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Observation of Tcc

Introduction —  and Tcc X(3872)

 observed in  spectrumTcc D0D0π+

- Signal near  thresholdDD*

LHCb collaboration, Nature Phys., 18, 751 (2022); Nature Comm., 13, 3351 (2022)

- Charm C = + 2 : ∼ ccūd̄

Tcc

D0D*+(3875.10)
D+D*0(3876.51)

D0D+π0(3869.45)

- Level structure

D0D0π+(3869.25)

Energy (MeV)

3875

3870

- Very small (few MeV ~ keV) energy scale involved 

LETTERS NATURE PHYSICS

and background components. The signal component is described 
by the convolution of the detector resolution with a resonant shape, 
which is modelled by a relativistic P-wave two-body Breit–Wigner 
(BW) function modified by a Blatt–Weisskopf form factor with a 
meson radius parameter of 3.5 GeV−1. The use of a P-wave reso-
nance is motivated by the expected JP = 1+ quantum numbers for 
the T+

cc

 state. A two-body decay structure T+
cc

→ AB is assumed with 
m

A

= 2m

D

0

 and m
B

= m

π

+, where m
π

+ stands for the known mass 
of the π+ meson. Several alternative prescriptions are used for the 
evaluation of the systematic uncertainties. Despite its simplicity, the 
model serves well to quantify the existence of the T+

cc

 state and to 
measure its properties, such as the position and the width of the 
resonance. A follow-up study91 investigates the underlying nature 
of the T+

cc

 state, expanding on the modelling of the signal shape and 
the determination of its physical properties. The detector resolution 
is modelled by the sum of two Gaussian functions with a common 
mean, where the additional parameters are taken from simulation 
(Methods) with corrections applied32,92,93. The root mean square of 
the resolution function is around 400 keV c−2. A study of the D0π+ 
mass distribution for D0D0π+ combinations in the region above the 
D*0D+ mass threshold but below 3.9 GeV c−2 shows that approxi-
mately 90% of all random D0D0π+ combinations contain a genuine 
D*+ meson. On the basis of this observation, the background com-
ponent is parameterized by the product of a two-body phase space 
function and a positive second-order polynomial. The resulting 
function is convolved with the detector resolution.

The fit results are shown in Fig. 1, and the parameters of interest, 
namely the signal yield, N, the mass parameter of the BW function rel-
ative to the D*+D0 mass threshold, δm

BW

≡ m

BW

− (m
D

∗+ +m

D

0), 
and the width parameter, ΓBW, are listed in Table 1. The statistical 
significance of the observed T+

cc

D

0

D

0

π

+ signal is estimated using 
Wilks’ theorem to be 22 s.d. The fit suggests that the mass param-
eter of the BW shape is slightly below the D*+D0 mass threshold.  
The statistical significance of the hypothesis δmBW < 0 is estimated 
to be 4.3 s.d.

To validate the presence of the signal component, several addi-
tional cross-checks are performed. The data are categorized accord-
ing to data-taking periods, including the polarity of the LHCb 
dipole magnet and the charge of the T+

cc

 candidates. Instead of 
statistically subtracting the non-D0 background, the mass of each 
D → K−π+ candidate is required to be within a narrow region around 
the known mass of the D0 meson38. The results are found to be con-
sistent among all samples and analysis techniques. Furthermore, 
dedicated studies are performed to ensure that the observed 
signal is not caused by kaon or pion misidentification, doubly 
Cabibbo-suppressed D0 → K+π− decays or D0

D

0 oscillations, decays 
of charm hadrons originating from beauty hadrons or artefacts due 
to the track reconstruction creating duplicate tracks.

