Compositeness of hadrons from effective field theory

Tomona Kinugawa, Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Contents

	Introduction — T_{cc} and $X(3872)$
ğ	Compositeness from effective field theory
	<u>Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017);</u> <u>T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022)</u>
Ş	Compositeness theorem ($B \rightarrow 0$)
	<u>T. Hyodo, PRC90, 055208 (2014)</u>
ĕ	Structure of near-threshold states ($B \neq 0$)
	- Probability to realize elementary states
	- Decay and coupled-channel effects
	<u>T. Kinugawa, T. Hyodo, in preparation</u>
ě	Summary

Observation of *T_{cc}*

 T_{cc} observed in $D^0D^0\pi^+$ spectrum

LHCb collaboration, Nature Phys., 18, 751 (2022); Nature Comm., 13, 3351 (2022)

- Signal near DD* threshold
- Charm $C = +2 : \sim cc\bar{u}\bar{d}$
- Level structure

3870

↑ Energy (MeV)

3875
$$\begin{array}{c} - & - & D^+ D^{*0} (3876.51) \\ - & - & D^0 D^{*+} (3875.10) \\ \hline & T_{cc} \end{array}$$

Very small (few MeV ~ keV) energy scale involved

Introduction — T_{cc} and X(3872)

Introduction – T_{cc} and X(3872)

Simplified picture

In this talk, we consider two-body channels

- **Decay width :** $T_{cc} < X(3872)$
- Threshold energy difference : $T_{cc} < X(3872)$

Introduction – T_{cc} and X(3872)

Plan of this talk

Goal : structure of T_{cc} **and** X(3872)

hadronic molecule

- Near threshold —> two-body composite states?

Questions

1) Why composite state is expected?

- In $B \rightarrow 0$ limit, state must be fully composite
- 2) Is it possible to have non-composite state with $B \neq 0$?
 - <- Yes, it is always possible
- 3) If so, how can we expect composite state for $B \neq 0$?
 - < Probability to realize non-composite state is tiny

Contents

Contents

Formulation

Effective field theory (bare state + scattering states)

<u>Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)</u>

$$H_{\text{free}} = \int d\mathbf{r} \left[\frac{1}{2M} \nabla \psi^{\dagger} \cdot \nabla \psi + \frac{1}{2m} \nabla \phi^{\dagger} \cdot \nabla \phi + \frac{1}{2M_0} \nabla B_0^{\dagger} \cdot \nabla B_0 + \omega_0 B_0^{\dagger} B_0 \right]$$

- Eigenstates of fee Hamiltonian

$$H_{\text{free}} | B_0 \rangle = \omega_0 | B_0 \rangle, \quad H_{\text{free}} | p \rangle = \frac{p^2}{2\mu} | p \rangle$$

$$(\phi) \quad (\psi) \quad (\phi) \quad$$

Contact interactions

$$H_{\rm int} = \int d\mathbf{r} \left[g_0 \left(B_0^{\dagger} \phi \psi + \psi^{\dagger} \phi^{\dagger} B_0 \right) + v_0 \psi^{\dagger} \phi^{\dagger} \phi \psi \right]$$

Compositeness from effective field theory

Compositeness and elementairty

Eigenstate of full Hamiltonian : bound state

 $(H_{\text{free}} + H_{\text{int}}) | B \rangle = - B | B \rangle$

- Normalization of |B> + completeness relation

 $\langle B | B \rangle = 1, \quad 1 = |B_0\rangle\langle B_0| + \int \frac{dp}{(2\pi)^3} |p\rangle\langle p|$

- Overlap with free eigenstates

$$1 = Z + X, \quad Z \equiv |\langle B_0 | B \rangle|^2, \quad X \equiv \int \frac{d\mathbf{p}}{(2\pi)^3} |\langle \mathbf{p} | B \rangle|^2$$

"elementarity" compositeness

Z, *X* : real and nonnegative —> interpreted as probability

- **Deuteron is** *NN* **composite :** $a_0 \sim R \Rightarrow X \sim 1$
- Internal structure from observables (a_0, B)

