Compositeness of hadrons from effective field theory

Tomona Kinugawa, Tetsuo Hyodo
Tokyo Metropolitan Univ.

Contents

- Introduction - $T_{c c}$ and $X(3872)$

Compositeness from effective field theory
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023 D 02 (2017);
T. Kinugawa, T. Hyodo, PRC 106,015205 (2022)

Compositeness theorem ($B \rightarrow 0$)
T. Hyodo, PRC90, 055208 (2014)

Structure of near-threshold states $(B \neq 0)$

- Probability to realize elementary states
- Decay and coupled-channel effects
T. Kinugawa, T. Hyodo, in preparation

Summary

Introduction $-T_{c c}$ and $X(3872)$

Observation of $T_{c c}$

$T_{c c}$ observed in $D^{0} D^{0} \pi^{+}$spectrum
LHCb collaboration, Nature Phys., 18, 751 (2022); Nature Comm., 13, 3351 (2022)

- Signal near $D D^{*}$ threshold
- Charm $C=+2$: $\sim c c \bar{u} \bar{d}$
- Level structure

个 Energy (MeV)
$3875-\frac{D^{+} D^{* 0}(3876.51)}{T_{c c}} D^{0} D^{*+}(3875.10)$
3870

- Very small (few MeV ~ keV) energy scale involved

Introduction $-T_{c c}$ and $X(3872)$

$T_{c c}$ and $X(3872)$

$X(3872)$: another near-threshold state with $M_{T_{C C}} \sim M_{X(3872)}$

Introduction - $T_{c c}$ and $X(3872)$

Simplified picture

In this talk, we consider two-body channels

$$
E_{h}=-0.36-i \frac{0.048}{2} \mathrm{MeV}
$$

(pole mass by LHCb)

$$
8.23 \mathrm{MeV}
$$

X(3872)

$$
E_{h}=-0.04-i \frac{1.19}{2} \mathrm{MeV}
$$

(mass and width by PDG)

- Binding energy : $T_{c c}>X(3872)$
- Decay width : $T_{c c}<X(3872)$
- Threshold energy difference : $T_{c c}<X(3872)$

Introduction - $T_{c c}$ and $X(3872)$

Plan of this talk

Goal : structure of $T_{c c}$ and $X(3872)$ multiquark
 hadronic molecule

- Near threshold \rightarrow two-body composite states?

Questions

1) Why composite state is expected?
$<-\ln B \rightarrow 0$ limit, state must be fully composite
2) Is it possible to have non-composite state with $B \neq 0$?
<- Yes, it is always possible
3) If so, how can we expect composite state for $B \neq 0$? <- Probability to realize non-composite state is tiny

Contents

Introduction $-T_{c c}$ and $X(3872)$

Compositeness from effective field theory

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017);
 Y. Kamiva, T. Hyodo, PRC93, 035203 (2010); PTEP T. Kinugawa, T. Hyodo, PRC 106,015205 (2022) Compositeness theorem ($B \rightarrow 0)$
 Compositens Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022) Compositeness theorem $(B \rightarrow 0)$

T. Hyodo, PRC90, 055208 (2014)

- Probability to realize elementary states
- Decay and coupled-channel effects
T. Kinugawa, T. Hyodo, in preparation

Summary

Structure of near-threshold states $(B \neq 0)$

Formulation

Effective field theory (bare state + scattering states)
Y. Kamiva, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

$$
H_{\text {free }}=\int d \mathbf{r}\left[\frac{1}{2 M} \nabla \psi^{\dagger} \cdot \nabla \psi+\frac{1}{2 m} \nabla \phi^{\dagger} \cdot \nabla \phi+\frac{1}{2 M_{0}} \nabla B_{0}^{\dagger} \cdot \nabla B_{0}+\omega_{0} B_{0}^{\dagger} B_{0}\right]
$$

- Eigenstates of fee Hamiltonian

$$
H_{\text {free }}\left|B_{0}\right\rangle=\omega_{0}\left|B_{0}\right\rangle, \quad H_{\text {free }}|\boldsymbol{p}\rangle=\frac{\boldsymbol{p}^{2}}{2 \mu}|\boldsymbol{p}\rangle
$$

- Contact interactions

$$
H_{\mathrm{int}}=\int d \mathbf{r}\left[g_{0}\left(B_{0}^{\dagger} \phi \psi+\psi^{\dagger} \phi^{\dagger} B_{0}\right)+v_{0} \psi^{\dagger} \phi^{\dagger} \phi \psi\right]
$$