Systematic uncertainties for the δmBW and ΓBW parameters are 
summarized in Table 2 and described below. The largest systematic 
uncertainty is related to the fit model and is studied using pseudo-
experiments with alternative parameterizations of the D0D0π+ mass 
shape. Several variations in the fit model are considered: changes 
in the signal model due to the imperfect knowledge of the detector 
resolution, an uncertainty in the correction factor for the resolution 
taken from control channels, parameterization of the background 
component and the additional model parameters of the BW func-
tion. The model uncertainty related to the assumption of JP = 1+ 
quantum numbers of the state is estimated and listed separately. 
The results are affected by the overall detector momentum scale, 
which is known to a relative precision of δα = 3 × 10−4 (ref. 94). The 
corresponding uncertainty is estimated using simulated samples 
where the momentum scale is modified by factors of (1± δα). In 
the reconstruction, the momenta of charged tracks are corrected 
for energy loss in the detector material, the amount of which is 
known with a relative uncertainty of 10%. The resulting uncertainty 
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Fig. 1 | The distribution of the D0D0π+ mass. The distribution of the 
D0D0π+ mass after statistical subtraction of the contribution of the non-D0 
background, with the result of the fit with the two-component function 
described in the text. The horizontal bin width is indicated on the vertical 
axis legend. The inset shows a zoomed signal region with a fine binning 
scheme. Uncertainties on the data points are statistical only and represent 
one standard deviation, calculated as a sum in quadrature of the assigned 
weights from the background subtraction procedure.

Table 1 | Parameters obtained from the fit to the D0D0π+ mass 
spectrum: signal yield, N, BW mass relative to the D*+D0 
mass threshold, δmBW, and width, ΓBW. The uncertainties are 
statistical only

Parameter Value

N 117!±!16
δmBW −273!±!61!keV!c−2

ΓBW 410!±!165!keV

Table 2 | Systematic uncertainties for the δmBW and ΓBW 
parameters. The total uncertainty is calculated as the sum 
in quadrature of all components except for those related to 
the assignment of JP quantum numbers, which are handled 
separately

Source σ

δm

BW

(

keV c

−2

)

σΓ
BW

(keV)

Fit model
Resolution model 2 7
Resolution correction factor 1 30
Background model 3 30
Model parameters <1 <1
Momentum scale 3 —
Energy loss corrections 1 —
D*+!−!D0 mass difference 2 —
Total 5 43

JP quantum numbers +11

−14

+18

−38

NATURE PHYSICS | VOL 18 | JULY 2022 | 751–754 | www.nature.com/naturephysics752



4

 and Tcc X(3872)

 : another near-threshold state with  X(3872) MTcc ∼ MX(3872)

X(3872)

{D0D̄*0}(3871.69)

{D+D*−}(3879.92)

D0D̄0π0(3864.66)

Tcc

D0D*+(3875.10)
D+D*0(3876.51)

D0D+π0(3869.45)
D0D0π+(3869.25)

3875

3870

3875

3870

D0D−π+(3874.07)

3865

3880

- Various thresholds

(c.c. implicit)

ππJ/ψ, ⋯

≈
-  has decay channelsX(3872)

Energy (MeV)

-  near Tcc, X(3872) DD*, DD̄*

Introduction —  and Tcc X(3872)
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Simplified picture
In this talk, we consider two-body channels

X(3872)

{D0D̄*0}(3871.69)

{D+D*−}(3879.92)

Tcc

D0D*+(3875.10)
D+D*0(3876.51)

(pole mass by LHCb)

(mass and width by PDG)

Eh = − 0.36 − i
0.048

2
MeV

Eh = − 0.04 − i
1.19

2
MeV

Introduction —  and Tcc X(3872)

- Binding energy : Tcc > X(3872)

- Decay width : Tcc < X(3872)

- Threshold energy difference : Tcc < X(3872)

1.41 MeV
8.23 MeV
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Plan of this talk
Introduction —  and Tcc X(3872)

Goal : structure of  and Tcc X(3872)

- Near threshold —> two-body composite states?

Questions
1) Why composite state is expected?

