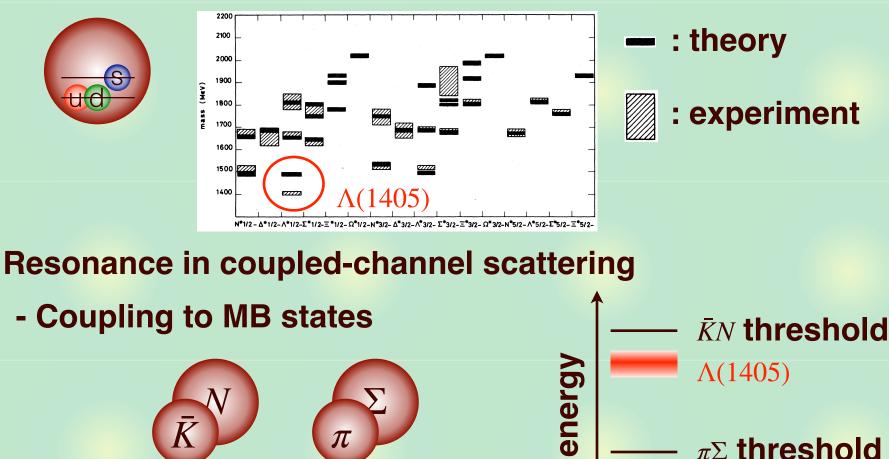
Antikaon-nucleon interactions and the momentum correlation functions in high-energy collisions

Tetsuo Hyodo

Tokyo Metropolitan Univ.



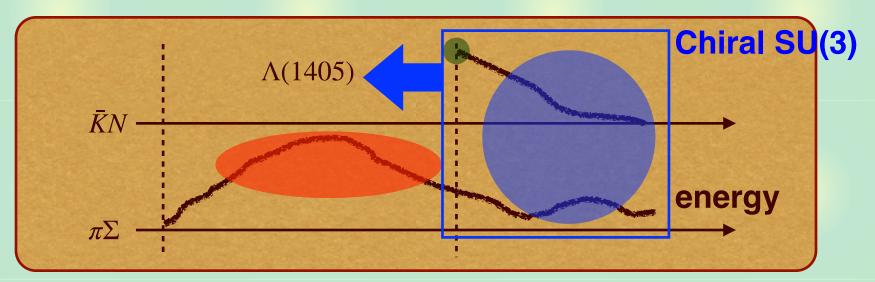
<u>2022, Nov. 7th</u>

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, PRD18, 4187 (1978)

Detailed analysis of $\bar{K}N$ - $\pi\Sigma$ scattering is necessary

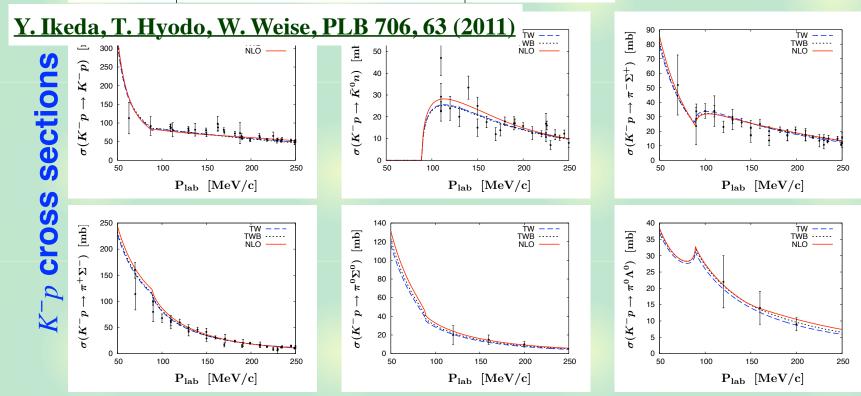

Strategy for *KN* interaction

Above the $\bar{K}N$ threshold : direct constraints

- K⁻p total cross sections (old data)
- *k̄N* threshold branching ratios (old data)
- K⁻p scattering length (new data : SIDDHARTA)

