation functions for exotic hadrons

- K^-p correlations for $\Lambda(1405)$

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

- DD^* and $D\bar{D}^*$ correlations for T_{cc} and X(3872)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

Correlation functions for hypernuclei

- $\Lambda \alpha$, $\Xi \alpha$ correlations

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation;

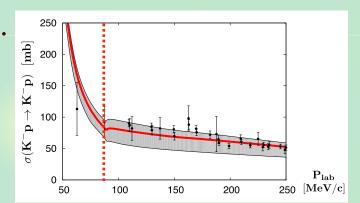
Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation

Summary

Introduction — Femtoscopy primer

In memory of Akira Ohnishi

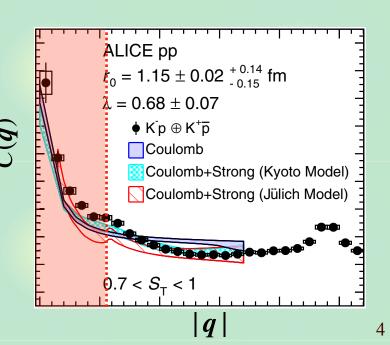
Sep. 13, 2019, after FemTUM19 workshop @ München


Introduction — Femtoscopy primer

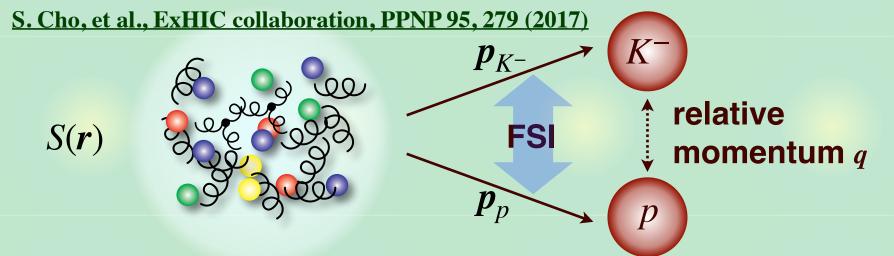
Experimental data for hadron interactions

Traditional methods: scattering experiments

- limited channels : NN, YN, πN , KN, $\bar{K}N$, ...
- limited statistics (low-energy)
- heavy hadron: impossible


Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

Correlation functions


ALICE collaboration, PRL 124, 092301 (2020)

- Excellent precision (\bar{K}^0n cusp)
- Low-energy data below $\bar{K}^0 n$
- heavy hadron : possible!

Correlation function and hadron interaction

High-energy collision: chaotic source S(r) of hadron emission

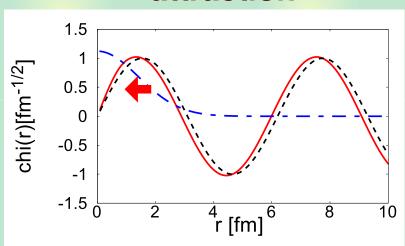
- Definition

$$C(q) = \frac{N_{K^-p}(p_{K^-}, p_p)}{N_{K^-}(p_{K^-})N_p(p_p)}$$
 (= 1 in the absence of FSI/QS)

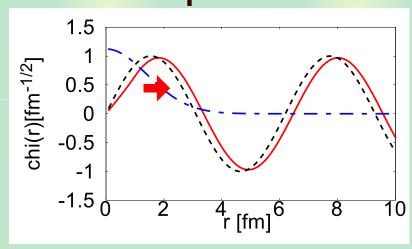
- Theory (Koonin-Pratt formula)

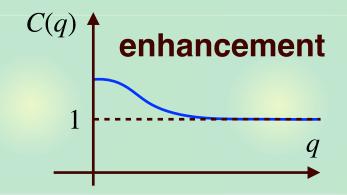
S.E. Koonin PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (1986)

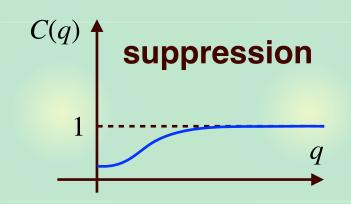
$$C(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S(\boldsymbol{r}) \left| \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \right|^2$$


Source function S(r) < -> wave function $\Psi_q^{(-)}(r)$ (FSI)