2) Is it possible to have non-composite state with  ?B ≠ 0

3) If so, how can we expect composite state for  ?  B ≠ 0

<— In  limit, state must be fully compositeB → 0

<— Yes, it is always possible 

<— Probability to realize non-composite state is tiny

multiquark hadronic moleculecūcd̄ c d̄D*+ūcD0
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Effective field theory (bare state + scattering states)

Formulation
Compositeness from effective field theory

Hfree = ∫ dr [ 1
2M

∇ψ† ⋅ ∇ψ +
1

2m
∇ϕ† ⋅ ∇ϕ +

1
2M0

∇B†
0 ⋅ ∇B0 + ω0B†

0 B0]
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

Hint = ∫ dr [g0 (B†
0 ϕψ + ψ†ϕ†B0) + v0ψ†ϕ†ϕψ]

- Contact interactions

<latexit sha1_base64="fdKVT2BRztQ48cxdPLmlfDyM4yg="></latexit>

B0

 

�

g0 + B0

 

�

g0 +

 

�

 

�

v0

- Eigenstates of fee Hamiltonian

Hfree |B0⟩ = ω0 |B0⟩, Hfree | p⟩ =
p2

2μ
| p⟩

B0

ϕ ψ

https://inspirehep.net/literature/1391312
https://inspirehep.net/literature/1474407
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Eigenstate of full Hamiltonian : bound state

Compositeness and elementairty
Compositeness from effective field theory

 : real and nonnegative —> interpreted as probabilityZ, X

“elementarity” compositeness

(Hfree + Hint) |B⟩ = − B |B⟩

- Normalization of  + completeness relation|B⟩

⟨B |B⟩ = 1, 1 = |B0⟩⟨B0 | + ∫
dp

(2π)3
| p⟩⟨p |

- Overlap with free eigenstates

1 = Z + X, Z ≡ |⟨B0 |B⟩ |2 , X ≡ ∫
dp

(2π)3
|⟨p |B⟩ |2
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Compositeness  of s-wave weakly bound state X (R ≫ Rtyp)
S. Weinberg, Phys. Rev. 137, B672 (1965);
Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

Weak-binding relation for stable states

|d⟩ = X |NN⟩ + Z |others⟩

a0 = R { 2X
1 + X

+ 𝒪 ( Rtyp

R )}, R =
1
2μB

radius of bound statescattering length

range of interaction

- Deuteron is  composite : NN a0 ∼ R ⇒ X ∼ 1

- Internal structure from observables (a0, B)

 
continuum
NN

deuteron

Compositeness from effective field theory

Problem: a0 = 5.42 fm, R = 4.32 fm ⇒ X = 1.68 > 1?

https://inspirehep.net/literature/1391312
https://inspirehep.net/literature/1474407
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Uncertainty estimation with  term𝒪(Rtyp /R)

Application to bound states

Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

Xu =
a0 /R + ξ

2 − a0 /R − ξ
, Xl =

a0 /R − ξ
2 − a0 /R + ξ

, ξ =
Rtyp

R

0

1

X

Xl

Xu

Compositeness from effective field theory

- exclude region outside 0 ≤ X ≤ 1

Application with finite range correction

Rtyp = max{Rint, Reff}

T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022)

TOMONA KINUGAWA AND TETSUO HYODO PHYSICAL REVIEW C 106, 015205 (2022)

FIG. 11. Comparison of the bound states with the distribution of
the magnitude of the uncertainty Ē in the effective range model in
the R̃int-r̃e plane. The legends are the same as Fig. 5.

however, keep in mind that the applicable region in Fig. 10
is the result of the specific model (the effective range model)
and the applicable boundaries are model dependent.

For the discussion of the meaningful estimation, we plot
the parameters in Table III in comparison with the magnitude
of the uncertainty Ē in R̃int-r̃e plane in Fig. 11. Because all
the states are contained in the region Ē ! 0.5, we expect that
meaningful estimations of the compositeness are possible for
these states.

C. Estimation of compositeness

We now estimate the compositeness X of the bound states
listed in Table II. We summarize the estimated uncertainties
ξeff = |re|/R and ξint = Rint/R in Table IV. Here, we set Reff =
|re| assuming that the coefficients of the higher order terms in
the effective range expansion are of natural size. We then show
the estimated compositeness with the uncertainty band with
ξeff [X (ξeff )] and ξint [X (ξint )] in Table IV. In the last column
we also show Rtyp in the improved weak-binding relation (28).