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012)</u>

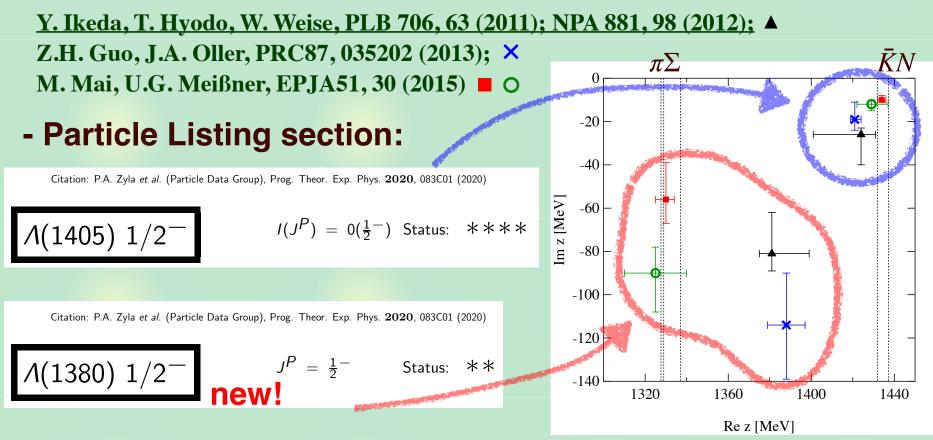
Below the $\bar{K}N$ threshold: indirect (reaction model needed) - $\pi\Sigma$ mass spectra (LEPS, CLAS, HADES, J-PARC, ...)



Best-fit results by chiral SU(3) dynamics

		TW	TWB	NLO	Experiment		
St	$\Delta E \ [eV]$	373	377	306	$283\pm36\pm6$	[10]	
est	$\Gamma \ [eV]$	495	514	591	$541\pm89\pm22$	[10]	
<u> </u>	γ	2.36	2.36	2.37	2.36 ± 0.04	[11]	
at	R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]	
K	R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]	
	χ^2 /d.o.f	1.12	1.15	0.96			

SIDDHARTA


Branching ratios

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

PDG has changed

2020 update of PDG

T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021)

- "Λ(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole : two-star resonance $\Lambda(1380)$

Construction of *KN* **potentials**

Local *KN* potential is useful for various applications

meson-baryon amplitude (chiral SU(3) EFT)

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

Kyoto *k̄N* potential (single-channel, complex)

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016) Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential (coupled-channel, real)

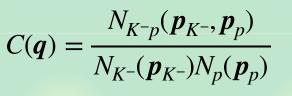
K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

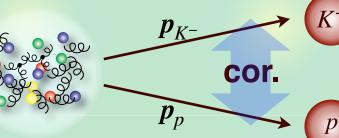
Kaonic nuclei

Kaonic deuterium

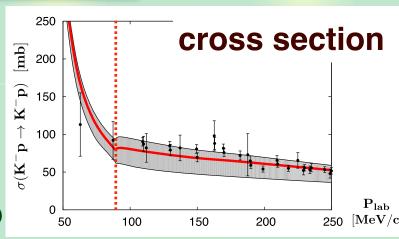
K⁻p correlation function

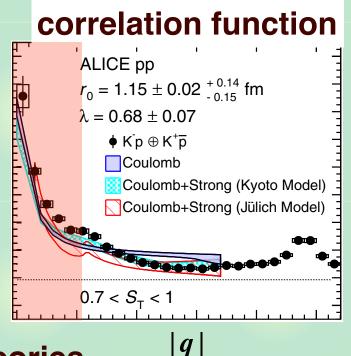
K⁻p correlation function

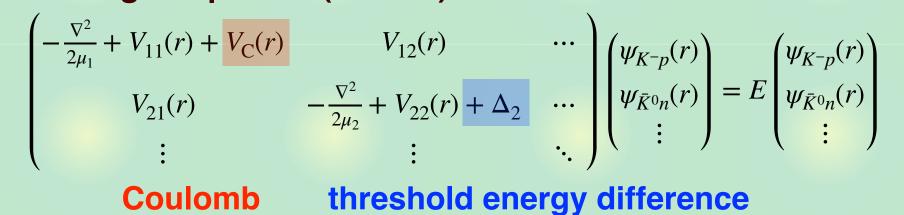

K⁻*p* total cross sections


Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

- Old bubble chamber data


K⁻p correlation function


S. Acharya et al. (ALICE), PRL 124, 092301 (2020)


- Excellent precision ($\bar{K}^0 n$ cusp)
- Low-energy data below $\bar{K}^0 n$
- -> Important constraint on $\Lambda(1405)$ theories

Coupled-channel correlation function

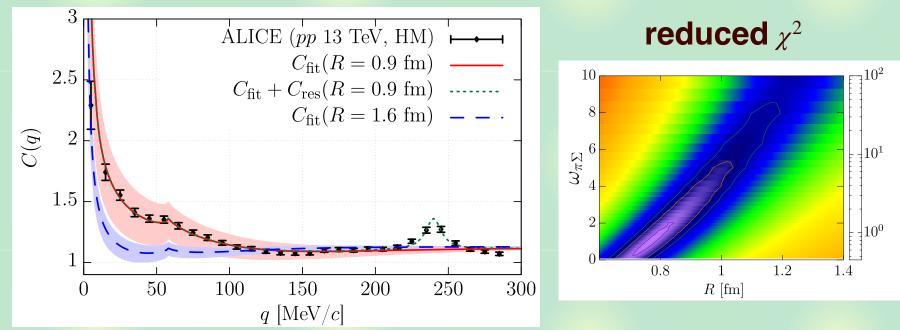
Schrödinger equation (s-wave)