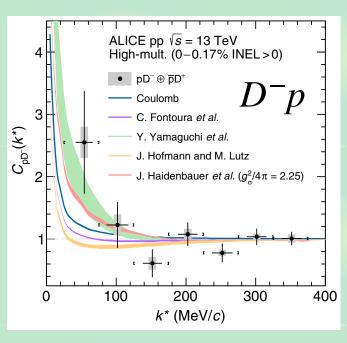
Wave functions and correlations

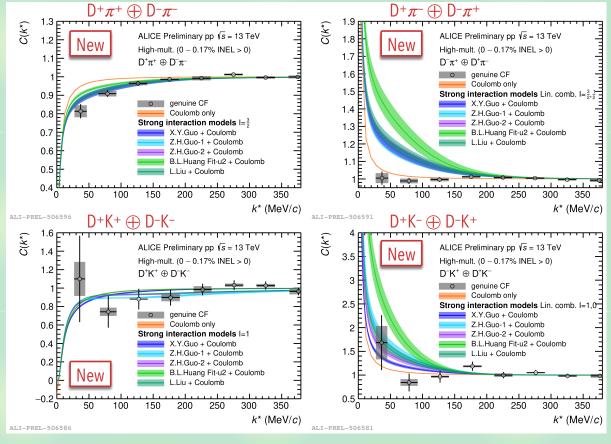

Qualitative behavior


$$C(q) \simeq \int_0^\infty dr \, S(r) |\chi_q(r)|^2$$


attraction

repulsion

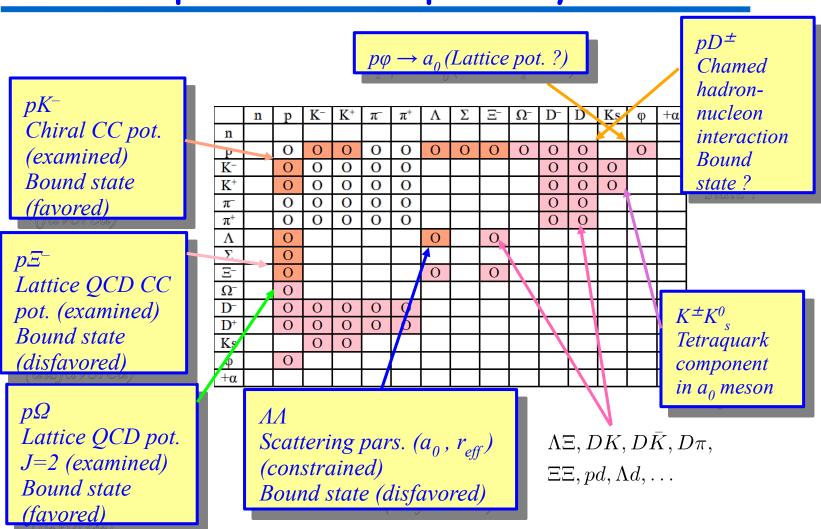

Introduction — Femtoscopy primer


Experimental data in charm sector

Observed correlation functions with charm: $DN, D\pi, DK$

ALICE collaboration, PRD 106, 052010 (2022);

Talk by F. Grosa @ Quark Matter 2022



One charm meson is possible (still low statistics)

Summary by A. Ohnishi

Scope of Femtoscopic study of HHI

Contents

Introduction — Femtoscopy primer

Correlation functions for exotic hadrons

- K^-p correlations for $\Lambda(1405)$

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

- DD^* and $D\bar{D}^*$ correlations for T_{cc} and X(3872)

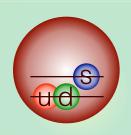
Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

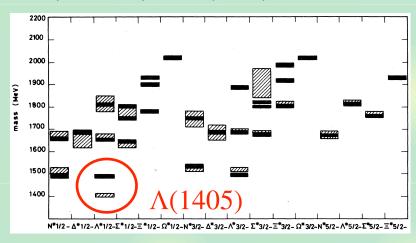
Correlation functions for hypernuclei

- $\Lambda \alpha$, $\Xi \alpha$ correlations

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation;

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation

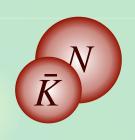


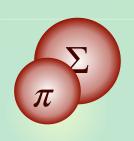

Summary

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD18, 4187 (1978)