Problem: $a_0 = 5.42 \text{ fm}, R = 4.32 \text{ fm} \Rightarrow X = 1.68 > 1?$

Compositeness from effective field theory

Application to bound states

Uncertainty estimation with $\mathcal{O}(R_{typ}/R)$ **term**

Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

$$X_{\rm u} = \frac{a_0/R + \xi}{2 - a_0/R - \xi}, \quad X_{\rm l} = \frac{a_0/R - \xi}{2 - a_0/R + \xi}, \quad \xi = \frac{R_{\rm typ}}{R}$$

Application with finite range correction

 $R_{\rm typ} = \max\{R_{\rm int}, R_{\rm eff}\}$

 $\leq X \leq 1$

<u>205 (2022)</u>

- X of hadrons, nuclei, and atoms
- X of deuteron is reasonable
- $X \ge 0.5$ in all cases studied

Near-threshold states are mostly composite

Compositeness X
$0.74 \leqslant X \leqslant 1$
$0.53 \leqslant X \leqslant 1$
$0.81 \leqslant X \leqslant 1$
$0.55 \leqslant X \leqslant 1$
$0.80 \leqslant X \leqslant 1$
$0.79 \leqslant X \leqslant 1$
$0.74 \leqslant X \leqslant 1$
$0.93 \leqslant X \leqslant 1$

11

Contents

Original motivation

Systematic expansion of hadron masses

T. Hyodo, PRC90, 055208 (2014)

- ChPT : light quark mass m_q
- HQET : heavy quark mass m₀
- Large Nc : number of colors N_c

Hadron mass scaling

$$m_H(x), \quad x = \frac{m_q}{\Lambda}, \frac{\Lambda}{m_Q}, \frac{1}{N_c}$$

What happens at two-body threshold?

Formulation

Coupled-channel Hamiltonian (discrete state + continuum)

$$\begin{pmatrix} M_0 & \hat{V} \\ \hat{V} & \frac{p^2}{2\mu} \end{pmatrix} |\Psi\rangle = E |\Psi\rangle, \quad |\Psi\rangle = \begin{pmatrix} c(E) |\psi_0\rangle \\ \int dp \ \chi_E(p) |p\rangle \end{pmatrix}$$

- Exactly solvable, equivalent to EFT
- **Eigenenergy** $E_h = -B < -$ **Dyson equation (pole condition)**

- Elementarity (wavefunction renormalization)

$$Z = |\langle \Psi | \psi_0 \rangle|^2 = |c(E_h)|^2 = \frac{1}{1 - \Sigma'(E_h)}, \quad \Sigma'(E) = \frac{d\Sigma(E)}{dE}$$

Eigenstate at threshold

For weak coupling : perturbative estimation

$$E_{h} = M_{0} + \Sigma(M_{0}) = M_{0} + \int \frac{|\langle \psi_{0} | \hat{V} | \boldsymbol{q} \rangle|^{2}}{M_{0} - q^{2}/(2\mu) + i0^{+}} d\boldsymbol{q}$$

- $M_0 \le 0$: second order perturbation $\Sigma(M_0) < 0 \implies E_h < M_0$
- $M_0 > 0$: complex eigenenergy < -- decay $\Sigma(M_0) \in \mathbb{C} \implies E_h \in \mathbb{C}$
- -> No solution for $E_h = 0$
- **Solution for** $E_h = 0$
 - Nonperturbtaive calculation (self-consistent solution)

 $0 = M_0 + \Sigma(0) \quad \Rightarrow \quad M_0 = -\Sigma(0)$

Slope and elementarity

 M_0 dependence across the threshold

- Introduce $\delta M < 0$ to $M_0 = -\Sigma(0)$ for $E_h = 0$

 $E_h = -\Sigma(0) + \delta M + \Sigma(E_h)$

- For sufficiently small δM ,

$$E_h = \frac{1}{1 - \Sigma'(0)} \delta M$$

= Z(0) : elementarity of $E_h = 0$ state

$$Z(E_h) = \frac{1}{1 - \Sigma'(E_h)}$$

- Slope at $E_h = 0$ is given by Z(0)

Elementarity $Z(E_h)$ at $E_h \rightarrow 0$?