Compositeness and elementairty

Eigenstate of full Hamiltonian : bound state

$$
\left(H_{\text {free }}+H_{\mathrm{int}}\right)|B\rangle=-B|B\rangle
$$

- Normalization of $|B\rangle+$ completeness relation

$$
\langle B \mid B\rangle=1, \quad 1=\left|B_{0}\right\rangle\left\langle B_{0}\right|+\int \frac{d \boldsymbol{p}}{(2 \pi)^{3}}|\boldsymbol{p}\rangle\langle\boldsymbol{p}|
$$

- Overlap with free eigenstates

$$
\begin{aligned}
& 1=Z+X, \quad Z \equiv\left|\left\langle B_{0} \mid B\right\rangle\right|^{2}, X \equiv \overline{\int \frac{d \boldsymbol{p}}{(2 \pi)^{3}}|\langle\boldsymbol{p} \mid B\rangle|^{2}} \\
& \text { "elementarity" } \\
& \text { compositeness }
\end{aligned}
$$

Weak-binding relation for stable states

Compositeness X of s-wave weakly bound state $\left(R \gg R_{\text {typ }}\right)$
S. Weinberg, Phys. Rev. 137, B672 (1965);
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

$$
|d\rangle=\sqrt{X}|N N\rangle+\sqrt{Z} \mid \text { others }\rangle
$$

- Deuteron is $N N$ composite : $a_{0} \sim R \Rightarrow X \sim 1$
- Internal structure from observables $\left(a_{0}, B\right)$

Problem: $a_{0}=5.42 \mathrm{fm}, R=4.32 \mathrm{fm} \Rightarrow X=1.68>1$?

Compositeness from effective field theory

Application to bound states

Uncertainty estimation with $\mathcal{O}\left(R_{\text {typ }} / R\right)$ term
Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

$$
X_{\mathrm{u}}=\frac{a_{0} / R+\xi}{2-a_{0} / R-\xi}, \quad X_{1}=\frac{a_{0} / R-\xi}{2-a_{0} / R+\xi}, \quad \xi=\frac{R_{\mathrm{typ}}}{R}
$$

Application with finite range correction

T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022)

- exclude region outside $0 \leq X \leq 1$

$$
R_{\mathrm{typ}}=\max \left\{R_{\mathrm{int}}, R_{\mathrm{eff}}\right\}
$$

- X of hadrons, nuclei, and atoms
- X of deuteron is reasonable
- $X \geq 0.5$ in all cases studied

Near-threshold states are mostly composite

Compositeness theorem（ $B \rightarrow 0$ ）
 ）

T．Hyodo，PRC90， 055208 （2014）
Structure of near－threshold states $(B \neq 0)$
－Probability to realize elementary states
－Decay and coupled－channel effects
T．Kinugawa，T．Hyodo，in preparation

Summary

\square
\square
\square这

新

 J\qquad
\qquad
\square
4
\qquad

\qquad
\square
\square
\qquad
\square

Compositeness theorem ($B \rightarrow 0$)

Original motivation

Systematic expansion of hadron masses

T. Hyodo, PRC90, 055208 (2014)

- ChPT : light quark mass m_{q}
- HQET : heavy quark mass m_{Q}
- Large Nc : number of colors N_{c}

Hadron mass scaling

$$
m_{H}(x), \quad x=\frac{m_{q}}{\Lambda}, \frac{\Lambda}{m_{Q}}, \frac{1}{N_{c}}
$$

What happens at two-body threshold?

Compositeness theorem $(B \rightarrow 0)$

Formulation

Coupled-channel Hamiltonian (discrete state + continuum)

$$
\left(\begin{array}{cc}
M_{0} & \hat{V} \\
\hat{V} & \frac{p^{2}}{2 \mu}
\end{array}\right)|\Psi\rangle=E|\Psi\rangle, \quad|\Psi\rangle=\binom{c(E)\left|\psi_{0}\right\rangle}{\int d \boldsymbol{p} \chi_{E}(\boldsymbol{p})|\boldsymbol{p}\rangle}
$$

- Exactly solvable, equivalent to EFT

Eigenenergy $E_{h}=-B<-$ Dyson equation (pole condition)

$$
\begin{aligned}
& \bar{\square}=\square \\
& \Rightarrow \quad 0=E_{h}-M_{0}-\Sigma\left(E_{h}\right), \quad \Sigma(E)=\int \frac{\left\langle\psi_{0}\right| \hat{V}|\boldsymbol{q}\rangle\langle\boldsymbol{q}| \hat{V}\left|\psi_{0}\right\rangle}{E-q^{2} /(2 \mu)+i 0^{+}} d \boldsymbol{q}
\end{aligned}
$$

