Theoretical progress and future direction in kaonic nuclei

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Contents

 $\Lambda(1405)$ and $\bar{K}N$ potentials Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); K. Miyahara. T. Hyodo, PRC 93, 015201 (2016); K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018); Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020) **Applications to few-body systems** Kaonic nuclei S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017) - Kaonic deuterium T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017) **Summary and prospect** T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021); T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD18, 4187 (1978)

Detailed analysis of $\bar{K}N$ - $\pi\Sigma$ scattering is necessary

Strategy for *kN* interaction

Above the $\bar{K}N$ threshold : direct constraints

- K⁻p total cross sections (old data)
- *k̄N* threshold branching ratios (old data)
- K⁻p scattering length (new data : SIDDHARTA)

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012)</u>

Below the $\bar{K}N$ threshold : indirect (reaction model needed)

- $\pi\Sigma$ mass spectra (LEPS, CLAS, HADES, J-PARC, ...)

Chiral SU(3) dynamics : best-fit results

		TW	TWB	NLO	Experiment	
St	$\Delta E [\mathrm{eV}]$	373	377	306	$283\pm 36\pm 6$	[10]
Ö	$\Gamma \ [eV]$	495	514	591	$541\pm89\pm22$	[10]
	γ	2.36	2.36	2.37	2.36 ± 0.04	[11]
a	R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]
X	R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]
	χ^2 /d.o.f	1.12	1.15	0.96		

SIDDHARTA

Branching ratios

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

PDG has changed

2020 update of PDG

T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021)

- "Λ(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole : two-star resonance $\Lambda(1380)$

NNLO analysis

New analysis at NNLO! (KN and πN included)

J.-X. Lu, L.S. Geng, M. Doering, M. Mai, PRL130, 071902 (2023)

Construction of *KN* **potentials**

Local *KN* potential is useful for various applications

meson-baryon amplitude (chiral SU(3) EFT)

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

Kyoto *k̄N* potential (single-channel, complex)

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016)

Kaonic nuclei

Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential (coupled-channel, real)

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

Kaonic deuterium

K⁻p correlation function

Correlation function and femtoscopy

 K^-p correlation function C(q)

$$C(\boldsymbol{q}) = \frac{N_{K^{-p}}(\boldsymbol{p}_{K^{-}}, \boldsymbol{p}_{p})}{N_{K^{-}}(\boldsymbol{p}_{K^{-}})N_{p}(\boldsymbol{p}_{p})} \simeq \int d^{3}\boldsymbol{r} \, S(\boldsymbol{r}) \, | \, \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \, |^{2}$$

- Wave function $\Psi_{a}^{(-)}(r)$: Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

<u>Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)</u> S. Acharya *et al.* (ALICE), PLB 822, 136708 (2021)

Correlation functions are well reproduced and predicted

Systematic study of source size dependence

Correlations in *pp*, *p*-Pb, Pb-Pb **by Kyoto** $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ **potential**

S. Acharya et al. (ALICE), arXiv:2205.15176 [nucl-ex]

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

More strength is needed in the $\bar{K}^0 n$ channel

Contents

Contents

*R***NN system : simplest** *R***-nucleus**

Theoretical calculation with realistic *k̄*_N interaction

- Fit to *K*⁻*p* cross sections and branching ratios
- SIDDHARTA constraint of kaonic hydrogen

[1] J. Revai, N.V. Shevchenko, PRC 90, 034004 (2014)

[2] S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

Potential	$\Lambda(1405)$ [MeV]	$\Lambda(1380)$ [MeV]	$B_{\bar{K}NN}$ [MeV]	$\Gamma_{\bar{K}NN \to \pi YN}$ [MeV]
$V^{1,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	1426 - 48i [3]	-	$53.3 \ [1]$	64.8 [1]
$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	1414 - 58i [3]	1386 - 104i [3]	$47.4 \ [1]$	49.8 [1]
$V_{\bar{K}N}^{\text{chiral}}$	1417 - 33i [4]	1406 - 89i [4]	$32.2 \ [1]$	48.6 [1]
Kyoto $\bar{K}N$	1424 - 26i [5]	1381 - 81i [5]	25.3-27.9 [2]	30.9-59.4 [2]

- [3] N.V. Shevchenko, NPA 890-891, 50 (2012)
- [4] N.V. Shevchenko, J. Revai, PRC 90, 034003 (2014)
- [5] K. Miyahara. T. Hyodo, PRC 93, 015201 (2016)

- Caution: 2N absorption (Γ_{YN}) is NOT included!!