: theory

: experiment

Resonance in coupled-channel scattering

- Coupling to MB states

-> Chiral SU(3) dynamics

Pole positions are determined

2020 update of PDG

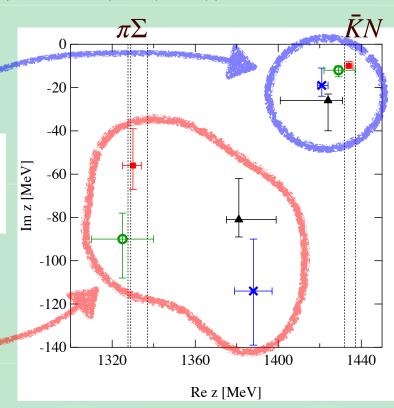
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); ▲

Z.H. Guo, J.A. Oller, PRC87, 035202 (2013); ×

M. Mai, U.G. Meißner, EPJA51, 30 (2015) ■ ○

- Particle Listing section:

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)


$$I(J^P) = O(\frac{1}{2})$$
 Status: ***

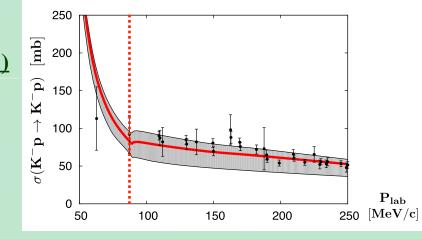
Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

 $J^P = \frac{1}{2}^-$

Status: **

w l

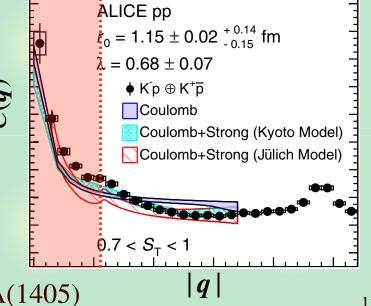
T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021)


- "∧(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole : two-star resonance $\Lambda(1380)$

Experimental data of K^-p **correlation**

K-p total cross sections

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)


- Old bubble chamber data
- Resolution is not good
- Threshold cusp is not visible

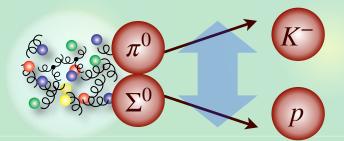
K^-p correlation function

ALICE collaboration, PRL 124, 092301 (2020)

- Excellent precision (\bar{K}^0n cusp)
- Low-energy data below $\bar{K}^0 n$

-> Important constraint on $\bar{K}N$ and $\Lambda(1405)$

Coupled-channel effects

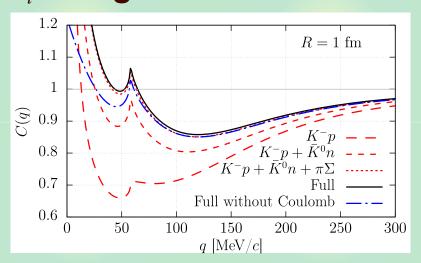

Schrödinger equation (s-wave)

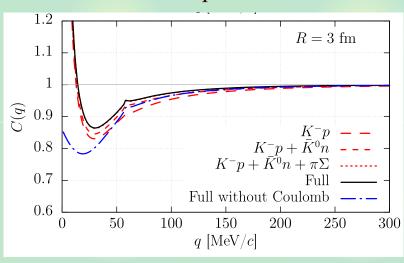
$$\begin{pmatrix} -\frac{\nabla^2}{2\mu_1} + V_{11}(r) + V_{\mathbf{C}}(r) & V_{12}(r) & \cdots \\ V_{21}(r) & -\frac{\nabla^2}{2\mu_2} + V_{22}(r) + \Delta_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \\ \vdots \end{pmatrix} = E \begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \\ \vdots \end{pmatrix}$$
 Coulomb threshold energy difference

Asymptotic $(r \to \infty)$ wave function

$$\begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_2r} + \#e^{iq_2r} \\ \vdots \end{pmatrix} \quad \text{incoming + outgoing}$$

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$ is in $\psi_i(r)$ with $i \neq K^- p$