- Elementarity (wavefunction renormalization)

$$
Z=\left|\left\langle\Psi \mid \psi_{0}\right\rangle\right|^{2}=\left|c\left(E_{h}\right)\right|^{2}=\frac{1}{1-\Sigma^{\prime}\left(E_{h}\right)}, \quad \Sigma^{\prime}(E)=\frac{d \Sigma(E)}{d E}
$$

Compositeness theorem $(B \rightarrow 0)$

Eigenstate at threshold

For weak coupling : perturbative estimation

$$
E_{h}=M_{0}+\Sigma\left(\underline{\left.M_{0}\right)}=M_{0}+\int \frac{\left.\left|\left\langle\psi_{0}\right| \hat{V}\right| \boldsymbol{q}\right\rangle\left.\right|^{2}}{M_{0}-q^{2 /(2 \mu)+i 0^{+}}} d \boldsymbol{q}\right.
$$

- $M_{0} \leq 0$: second order perturbation

$$
\Sigma\left(M_{0}\right)<0 \quad \Rightarrow \quad E_{h}<M_{0}
$$

- $M_{0}>0$: complex eigenenergy <- decay

$$
\Sigma\left(M_{0}\right) \in \mathbb{C} \quad \Rightarrow \quad E_{h} \in \mathbb{C}
$$

\rightarrow No solution for $E_{h}=0$

Solution for $E_{h}=0$

- Nonperturbtaive calculation (self-consistent solution)

$$
0=M_{0}+\Sigma(0) \quad \Rightarrow \quad M_{0}=-\Sigma(0)
$$

Compositeness theorem $(B \rightarrow 0)$

Slope and elementarity

M_{0} dependence across the threshold

- Introduce $\delta M<0$ to $M_{0}=-\Sigma(0)$ for $E_{h}=0$

$$
E_{h}=-\Sigma(0)+\delta M+\Sigma\left(E_{h}\right)
$$

- For sufficiently small δM,

$$
E_{h}=\frac{1}{1-\Sigma^{\prime}(0)} \delta M
$$

$=Z(0)$: elementarity of $E_{h}=0$ state

$$
Z\left(E_{h}\right)=\frac{1}{1-\Sigma^{\prime}\left(E_{h}\right)}
$$

- Slope at $E_{h}=0$ is given by $Z(0)$

Elementarity $Z\left(E_{h}\right)$ at $E_{h} \rightarrow 0$?

Compositeness theorem $(B \rightarrow 0)$

Compositeness theorem

Self-energy for small $E_{h} \rightarrow 0$ (g_{0} : coupling constant)

$$
\begin{aligned}
\Sigma\left(E_{h}\right) & \sim C g_{0}^{2}\left(-E_{h}\right)^{1 / 2+\ell}+\cdots \\
\Sigma^{\prime}\left(E_{h}\right) & \sim D g_{0}^{2}\left(-E_{h}\right)^{-1 / 2+\ell}+\cdots \rightarrow \begin{cases}\infty & \ell=0 \\
\text { finite } & \ell \neq 0\end{cases} \\
\rightarrow & Z(0)=0 \text { follows in } E_{h} \rightarrow 0 \\
Z\left(E_{h}\right) & =\frac{1}{1-\Sigma^{\prime}\left(E_{h}\right)} \rightarrow 0 \quad\left(E_{h} \rightarrow 0 \text { with } g_{0} \neq 0, \ell=0\right)
\end{aligned}
$$

Compositeness theorem :

T. Hyodo, PRC90, 055208 (2014)

If the s-wave scattering amplitude has a pole exactly at the threshold with a finite range interaction, then the field renormalization constant vanishes.
$Z(0)=0 \Leftrightarrow$ state at $E_{h}=0$ is fully composite

Compositeness theorem $(B \rightarrow 0)$

Intuitive picture of compositeness theorem

Wavefunction of $E_{h}=0$ state is not normalizable ($\ell=0$)

\rightarrow Compositeness $X \gg Z$

$$
1=\left|\left\langle\Psi \mid \psi_{0}\right\rangle\right|^{2}+\underbrace{\int d \boldsymbol{q}|\langle\Psi \mid \boldsymbol{q}\rangle|^{2}}=\left|\left\langle\Psi \mid \psi_{0}\right\rangle\right|^{2}+\underbrace{\int d \boldsymbol{r}|\Psi(\boldsymbol{r})|^{2}}
$$