We can see that the central values of the compositeness
Xc are larger than unity except for X (3872) in Table IV.
This is because the radius R is smaller than the scattering
length a0 in these states. As we discussed in Sec. III A, Xc is
larger than unity for a0 > R. The relation between a0 and R is
also approximately determined by the sign of re. Neglecting
the O(k4) terms in the effective range expansion, we obtain

TABLE IV. The uncertainties ξeff , ξint , the estimated compos-
iteness X , and the length scale Rtyp in the improved weak-binding
relation. X (ξeff ) [X (ξint )] stands for X estimated with ξeff (ξint).

Bound state ξeff ξint X (ξeff ) X (ξint ) Rtyp

d 0.405 0.331 1.68+3.18
−0.943 1.68+2.14

−0.824 Reff

X (3872) 0.160 0.0428 0.743+0.282
−0.213 0.743+0.0675

−0.0626 Reff

D∗
s0(2317) 0.0949 0.341 1.61+0.369

−0.288 1.61+2.09
−0.804 Rint

Ds1(2460) 0.192 0.345 1.12+0.540
−0.358 1.12+1.22

−0.566 Rint

N" dibaryon 0.277 0.149 1.40+1.20
−0.600 1.40+0.523

−0.364 Reff

"" dibaryon 0.337 0.252 1.56+1.95
−0.773 1.56+1.22

−0.626 Reff
3
#H 0.157 0.295 1.35+0.532

−0.366 1.35+1.25
−0.605 Rint

4He dimer 0.0757 0.0560 1.08+0.177
−0.152 1.08+0.128

−0.114 Reff

TABLE V. The compositeness X consis-
tent with the definition (36) estimated by the
improved weak-binding relation.

Bound state Compositeness X

d 0.74 ! X ! 1
X (3872) 0.53 ! X ! 1
D∗

s0(2317) 0.81 ! X ! 1
Ds1(2460) 0.55 ! X ! 1
N" dibaryon 0.80 ! X ! 1
"" dibaryon 0.79 ! X ! 1
3
#H 0.74 ! X ! 1
4He dimer 0.93 ! X ! 1

Eq. (22):

a0 = R
1

−re/(2R) + 1
. (71)

Because R > 0, we obtain a0 > R for positive re > 0, and
a0 < R for negative re < 0 from this equation. In fact, in
Table II, these relations are satisfied except for D∗

s0(2317)
and Ds1(2460) with the small effective range. In summary,
the central value of the compositeness is larger than unity for
a0 > R, which is expected to be realized with positive re > 0
when relation (71) approximately holds.

One may wonder that the central value Xc > 1 contradicts
with the definition of the compositeness, 0 ! X ! 1. In fact,
this problem for the deuteron partly motivates the works
in Refs. [27–29]. From our viewpoint, this problem can be
avoided by considering the uncertainty ξ as in Eq. (36) as
discussed below.

Focusing on the N" dibaryon, we find that the lower limit
of the compositeness estimated by ξint is larger than unity
[Xl (ξint ) = 1.04] from Table IV. Hence, the exact value of
the compositeness of the N" dibaryon is not contained in the
uncertainty band of X (ξint ), and we cannot perform the mean-
ingful estimation of the compositeness of the N" dibaryon
with the previous weak-binding relation (Rtyp = Rint). In fact,
we have seen that the N" dibaryon exists near the boundary
of the applicable region of the previous weak-binding relation
in the effective range model as shown in Fig. 10.

In the improved weak-binding relation with Eq. (27), we
calculate compositeness with the uncertainty band as X (ξeff )
[X (ξint )] for Rtyp = Reff (Rtyp = Rint). From the last column,
we see that X (ξint ) is adopted for the states D∗

s0(2317),
Ds1(2460), and 3

#H, and X (ξeff ) for other states. By taking the
region consistent with the definition 0 ! X ! 1 in Eq. (36),
we finally determine the compositeness X as shown in
Table V.