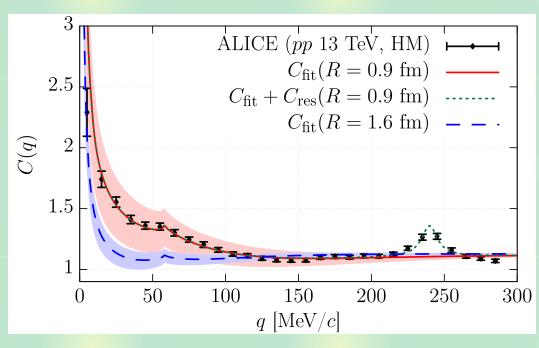

Coupled-channel correlation function

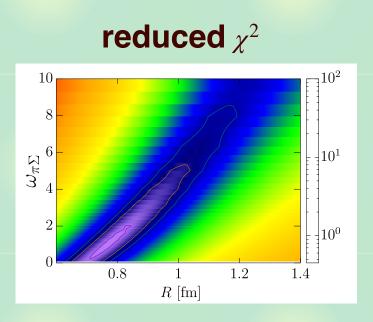

Coupled-channel Koonin-Pratt formula

- R. Lednicky, V.V. Lyuboshitz, V.L. Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998);
- J. Haidenbauer, NPA 981, 1 (2019);
- Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

$$C_{K^{-p}}(\mathbf{q}) \simeq \int d^3 \mathbf{r} \, S_{K^{-p}}(\mathbf{r}) |\Psi_{K^{-p},\mathbf{q}}^{(-)}(\mathbf{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \mathbf{r} \, S_i(\mathbf{r}) |\Psi_{i,\mathbf{q}}^{(-)}(\mathbf{r})|^2$$

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$
- ω_i : weight of source channel i relative to K^-p


Coupled-channel effect is enhanced for small sources

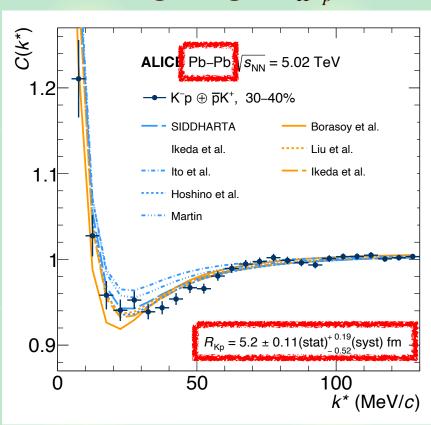

Correlation from chiral SU(3) dynamics

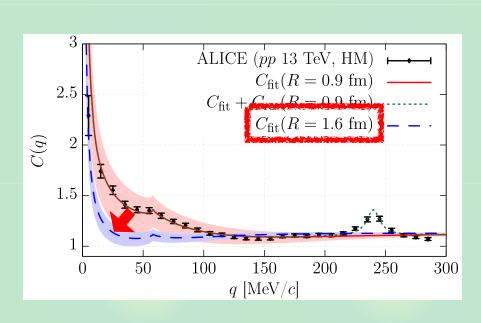
Wave function $\Psi_{i,q}^{(-)}(r)$: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara, T. Hyodo, W. Weise, PRC98, 025201 (2018)

- Source function S(r): Gaussian, $R \sim 1$ fm in K^+p data
- Source weight $\omega_{\pi\Sigma} \sim 2$ by simple statistical model estimate

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

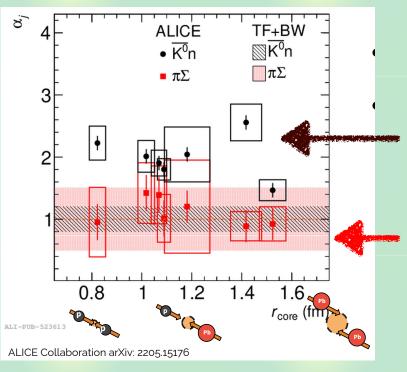

Correlation function by ALICE is well reproduced


Source size dependence

New data with Pb-Pb collisions at 5.02 TeV

ALICE collaboration, PLB 822, 136708 (2021)