- Divergence of scattering length, low-energy universality
E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006);
P. Naidon, S. Endo, Rept. Prog. Phys. 80, 056001 (2017)
- Threshold rule of cluster nuclei
H. Horiuchi, K. Ikeda, Y. Suzuki, PTPS 55, 89 (1972)

Contents
Contents
Compositeness from effective field theory
Y．Kamiya，T．Hyodo，PRC93， 035203 （2010）；PTEP2017，023022（201）
T．Kinugawa，T．Hyodo，PRC 106，015205（2022）
Compositeness theorem $(B \rightarrow 0)$
T．Hyodo，PRC90， 055208 （2014）
Structure of near－threshold states $(B \neq 0)$

Contents
Contents
Introduction $-T_{c c}$ and $X(3872)$
Compositeness from effective field theory
Y．Kamiva，T．Hyodo，PRC93，035203（2010）；PTEP2017，023D02（2017）；
T．Kinugawa，T．Hyodo，PRC 106，015205（2022）
Compositeness theorem $(B \rightarrow 0)$
T．Hyodo，PRC90，055208（2014）
Structure of near－threshold states $(B \neq 0)$
Contents
$\begin{aligned} & \text { Contents } \\ & \text { Introduction }-T_{c c} \text { and } X(3872) \\ & \text { Compositeness from effective field theory } \\ & \text { Y．Kamiva，T．Hyodo，PRC93，035203（2016）；PTEP2017，023D02（2017）；} \\ & \text { T．Kinugawa，T．Hyodo，PRC 106，015205（2022）} \\ & \text { Compositeness theorem }(B \rightarrow 0) \\ & \text { T．Hyodo，PRC90，055208（2014）} \\ & \text { Structure of near－threshold states }(B \neq 0)\end{aligned}$
Contents

$$
\begin{array}{l}\text { Contents } \\ \text { Compositeness from effective field theory } \\ \text { Y．Kamiya，T．Hyodo，PRC93，035203（2016）；PTEP2017，023D02（201）} \\ \text { Compawa，T．Hyodo，PRC 106，015205（2022）} \\ \text { T．Hyodo，PRc90，055208（2014）} \\ \text { Structure of near－threshold states }(B \neq 0)\end{array}
$$

Contents
Contents
Compositeness from effective field theory
Y．Kamiya，T．Hyodo，PRC93， 035203 （2010）；PTEP2017，023022（201）
T．Kinugawa，T．Hyodo，PRC 106，015205（2022）
Compositeness theorem $(B \rightarrow 0)$
T．Hyodo，PRC90， 055208 （2014）
Structure of near－threshold states $(B \neq 0)$
Contents
$\begin{aligned} & \text { Contents } \\ & \text { Introduction }-T_{c c} \text { and } X(3872) \\ & \text { Compositeness from effective field theory } \\ & \text { Y．Kamiya，T．Hyodo，PRC93，035203（2016）；PTEP2017，023D02（201）} \\ & \text { T．Kinugawa，T．Hyodo，PRC 106，015205（2022）} \\ & \text { Compositeness theorem }(B \rightarrow 0) \\ & \text { T．Hyodo，PRC90，055208（2014）}\end{aligned}$
Structure of near－threshold states $(B \neq 0)$
Contents
Contents
Compositeness from effective field theory
Y．Kamiya，T．Hyodo，PRC93， 035203 （2010）；PTEP2017，023022（201）
T．Kinugawa，T．Hyodo，PRC 106，015205（2022）
Compositeness theorem $(B \rightarrow 0)$
T．Hyodo，PRC90， 055208 （2014）
Structure of near－threshold states $(B \neq 0)$
－Probability to realize elementary states
－Decay and coupled－channel effects
T．Kinugawa，T．Hyodo，in preparation

Summary

\qquad
 \author{

}
\qquad

\qquad
©

Contents

$$
\begin{array}{l}\text { Contents } \\ \text { Compositeness from effective field theory } \\ \text { Y．Kamiya，T．Hyodo，PRC93，035203（2016）；PTEP2017，023D02（201）} \\ \text { Compawa，T．Hyodo，PRC 106，015205（2022）} \\ \text { T．Hyodo，PRC90，055208（2014）} \\ \text { Structure of near－threshold states }(B \neq 0)\end{array}
$$