These results (0.5 ! X ! 1) indicate that the composite
component gives the largest fraction in the wavefunction for
all states. In particular, the 4He dimer is an almost purely com-
posite state with a small fraction of the other components (!
7%). However, the compositeness of X (3872) and Ds1(2460)
can be as low as ≈0.5, which is the boundary of the composite
dominance. Therefore, it is expected that the other compo-
nents would play a substantial role in these states. We find that

015205-14

Near-threshold states are mostly composite

-  of deuteron is reasonableX

-  in all cases studiedX ≥ 0.5

-  of hadrons, nuclei, and atomsX

https://inspirehep.net/literature/1474407
https://inspirehep.net/literature/2083152
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?

bound state

resonance

Systematic expansion of hadron masses

- ChPT : light quark mass mq

- HQET : heavy quark mass mQ

- Large Nc : number of colors Nc

What happens at two-body threshold?

Compositeness theorem ( )B → 0

Original motivation

x

mH(x)E

T. Hyodo, PRC90, 055208 (2014)

Hadron mass scaling

mH(x), x =
mq

Λ
,

Λ
mQ

,
1
Nc

https://inspirehep.net/literature/1305435
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Coupled-channel Hamiltonian (discrete state + continuum)

Formulation
Compositeness theorem ( )B → 0

M0
̂V

̂V p2

2μ

|Ψ⟩ = E |Ψ⟩, |Ψ⟩ = (
c(E) |ψ0⟩

∫ dp χE( p) | p⟩)

Eigenenergy  <— Dyson equation (pole condition)Eh = − B

⇒ 0 = Eh − M0 − Σ(Eh), Σ(E) = ∫
⟨ψ0 | ̂V |q⟩⟨q | ̂V |ψ0⟩
E − q2/(2μ) + i0+

dq

<latexit sha1_base64="gufzV0TAotMqTGqwpcc0XD0wng0="></latexit>

= +

<latexit sha1_base64="7/Ze5lPkRVSTq0a8m13Dv1jSsDg="></latexit>0

BBB@

1

CCCA

- Elementarity (wavefunction renormalization)

Z = |⟨Ψ |ψ0⟩ |2 = |c(Eh) |2 =
1

1 − Σ′￼(Eh)
, Σ′￼(E) =

dΣ(E)
dE

- Exactly solvable, equivalent to EFT
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For weak coupling : perturbative estimation

Eigenstate at threshold
Compositeness theorem ( )B → 0

Eh = M0 + Σ(M0) = M0 + ∫
|⟨ψ0 | ̂V |q⟩ |2

M0 − q2/(2μ) + i0+
dq

-  : second order perturbationM0 ≤ 0

E

M0
0

-  : complex eigenenergy <— decayM0 > 0
E

M0

0

Σ(M0) < 0 ⇒ Eh < M0
Eh

Solution for Eh = 0

0 = M0 + Σ(0) ⇒ M0 = − Σ(0)

- Nonperturbtaive calculation (self-consistent solution)

—> No solution for Eh = 0

Σ(M0) ∈ ℂ ⇒ Eh ∈ ℂ

Eh
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 dependence across the thresholdM0

Slope and elementarity 
Compositeness theorem ( )B → 0

Eh = − Σ(0) + Σ(Eh)

- Introduce  to  for δM < 0 M0 = − Σ(0) Eh = 0

+δM

δM

−Σ(0)

M0

Eh

- For sufficiently small ,δM

Eh =
1

1 − Σ′￼(0)
δM

 : elementarity of  state = Z(0) Eh = 0

Z(Eh) =
1

1 − Σ′￼(Eh)

Elementarity  at  ? Z(Eh) Eh → 0

- Slope at  is given by  Eh = 0 Z(0)
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Compositeness theorem
Compositeness theorem ( )B → 0

Self-energy for small  (  : coupling constant)Eh → 0 g0

Σ(Eh) ∼ Cg2
0(−Eh)1/2+ℓ + ⋯

state at  is fully compositeZ(0) = 0 ⇔ Eh = 0

If the s-wave scattering amplitude has a pole exactly at the 
threshold with a finite range interaction, then the field 
renormalization constant vanishes.