Coupled-channel formulation

R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz, Phys. Atom. Nucl. 61, 2050 (1997); J. Haidenbauer, NPA 981, 1 (2019)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$
- ω_i : weight of source channel *i* relative to K^-p

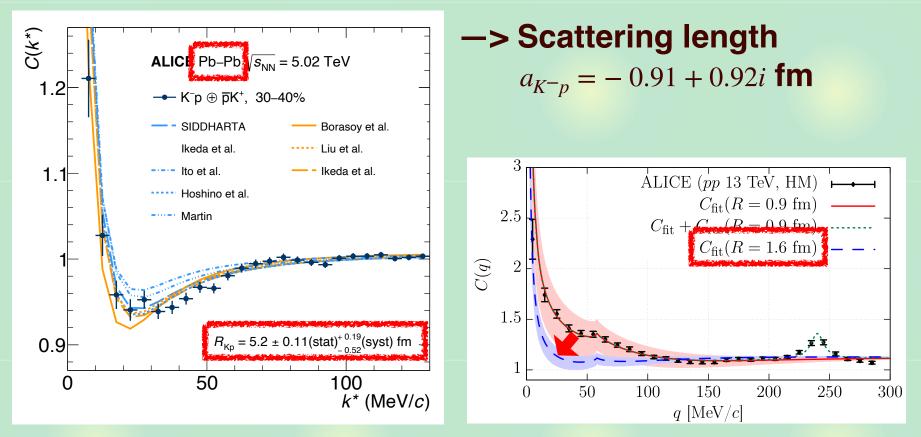

Correlation function in pp (small)

Wave function $\Psi_{q}^{(-)}(r)$: Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara, T. Hyodo, W. Weise. PRC98, 025201 (2018)

Source function S(r) : Gaussian, $R \sim 1$ fm in K^+p data

Source weight $\omega_{\pi\Sigma} \sim 2$ by statistical model estimate

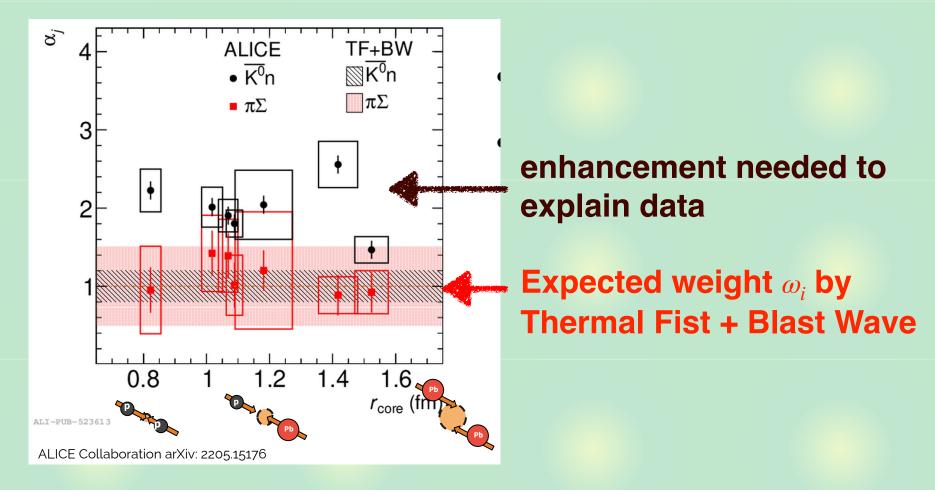

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Correlation function in *pp* **by ALICE is well reproduced**

Correlation function in Pb-Pb (large)

Large source: Pb-Pb collisions at 5.02 TeV

S. Acharya et al. (ALICE), PLB 822, 136708 (2021)


Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Correlation is suppressed for larger source, as predicted

Systematic study of source size dependence

Correlations in *pp*, *p*-Pb, Pb-Pb **by Kyoto** $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ **potential**

S. Acharya et al. (ALICE), arXiv:2205.15176 [nucl-ex]

More strength is needed in the $\bar{K}^0 n$ channel

Summary

 K^-p scattering data and kaonic hydrogen data are well described by chiral SU(3) dynamics. Corresponding Kyoto $\bar{K}N$ -πΣ-πΛ potential is constructed.

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> <u>K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)</u>

Global structures of K^-p correlation functions are reproduced by Kyoto $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential. Detailed study of source size dep. indicates the lack of strength in the \bar{K}^0n channel.

<u>Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020);</u> <u>S. Acharya et al. (ALICE), arXiv:2205.15176 [nucl-ex]</u>