Contents

$$
\begin{array}{l}\text { Contents } \\ \text { Compositeness from effective field theory } \\ \text { Y．Kamiya，T．Hyodo，PRC93，035203（2016）；PTEP2017，023D02（201）} \\ \text { Compawa，T．Hyodo，PRC 106，015205（2022）} \\ \text { T．Hyodo，PRC90，055208（2014）} \\ \text { Structure of near－threshold states }(B \neq 0)\end{array}
$$

Contents
Contents
Introduction $-T_{c c}$ and $X(3872)$
Compositeness from effective field theory
Y．Kamiva，T．Hyodo，PRCO3，035203（2010）；PTEP2017，023002（201）
T．Kinugawa，T．Hyodo，PRC 106，015205（2022）
Compositeness theorem $(B \rightarrow 0)$
T．Hyodo，PRC90，055208（2014）
Structure of near－threshold states $(B \neq 0)$
\qquad

 8 1 －
Contents
$\begin{aligned} & \text { Contents } \\ & \text { Introduction }-T_{c c} \text { and } X(3872) \\ & \text { Compositeness from effective field theory } \\ & \text { Y．Kamiva，T．Hyodo，PRC93，035203（2010）；PTEP2017，023D02（201）} \\ & \text { T．Kinugawa，T．Hyodo，PRC 106，015205（2022）} \\ & \text { Compositeness theorem }(B \rightarrow 0) \\ & \text { T．Hyodo，PRC90，055208（2014）} \\ & \text { Structure of near－threshold states }(B \neq 0)\end{aligned}$ － － 1
路

$$
15
$$

\square
\square
\square
\square
－•

Structure of near-threshold states $(B \neq 0)$

Finite binding case

Elementarity of bound state with small but finite $B=-E_{h}$

$$
Z(-B)=\frac{1}{1-\Sigma^{\prime}(-B)} \sim \frac{1}{1-D g_{0}^{2} / \sqrt{B}} \sim-\frac{\sqrt{B}}{D g_{0}^{2}}+\cdots \neq 0
$$

- B dependence
- $Z(0)=0$ is fixed
- $Z \ll 1$ for small B (composite)

For sufficiently small $g_{0}^{2}, \sqrt{B} / g_{0}^{2} \sim \mathcal{O}(1)$ for small B
\rightarrow sizable Z for small B by fine tuning of parameter g_{0}^{2}
How probable is such fine tuning?

Structure of near-threshold states $(B \neq 0)$

Quantifying fine tuning

Shallow bound state already requires fine tuning
E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

- probability distribution of a of square-well potential

Fine-tuning can be quantified by parameter dependence

Structure of near-threshold states $(B \neq 0)$

Model setup

EFT with bare state + scattering states (no direct int.)
T. Kinugawa, T. Hyodo, in preparation

Parameters: coupling g_{0}, bare energy ν_{0} (cutoff $\Lambda \rightarrow>$ scale)

- Fix binding energy $B \rightarrow g_{0}\left(\nu_{0} ; \Lambda, B\right)$
- $E_{\text {typ }}=\Lambda^{2} /(2 \mu)$: typical energy scale
- Allowed parameter region : $-B \leq \nu_{0} \leq E_{\text {typ }}$

Vary ν_{0} and calculate compositeness X of bound state

Structure of near-threshold states $(B \neq 0)$

Structure of bound state

Compositeness X in the allowed ν_{0} region

- Typical bound state $B=E_{\text {typ }}$: mostly elementary
- Shallow bound state $B=0.01 E_{\text {typ }}$: mostly composite

Shallow elementary state :

- can be realized, but only with fine tuning = unlikely

Structure of near-threshold states $(B \neq 0)$

Decay effect

Effect of finite decay width

Narrow width

Broad width
X is reduced $\rightarrow>$ decay channel component
Broad (narrow) width : large (small) reduction of X

Structure of near-threshold states $(B \neq 0)$

Coupled channel effect

Introduce coupled channel with $\Delta \omega$ above the threshold

small $\Delta \omega={ }_{1}^{2}$
large $\Delta \omega$
\square

X_{1} is reduced $\rightarrow>$ coupled channel component (X_{2})
Small (large) $\Delta \omega$: large (small) reduction of X_{1}

Structure of near-threshold states $(B \neq 0)$

$T_{c c}$ and $X(3872)$

$T_{c c}$ and $X(3872)$: decay + coupled-channel effects

$\overline{\overline{T_{c c}}}{ }^{2}$

Coupled-channel (decay) effect is important for $T_{c c}(X(3872))$