- Scattering length $a_{K^{-}p} = -0.91 + 0.92i$ fm


Correlation is suppressed at larger R, as predicted

Systematic study of source size dependence

Correlations in pp, p-Pb, Pb-Pb by Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

ALICE collaboration, EPJC 83, 340 (2023)

$$C_{K^{-}p}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-}p}(\boldsymbol{r}) \, |\Psi_{K^{-}p,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-}p} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

enhancement needed to explain data

Expected weight ω_i by Thermal Fist + Blast Wave

More strength is needed in the \bar{K}^0n channel

Contents

Introduction — Femtoscopy primer

Correlation functions for exotic hadrons

- K^-p correlations for $\Lambda(1405)$

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

- DD^* and $D\bar{D}^*$ correlations for T_{cc} and X(3872)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

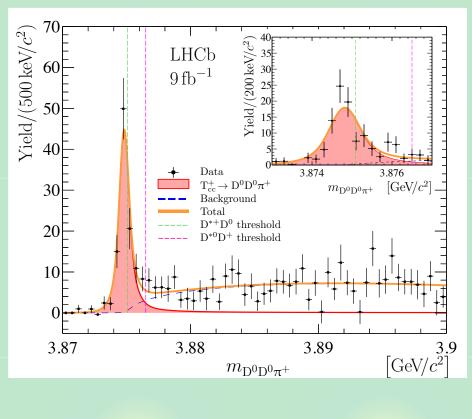
Correlation functions for hypernuclei

- $\Lambda \alpha$, $\Xi \alpha$ correlations

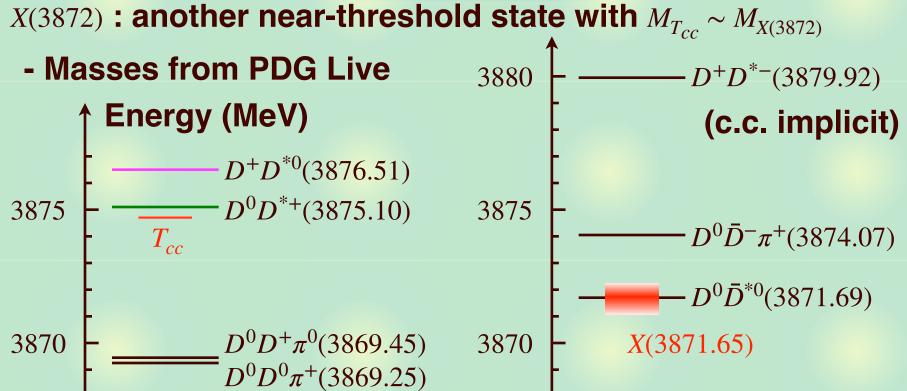
A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation;

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation

Summary


Observation of T_{cc}

T_{cc} observed in $D^0D^0\pi^+$ spectrum

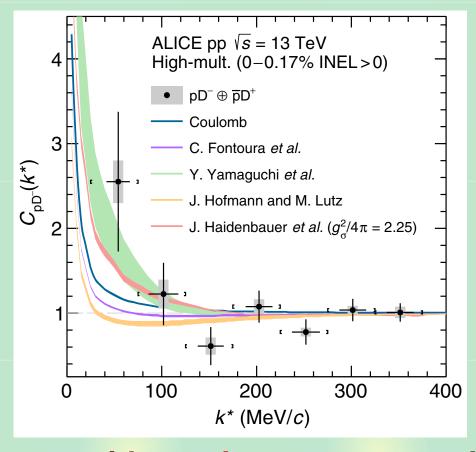

LHCb collaboration, Nature Phys., 18, 751 (2022); Nature Comm., 13, 3351 (2022)

- Signal near DD* threshold
- Charm $C = +2 : \sim cc\bar{u}\bar{d}$
- Level structure

- Very small (few MeV ~ keV) energy scale involved

3865

- $T_{cc}/X(3872)$ near $DD^*/D\bar{D}^*$
 - -> Molecule nature?
- X(3872) has decay channels


 $\pi\pi J/\psi, \cdots$ 20

 $-D^0\bar{D}^0\pi^0(3864.66)$

Measurement of D^-p correlation

First measurement of correlation involving charm

ALICE collaboration, PRD 106, 052010 (2022)