T. Hyodo, PRC90, 055208 (2014)
Compositeness theorem :

Σ′￼(Eh) ∼ Dg2
0(−Eh)−1/2+ℓ + ⋯ → {∞ ℓ = 0

finite ℓ ≠ 0

Z(Eh) =
1

1 − Σ′￼(Eh)
→ 0 (Eh → 0 with g0 ≠ 0, ℓ = 0)

—>  follows in Z(0) = 0 Eh → 0

δM

−Σ(0)ℓ = 0
ℓ ≠ 0

M0

Eh

https://inspirehep.net/literature/1305435
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Wavefunction of  state is not normalizable ( )Eh = 0 ℓ = 0

Intuitive picture of compositeness theorem
Compositeness theorem ( )B → 0

r

u0(r,0)

∝ const .

r

∝ 1/rℓ

uℓ(r; 0)

- Divergence of scattering length, low-energy universality
E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006);
P. Naidon, S. Endo, Rept. Prog. Phys. 80, 056001 (2017)

- Threshold rule of cluster nuclei
H. Horiuchi, K. Ikeda, Y. Suzuki, PTPS 55, 89 (1972)

—> Compositeness  X ≫ Z

1 = |⟨Ψ |ψ0⟩ |2 + ∫ dq |⟨Ψ |q⟩ |2 = |⟨Ψ |ψ0⟩ |2 + ∫ dr |Ψ(r) |2
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https://inspirehep.net/literature/2083152


20

Finite binding case
Elementarity of bound state with small but finite B = − Eh

How probable is such fine tuning?

Structure of near-threshold states ( )B ≠ 0

Z(−B) =
1

1 − Σ′￼(−B)
∼

1

1 − Dg2
0 / B

∼ −
B

Dg2
0

+ ⋯ ≠ 0

-  dependenceB

B

Z
1

0

-  is fixedZ(0) = 0

-  for small  (composite)Z ≪ 1 B

For sufficiently small ,   for small g2
0 B /g2

0 ∼ 𝒪(1) B

—> sizable  for small  by fine tuning of parameter Z B g2
0

small  g2
0
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Quantifying fine tuning
Shallow bound state already requires fine tuning

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

E. Braaten, H.-W. Hammer / Physics Reports 428 (2006) 259 –390 269
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Fig. 3. Probability distribution for the scattering length a for the attractive square-well potential with !0r0 = 10.

variable !0r0. For most values of !0r0, the variables a, rs , and 1/! all have magnitudes of order r0. The scattering
length is unnaturally large only in narrow intervals of !0r0 near the critical values 1

2", 3
2", 5

2", . . ., which are shown
as vertical dotted lines in Fig. 2. The critical values can be reached by tuning either the depth V0 or the range r0 of the
potential. Wherever a is unnaturally large and positive, there is a bound state with unnaturally small binding energy
given approximately by Eq. (2). Note that the effective range has the natural value rs = r0 at the critical values of !0r0
where a diverges. The effective range rs is unnaturally large only near those values of !0r0 where a vanishes, but a2rs
has a natural value at those points.

If !0r0?1, we can use the expression in Eq. (25a) to make a simple probabilistic statement about the scattering length.
A probability distribution for V0 or r0 will generate a probability distribution for a. If !0r0?", a small fractional variation
in V0 or r0 can generate a variation in the argument of tan(!0r0) that extends over several periods. Any probability
distribution for V0 or r0 that is approximately constant over intervals of !0r0 of length " will give an approximately
uniform distribution for !0r0 mod ". The resulting probability distribution for a is

P(a)da = 1

(a − r0)
2 + 1/!2

0

da

"!0
. (27)

The distribution is shown in Fig. 3. It peaks at a = r0 and its full width at half maximum is 2/!0. Thus the probability
is concentrated near a = r0 and it is sharply peaked if !0r0?1.

