Theoretical status of antikaon-nucleon interactions

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

$\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021);

T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

- Recent developments

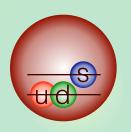
J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); Talk by D. Mohler on 22nd June

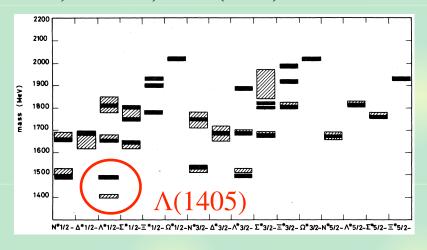
K⁻p femtoscopy

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)

- Experimental data

ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)

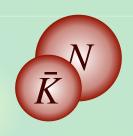


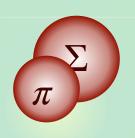

Summary

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD 18, 4187 (1978)




: theory

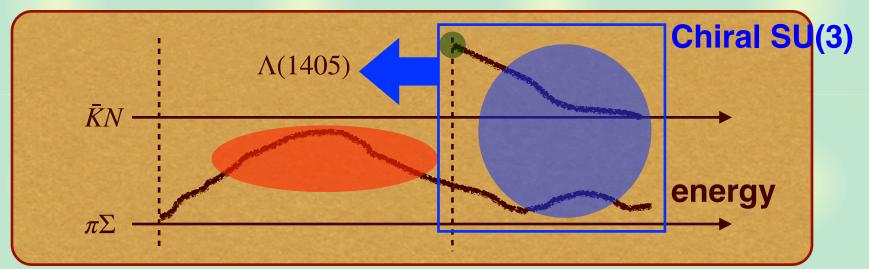
: experiment

Resonance in coupled-channel scattering

- Coupling to MB states

Detailed analysis of $\bar{K}N$ - $\pi\Sigma$ scattering is necessary

Strategy for $\bar{K}N$ interaction

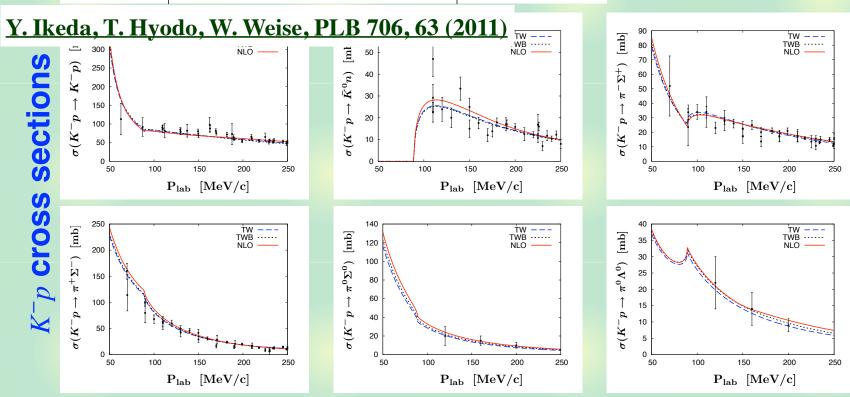

Above the $\bar{K}N$ threshold : direct constraints

- K⁻p total cross sections (old data)
- $\bar{K}N$ threshold branching ratios (old data)
- K⁻p scattering length (new data : SIDDHARTA)

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012)

Below the $\bar{K}N$ threshold: indirect (reaction model needed)

- $\pi\Sigma$ mass spectra (LEPS, CLAS, HADES, J-PARC, ...)



Best-fit results by chiral SU(3) dynamics

TW TWB NLO Experiment $\Delta E \text{ [eV]}$ 377 [10] 373 306 $283 \pm 36 \pm 6$ $541 \pm 89 \pm 22$ $\Gamma [eV]$ 514 591 495 2.37 2.36 2.36 2.36 ± 0.04 [11]0.200.19 0.19 0.189 ± 0.015 [11]0.66 0.66 0.664 ± 0.011 0.66 $\chi^2/\mathrm{d.o.f}$ 1.12 1.15 0.96

SIDDHARTA

Branching ratios

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

PDG has changed

2020 update of PDG

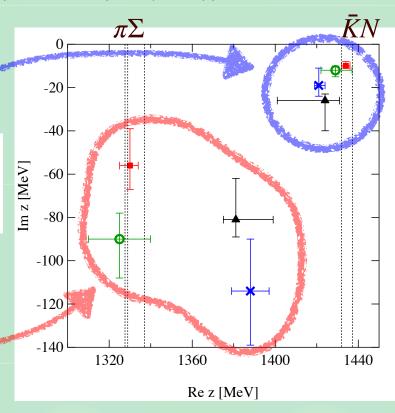
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); ▲

Z.H. Guo, J.A. Oller, PRC 87, 035202 (2013); ×

M. Mai, U.G. Meißner, EPJA 51, 30 (2015) ■ ○

- Particle Listing section:

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)


$$I(J^P) = O(\frac{1}{2})$$
 Status: ***

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

 $J^P = \frac{1}{2}^-$

Status: *>

new!