Favors bound state with exotic quantum number $D^-p \sim \bar{c}duud$

Correlation function with charm can be measured

$DD^*, D\bar{D}^*$ potentials

Coupled-channel potentials

$$V_{DD^*/D\bar{D}^*} = \frac{1}{2} \begin{pmatrix} V_{I=1} + V_{I=0} & V_{I=1} - V_{I=0} \\ V_{I=1} - V_{I=0} & V_{I=1} + V_{I=0} + V_c \end{pmatrix} \frac{D^0 D^{*+}/\{D^0 \bar{D}^{*0}\}}{D^+ D^{*0}/\{D^+ D^{*-}\}}$$

$$\uparrow \textbf{Coulomb for } \{D^+ D^{*-}\}$$

- I = 0: one-range gaussian potentials, I = 1 neglected

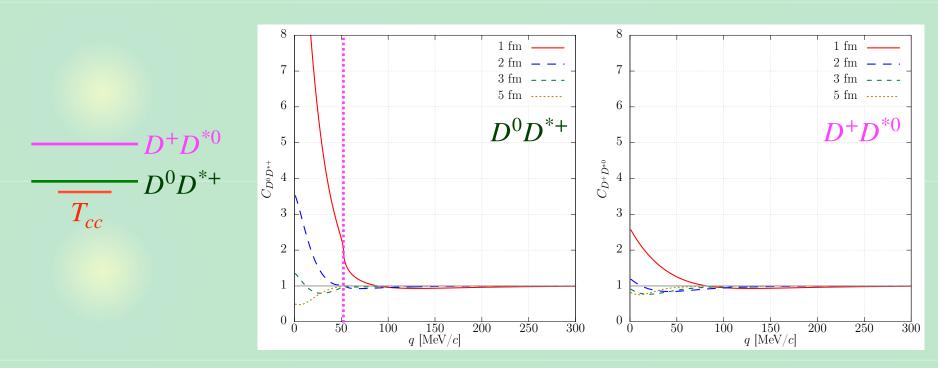
$$V_{I=0} = V_0 \exp\{-m_{\pi}^2 r^2\}, \quad V_{I=1} = 0$$

\(\gamma \text{range by } \pi \text{ exchange}

$V_0 \in \mathbb{C} \leftarrow$ scattering lengths (molecule picture)

- T_{cc} : $a_0^{D^0D^{*+}} = -7.16 + i1.85$ fm (LHCb analysis)

LHCb collaboration, Nature Comm., 13, 3351 (2022)

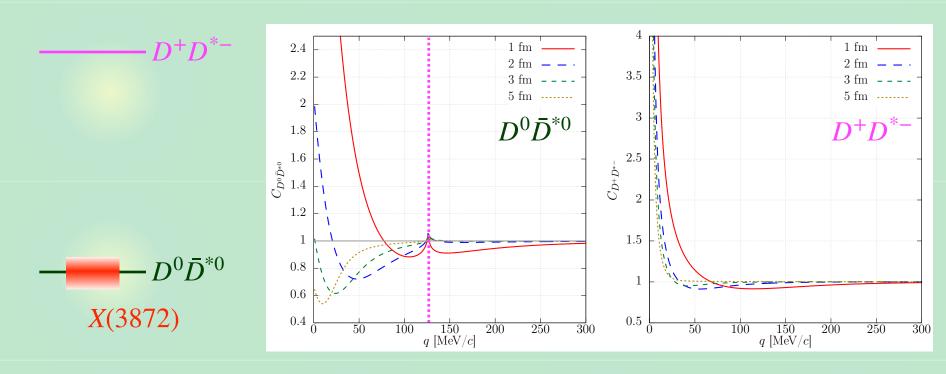

- X(3872): $a_0^{D^0\bar{D}^{*0}} = -4.23 + i3.95$ fm $(a_0 = -i/\sqrt{2\mu E_h})$ with PDG E_h)

 DD^* and $D\bar{D}^*$ correlations for T_{cc} for X(3872)

$DD^* \sim T_{cc}$ sector

D^0D^{*+} and D^+D^{*0} correlation functions ($cc\bar{u}\bar{d}$, exotic)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)