Compositeness theorem

Self-energy for small $E_h \rightarrow 0$ (g_0 : coupling constant)

$$\Sigma(E_h) \sim Cg_0^2(-E_h)^{1/2+\ell} + \cdots \rightarrow \begin{cases} \infty & \ell = 0 \\ \text{finite} & \ell \neq 0 \end{cases} \xrightarrow{K_h} \delta M$$
$$= 0 \qquad M_0$$
$$E_h \wedge Dg_0^2(-E_h)^{-1/2+\ell} + \cdots \rightarrow \begin{cases} \infty & \ell = 0 \\ \text{finite} & \ell \neq 0 \end{cases} \xrightarrow{\ell = 0} \xrightarrow{\ell = 0} \xrightarrow{\ell = 0} \xrightarrow{\ell \neq 0} \end{cases}$$

$$Z(E_h) = \frac{1}{1 - \Sigma'(E_h)} \to 0 \quad (E_h \to 0 \text{ with } g_0 \neq 0, \ \ell = 0)$$

Compositeness theorem :

T. Hyodo, PRC90, 055208 (2014)

If the s-wave scattering amplitude has a pole exactly at the threshold with a finite range interaction, then the field renormalization constant vanishes.

 $Z(0) = 0 \Leftrightarrow$ state at $E_h = 0$ is fully composite

Intuitive picture of compositeness theorem

Wavefunction of $E_h = 0$ state is not normalizable ($\ell = 0$)

-> Compositeness $X \gg Z$

$$1 = |\langle \Psi | \psi_0 \rangle|^2 + \left[d\boldsymbol{q} |\langle \Psi | \boldsymbol{q} \rangle|^2 = |\langle \Psi | \psi_0 \rangle|^2 + \left[d\boldsymbol{r} |\Psi(\boldsymbol{r})|^2 \right]^2$$

- Divergence of scattering length, low-energy universality

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006); P. Naidon, S. Endo, Rept. Prog. Phys. 80, 056001 (2017)

- Threshold rule of cluster nuclei

H. Horiuchi, K. Ikeda, Y. Suzuki, PTPS 55, 89 (1972)

Contents

Finite binding case

Elementarity of bound state with small but finite $B = -E_h$

$$Z(-B) = \frac{1}{1 - \Sigma'(-B)} \sim \frac{1}{1 - Dg_0^2/\sqrt{B}} \sim -\frac{\sqrt{B}}{Dg_0^2} + \dots \neq 0$$

For sufficiently small g_0^2 , $\sqrt{B}/g_0^2 \sim \mathcal{O}(1)$ for small *B*

-> sizable Z for small B by fine tuning of parameter g_0^2

How probable is such fine tuning?

Quantifying fine tuning

Shallow bound state already requires fine tuning

E. Braaten, H.- W. Hammer, Phys. Rept. 428, 259 (2006)

- probability distribution of a of square-well potential

Fine-tuning can be quantified by parameter dependence

Model setup

EFT with bare state + scattering states (no direct int.)

T. Kinugawa, T. Hyodo, in preparation

Parameters : coupling g_0 , bare energy ν_0 (cutoff $\Lambda \rightarrow$ scale)

- Fix binding energy $B \longrightarrow g_0(\nu_0; \Lambda, B)$
- $E_{typ} = \Lambda^2/(2\mu)$: typical energy scale
- Allowed parameter region : $-B \le \nu_0 \le E_{typ}$

Vary ν_0 and calculate compositeness *X* of bound state

Structure of bound state

Compositeness *X* in the allowed ν_0 region

- Typical bound state $B = E_{typ}$: mostly elementary
- Shallow bound state $B = 0.01E_{typ}$: mostly composite
- **Shallow elementary state :**
 - can be realized, but only with fine tuning = unlikely

Decay effect

Effect of finite decay width

Broad (narrow) width : large (small) reduction of X

Coupled channel effect

Introduce coupled channel with $\Delta \omega$ above the threshold

 T_{cc} and X(3872)

 T_{cc} and X(3872): decay + coupled-channel effects

Coupled-channel (decay) effect is important for T_{cc} (X(3872))

26

Summary