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021)

- "Λ(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole : two-star resonance $\Lambda(1380)$

 $\Lambda(1405)$ and $\bar{K}N$ interactions

Construction of $\bar{K}N$ potentials

Local KN potential is useful for various applications

meson-baryon amplitude (chiral SU(3) EFT)

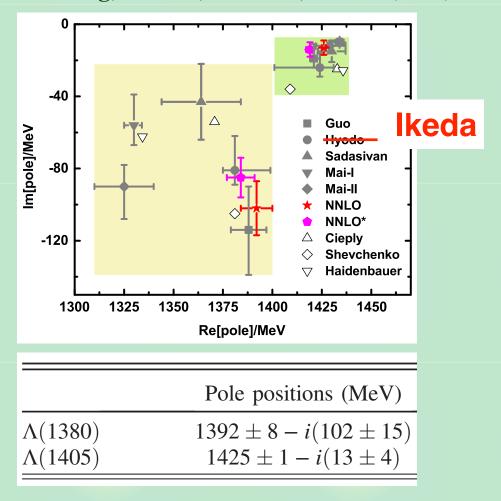
T. Hyodo, W. Weise, PRC 77, 035204 (2008)

Kyoto $\bar{K}N$ **potential** (single-channel, complex)

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016) Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential (coupled-channel, real)

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

Kaonic nuclei

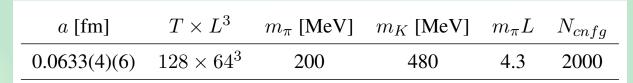

Kaonic deuterium

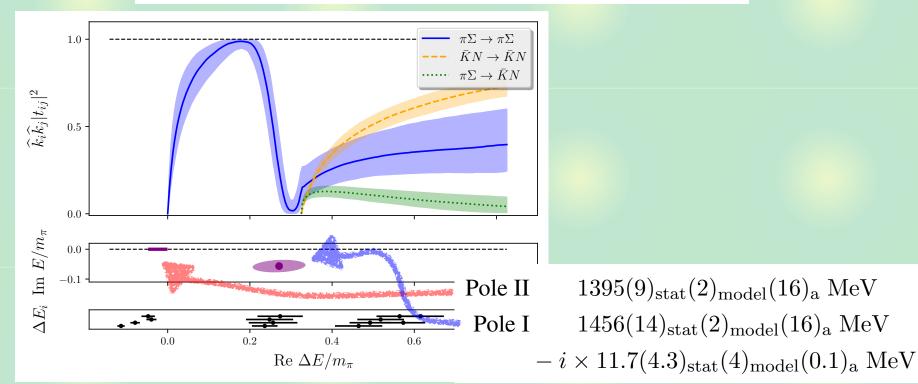
 K^-p correlation function

NNLO analysis

New analysis at NNLO! (KN and πN included)

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023)




Two poles are confirmed at NNLO

Coupled-channel scattering by lattice QCD

Lattice calculation of $\bar{K}N$ - $\pi\Sigma$ scattering

Talk by D. Mohler on 22nd June

Two poles are found on the lettice

approach pole 1 [MeV] pole 2 [MeV

Contents

$\Lambda(1405)$ and $\bar{K}N$ interactions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021);

T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

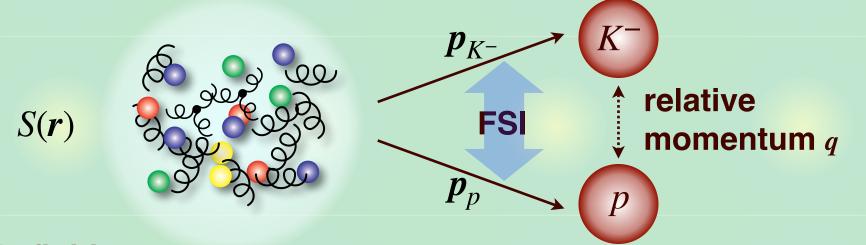
- Recent developments

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); Talk by D. Mohler on 22nd June

K^-p femtoscopy

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL 124, 132501 (2020)