- Bound state feature (source size dep.) in both channels
- Strong signal in D^0D^{*+} , weaker one in D^+D^{*0}
- D^+D^{*0} cusp in D^0D^{*+} ($q \sim 52 \text{ MeV}$) is not very prominent

 DD^* and $D\bar{D}^*$ correlations for T_{cc} for X(3872)

$D\bar{D}^* \sim X(3872)$ sector

$D^0 \bar{D}^{*0}$ and $D^+ \bar{D}^{*-}$ correlation functions ($c\bar{c}q\bar{q}$)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

- Bound state feature in $D^0\bar{D}^{*0}$ correlation
- Sizable D^+D^{*-} cusp in $D^0\bar{D}^{*0}$ ($q\sim 126~{
 m MeV}$)
 - D+D*- correlation: Coulomb attraction dominance

Contents

Introduction — Femtoscopy primer

Correlation functions for exotic hadrons

- K^-p correlations for $\Lambda(1405)$

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

- DD^* and $D\bar{D}^*$ correlations for T_{cc} and X(3872)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

Correlation functions for hypernuclei

- $\Lambda \alpha$, $\Xi \alpha$ correlations

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation;

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation

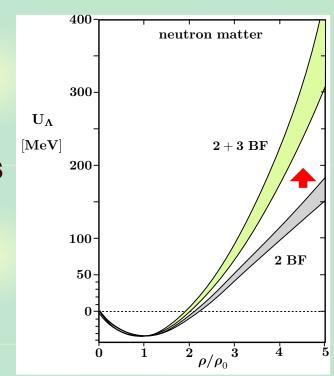
Summary

Motivation

Hyperon puzzle in neutron stars

- ANN three-body force for repulsion at high density

D. Gerstung, N. Kaiser, W. Weise, EPJA 55, 175 (2020)


How to verify this in experiments?

- Λ directed flow in heavy ion collisions

Y. Nara, A. Jinno, K. Murase, A. Ohnishi, PRC 106, 044902 (2022)

∆-nucleus correlation function?

- Heavy nuclei are difficult to produce
- Strong binding of α —> high central density $\geq 2\rho_0$

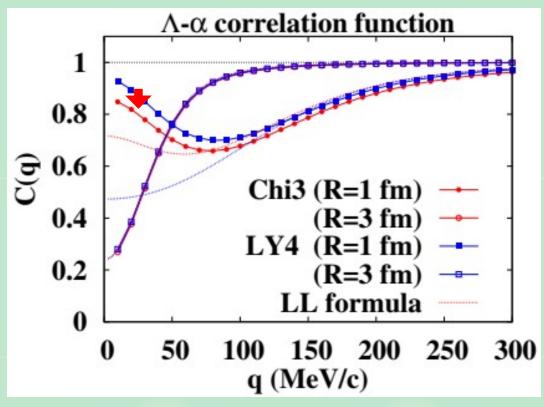
Possible three-body force in $\Lambda \alpha$ correlation function

$\Lambda \alpha$ potentials

Skyrme-Hartree Fock potentials for A hypernuclei

- LY4 : empirical potential
 - D.E. Lanskoy, Y. Yamamoto, PRC 55, 2330 (1997)
- Chi3: based on chiral EFT with ANN force
 - A. Jinno, K. Murase, Y. Nara, A. Ohnishi, arXiv:2306.17452 [nucl-th]
- Both reproduce hypernuclear data from C to Pb

Λα potentials


- overestimate ${}_{\Lambda}^{5}\mathrm{He}$ binding energy
 - —> adjustment of parameters
- LY4: Woods-Saxon like
- Chi3: central repulsion

$\Lambda \alpha$ correlation functions

Results of correlation function

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation

- Bound state signature (dip at small q)
- Effect of ΛNN force is not visible for $R=3~\mathrm{fm}$, but gives slightly stronger correlation for $R=1~\mathrm{fm}$

Summary

Correlation functions are useful to study interactions of exotic hadrons and nuclei.

 K^{-p} correlations

- precise test for $\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

DD* and DD* correlations

- (quasi-)bound nature of T_{cc} and X(3872)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

 $\Lambda \alpha$, $\Xi \alpha$ correlations

- opportunity for hypernuclear physics

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation;

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi, in preparation