Kaonic nuclei

- **Rigorous few-body approach up to** A = 6 **systems**
 - S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)
 - Stochastic variational method with correlated gaussians
 - $\hat{V} = \hat{V}^{\bar{K}N}$ (Kyoto $\bar{K}N$) + $\hat{V}^{NN}(AV4')$ (single channel)
- **Results for kaonic nuclei with** A = 2, 3, 4, 6

	$\bar{K}NN$	$\bar{K}NNN$	$\bar{K}NNNN$	$\bar{K}NNNNNN$
$I(J^P)$	$1/2(0^{-})$	$0(1/2^{-})$	$1/2(0^{-})$	$1/2(0^-, 1^-)$
$B [{ m MeV}]$	25.3 - 27.9	45.3 - 49.7	67.9 - 75.5	69.8 - 80.7
$\Gamma_{\rm mes.}$ [MeV]	30.9-59.4	25.5 - 69.4	28.0-74.5	23.7 - 75.6

- for A = 6 system, 0^- and 1^- are almost degenerated
- quasi-bound state below the lowest threshold
- decay width (without multi-*N* absorption) ~ binding energy₁₃

Interplay between NN and KN correlations 1

Two-nucleon system

NN correlation $< \bar{K}N$ correlation

Interplay between NN and K̄N correlations 2

Four-nucleon system with $J^P = 0^-$, I = 1/2, $I_3 = +1/2$

$$|\bar{K}NNN\rangle = C_1 \left(\begin{array}{c} p \\ p \\ p \\ p \\ p \\ n \end{array} \right) + C_2 \left(\begin{array}{c} p \\ p \\ \bar{K}^0 \\ n \\ n \\ n \end{array} \right)$$

- *K*N correlation

I = 0 pair in K^-p (3 pairs) or \bar{K}^0n (2 pairs) : $|C_1|^2 > |C_2|^2$

- NN correlation

ppnn **forms** α : $|C_1|^2 < |C_2|^2$

- Numerical result

 $|C_1|^2 = 0.08, |C_2|^2 = 0.92$

NN correlation $> \bar{K}N$ correlation

Kaonic deuterium

K⁻*pn* **system with strong + Coulomb interaction**

Potential	$\Delta E - i\Gamma/2 \ [\text{eV}]$
$V^{1,\text{SIDD}}_{\bar{K}N-\pi\Sigma}$	767 - 464i [1]
$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	782 - 469i [1]
$V_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{\text{chiral}}$	835 - 502i [1]
Kyoto $\bar{K}N$	670 - 508i [2]

Theoretical requirements :

- Rigorous three-body treatment of strong + Coulomb
- Inclusion of SIDDHARTRA constraint (realistic KN)

[1] J. Revai, PRC 94, 054001 (2016)
 [2] T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- Experiments : J-PARC E57, SIDDHARTA-2

I = 1 dependence

- Study sensitivity to I = 1 interaction
 - introduce parameter β to control potential strength Re $\hat{V}^{\bar{K}N(I=1)} \rightarrow \beta \times \text{Re} \ \hat{V}^{\bar{K}N(I=1)}$
- Vary β within SIDDHARTA uncertainty of K^-p
 - allowed region : $-0.17 < \beta < 1.08$

(negative β may contradict with scattering data)

β	<i>K</i> ⁻ <i>p</i>		K^-d		
	ΔE	Γ	ΔE	Г	
1.08	287	648	676	1020	~ 170 eV deviation
-0.17	283 310	607 430	670 506	980	

- Planned precision: 60 eV (30 eV) at J-PARC (SIDDHARTA-2) Measurement of K^-d will provide strong constraint on I = 1

Summary and prospect

Summary

Experimental data constrain pole structure of the $\Lambda(1405)$ **region :** " $\Lambda(1405)$ " —> $\Lambda(1405)$ + $\Lambda(1380)$

Л(1380)	$1/2^{-}$	**
Л(1405)	$1/2^{-}$	****

R **N potentials** are useful to calculate kaonic nuclei and kaonic deuterium

Potential	$\Lambda(1405)$ [MeV]	$\Lambda(1380)$ [MeV]	$B_{\bar{K}NN}$ [MeV]	$\Gamma_{\bar{K}NN \to \pi YN}$ [MeV]	$\Delta E - i\Gamma/2 \; [\text{eV}]$
$V^{1,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	1426 - 48i	-	53.3	64.8	767 - 464i
$V^{2,\mathrm{SIDD}}_{\bar{K}N-\pi\Sigma}$	1414 - 58i	1386 - 104i	47.4	49.8	782 - 469i
$V_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{\text{chiral}}$	1417 - 33i	1406 - 89i	32.2	48.6	835 - 502i
Kyoto $\bar{K}N$	1424 - 26i	1381 - 81i	25.3-27.9	30.9-59.4	670 - 508i

T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021);

T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th] (Handbook of Nuclear Physics)

Summary and prospect

Future directions

ĒN system

- Determination of $\Lambda(1380)$
- $\pi\Sigma$ scattering length, correlation functions,...
- I=1 *kN* interaction <-- kaonic deuterium

ĒNN, kaonic nuclei

- Evaluation of 2N absorption decay
- Reaction study : spectrum <-> eigenstate
- Quantum numbers $I(J^P)$ of $\overline{K}NN$
- Internal structure : *KNN*? A*N? others?