- Experimental data


ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)

Summary

Correlation function and hadron interaction

High-energy collision: chaotic source S(r) of hadron emission

- Definition

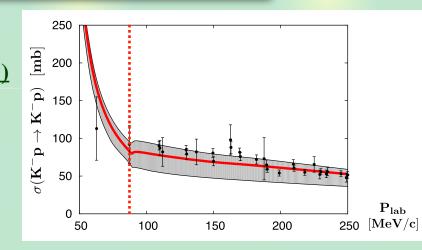
$$C(q) = \frac{N_{K^-p}(p_{K^-}, p_p)}{N_{K^-}(p_{K^-})N_p(p_p)}$$
 (= 1 in the absence of FSI/QS)

- Theory (Koonin-Pratt formula)

S.E. Koonin PLB 70, 43 (1977); S. Pratt, PRD 33, 1314 (2986)

$$C(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S(\boldsymbol{r}) |\Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

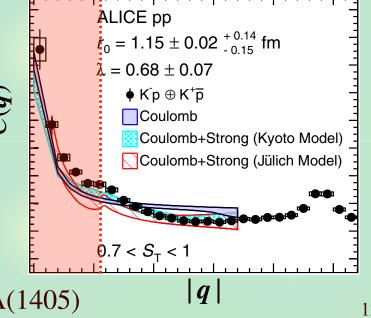
Source function S(r) < -> wave function $\Psi_q^{(-)}(r)$ (FSI)


 K^-p femtoscopy

Experimental data of K^{-p} **correlation**

K^-p total cross sections

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)


- Old bubble chamber data
- Resolution is not good
- Threshold cusp is not visible

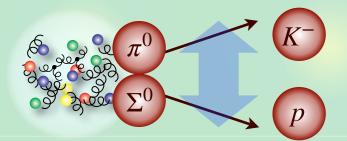
K^-p correlation function

ALICE collaboration, PRL 124, 092301 (2020)

- Excellent precision (\bar{K}^0n cusp)
- Low-energy data below $\bar{K}^0 n$

-> Important constraint on $\bar{K}N$ and $\Lambda(1405)$

Coupled-channel effects

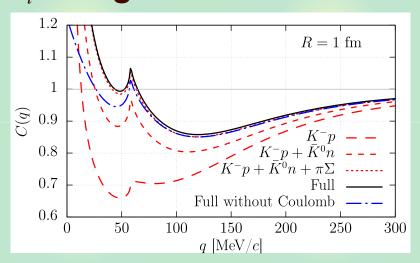

Schrödinger equation (s-wave)

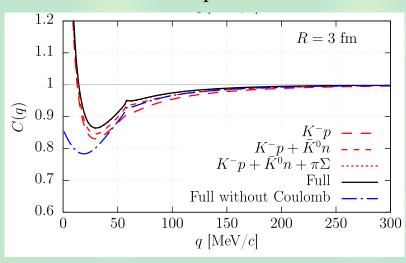
$$\begin{pmatrix} -\frac{\nabla^2}{2\mu_1} + V_{11}(r) + V_{C}(r) & V_{12}(r) & \cdots \\ V_{21}(r) & -\frac{\nabla^2}{2\mu_2} + V_{22}(r) + \Delta_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \\ \psi_{\bar{K}^0n}(r) \end{pmatrix} = E \begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \\ \vdots \\ \vdots \\ \end{pmatrix}$$
 Coulomb threshold energy difference

Asymptotic $(r \to \infty)$ wave function

$$\begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_2r} + \#e^{iq_2r} \\ \vdots \end{pmatrix} \quad \text{incoming + outgoing}$$

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$ is in $\psi_i(r)$ with $i \neq K^- p$

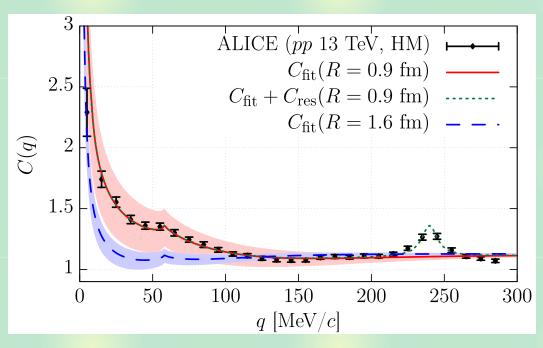

Coupled-channel correlation function

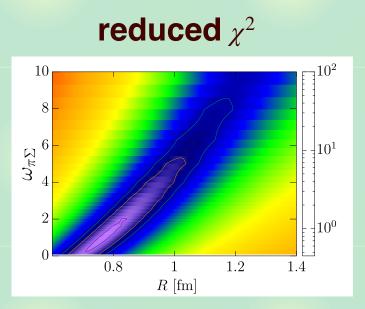

Coupled-channel Koonin-Pratt formula

- R. Lednicky, V.V. Lyuboshitz, V.L. Lyuboshitz, Phys. Atom. Nucl. 61, 2950 (1998);
- J. Haidenbauer, NPA 981, 1 (2019);
- Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