For atoms interacting through a short-range potential with a 1/r6 van der Waals tail as in Eq. (21), the natural
low-energy length scale is the van der Waals length !vdW given in Eq. (23). To illustrate the point that !vdW is the
natural low-energy length scale, we consider a potential that has a hard core of radius r0 and decreases like −C6/r6

for r > r0 as illustrated in Fig. 4:

V (r) = + ∞, r < r0, (28a)

= − C6

r6 , r > r0. (28b)

The scattering length and the effective range can be calculated analytically [13,14]:

a = #2( 3
4 )

"
(1 − tan $)!vdW, (29a)

rs = 2"

3#2( 3
4 )

1 + tan2$

(1 − tan $)2 !vdW, (29b)

- probability distribution of  of square-well potentiala

Fine-tuning can be quantified by parameter dependence

Structure of near-threshold states ( )B ≠ 0
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Fig. 1. Attractive square well potential with range r0 and depth V0.
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Fig. 2. Two-body observables for the attractive square-well potential. The scattering length a (solid curve), the effective range rs (dashed curve), and
the inverse binding wave numbers (mE2/22)−1/2 for the first two bound states (dots and squares) in units of r0 are shown as functions of !0r0.
The vertical dotted lines are the critical values where a diverges.

The natural low-energy length scale is ! ≈ r0. We will treat the depth V0 as a parameter that can be varied to adjust the
scattering length a. The scattering length and effective range are

a = r0

[
1 − tan(!0r0)

!0r0

]
, (25a)

rs = r0

[

1 − r2
0

3a2 − 1

!2
0ar0

]

, (25b)

where !0 = (mV 0/22)1/2. The binding energies E2 > 0 satisfy the transcendental equation

(!2
0 − !2)1/2 cot[(!2

0 − !2)1/2] = −!, (26)

where ! = (mE2/22)1/2 is the binding wave number. In Fig. 2, we show the scattering length a, the effective
range rs , and the inverse binding wave number 1/! for the first two bound states as functions of the dimensionless

r0 rtypical 
: a/r0 ∼ 1

r0 rshallow 
: a/r0 ≫ 1
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Model setup
EFT with bare state + scattering states (no direct int.)

T. Kinugawa, T. Hyodo,  in preparation

Parameters : coupling , bare energy  (cutoff  —> scale)g0 ν0 Λ

- Fix binding energy  —> B g0(ν0; Λ, B)

-  : typical energy scaleEtyp = Λ2/(2μ)

- Allowed parameter region :   −B ≤ ν0 ≤ Etyp

Vary  and calculate compositeness  of bound stateν0 X

Structure of near-threshold states ( )B ≠ 0

<latexit sha1_base64="uEGvBlx/+mZfMM9tJj8rvSZClGo="></latexit>
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Structure of bound state
Compositeness  in the allowed  region X ν0

Structure of near-threshold states ( )B ≠ 0
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- can be realized, but only with fine tuning = unlikely
Shallow elementary state :



24

Decay effect
Effect of finite decay width

Structure of near-threshold states ( )B ≠ 0
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Coupled channel effect
Introduce coupled channel with  above the thresholdΔω

Structure of near-threshold states ( )B ≠ 0

14
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 and Tcc X(3872)

 and  : decay + coupled-channel effectsTcc X(3872)

Structure of near-threshold states ( )B ≠ 0
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Bound state is fully composite in  limit

Non-composite state with  <— fine tuning

Compositeness is reduced by decay and 
coupled-channel effects 

Important effect for exotic hadron candidates

B → 0

B ≠ 0

Summary

Summary

T. Kinugawa, T. Hyodo, in preparation

T. Hyodo, PRC90, 055208 (2014)

- naive expectation of near-threshold molecule

-  : coupled-channel effectTcc

-  : decay effectX(3872)

https://inspirehep.net/literature/1305435