$$C_{K^{-p}}(\mathbf{q}) \simeq \int d^3 \mathbf{r} \, S_{K^{-p}}(\mathbf{r}) |\Psi_{K^{-p},\mathbf{q}}^{(-)}(\mathbf{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \mathbf{r} \, S_i(\mathbf{r}) |\Psi_{i,\mathbf{q}}^{(-)}(\mathbf{r})|^2$$

- Transition from $\bar{K}^0n, \pi^+\Sigma^-, \pi^0\Sigma^0, \pi^-\Sigma^+, \pi^0\Lambda$
- ω_i : weight of source channel i relative to K^-p


Coupled-channel effect is enhanced for small sources

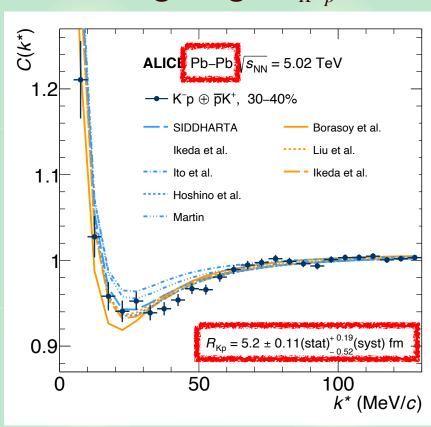

Correlation from chiral SU(3) dynamics

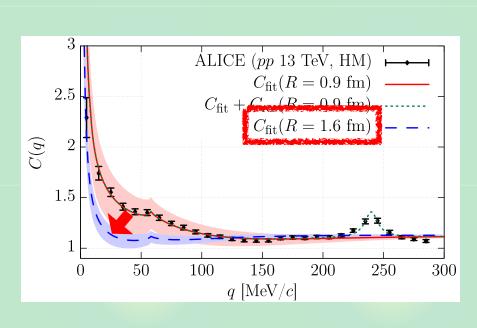
Wave function $\Psi_{i,q}^{(-)}(r)$: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

- Source function S(r): Gaussian, $R \sim 1$ fm in K^+p data
- Source weight $\omega_{\pi\Sigma} \sim 2$ by simple statistical model estimate

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL 124, 132501 (2020)

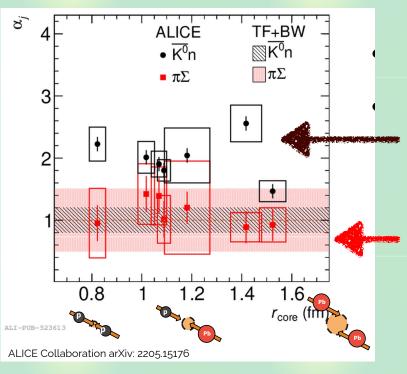

Correlation function by ALICE is well reproduced


Source size dependence

New data with Pb-Pb collisions at 5.02 TeV

ALICE collaboration, PLB 822, 136708 (2021)

- Scattering length $a_{K^-p} = -0.91 + 0.92i$ fm


Correlation is suppressed at larger R, as predicted

Systematic study of source size dependence

Correlations in pp, p-Pb, Pb-Pb by Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

ALICE collaboration, EPJC 83, 340 (2023)

$$C_{K^{-}p}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-}p}(\boldsymbol{r}) \, |\Psi_{K^{-}p,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-}p} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

enhancement needed to explain data

Expected weight ω_i by Thermal Fist + Blast Wave

More strength is needed in the \bar{K}^0n channel

Summary

K^-p scattering and kaonic hydrogen are well described by NLO chiral SU(3) dynamics.

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012)

- NNLO, scattering on the lattice, ...

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL 130, 071902 (2023); Talk by D. Mohler on 22nd June

Global structures of K^-p correlation functions are reproduced by Kyoto $\bar{K}N-\pi\Sigma-\pi\Lambda$ potential.

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

- Source size dependence

ALICE collaboration, PRL 124, 092301 (2020); PLB 822, 136708 (2021); EPJC 83, 340 (2023)