$X(3872), T_{cc}$, and heavy meson interactions

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Observation of *T_{cc}*

 T_{cc} observed in $D^0D^0\pi^+$ spectrum

LHCb collaboration, Nature Phys., 18, 751 (2022); Nature Comm., 13, 3351 (2022)

- Signal near DD* threshold
- Charm $C = +2 : \sim cc\bar{u}\bar{d}$
- Level structure

3870

↑ Energy (MeV)

3875
$$\begin{array}{c} - & - & D^+ D^{*0} (3876.51) \\ - & - & D^0 D^{*+} (3875.10) \\ \hline & T_{cc} \end{array}$$

Very small (few MeV ~ keV) energy scale involved

Introduction – T_{cc} and X(3872)

Introduction – T_{cc} and X(3872)

Simplified picture

In this talk, we consider two-body channels

- **Decay width :** $T_{cc} < X(3872)$
- Isospin breaking : $T_{cc} \sim 1.41 \text{ MeV}$, $X(3872) \sim 8.23 \text{ MeV}$

$$C(\boldsymbol{q}) = \frac{N_{DD^*}(\boldsymbol{p}_D, \boldsymbol{p}_{D^*})}{N_D(\boldsymbol{p}_D)N_{D^*}(\boldsymbol{p}_{D^*})}$$
(= 1 in the absence of FSI)

- Theory (Koonin-Pratt formula)

$$C(\boldsymbol{q}) \simeq \left[d^3 \boldsymbol{r} \, S(\boldsymbol{r}) \, | \, \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \, |^2 \right]$$

Source function <--> two-body wave function (FSI)

ALICE collaboration, Nature 588, 232 (2020); ...

DD*, DD̄* momentum correlation functions

*DD**, *DD** **potentials**

Coupled-channel potentials

$$V_{DD^*/D\bar{D}^*} = \frac{1}{2} \begin{pmatrix} V_{I=1} + V_{I=0} & V_{I=1} - V_{I=0} \\ V_{I=1} - V_{I=0} & V_{I=1} + V_{I=0} + V_c \end{pmatrix} \frac{D^0 D^{*+} / \{D^0 \bar{D}^{*0}\}}{D^+ D^{*0} / \{D^+ D^{*-}\}}$$

 \uparrow **Coulomb for** $\{D^+D^{*-}\}$

7

- I = 0 : one-range gaussian potentials, I = 1 neglected $V_{I=0} = V_0 \exp\{-m_{\pi}^2 r^2\}, \quad V_{I=1} = 0$ \uparrow range by π exchange

 $V_0 \in \mathbb{C} <- \text{ scattering lengths (molecule picture)}$ - T_{cc} : $a_0^{D^0D^{*+}} = -7.16 + i1.85 \text{ fm (LHCb analysis)}$ LHCb collaboration, Nature Comm., 13, 3351 (2022)

- X(3872): $a_0^{D^0\bar{D}^{*0}} = -4.23 + i3.95 \text{ fm} (a_0 = -i/\sqrt{2\mu E_h} \text{ with PDG } E_h)$

DD*, DD̄* momentum correlation functions

 $DD^* \sim T_{cc}$ sector

D^0D^{*+} and D^+D^{*0} correlation functions ($cc\bar{u}d$, exotic)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

- Bound state feature (source size dep.) in both channels

- Strong signal in D^0D^{*+} , weaker one in D^+D^{*0}
- D^+D^{*0} cusp in D^0D^{*+} ($q \sim 52$ MeV) is not very prominent

DD*, DD̄* momentum correlation functions

 $D\bar{D}^* \sim X(3872)$ sector

$D^0 \overline{D}^{*0}$ and $D^+ D^{*-}$ correlation functions ($c \overline{c} q \overline{q}$)

Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022)

- Bound state feature in $D^0 \overline{D}^{*0}$ correlation
- Sizable D^+D^{*-} cusp in $D^0\overline{D}^{*0}$ ($q \sim 126 \text{ MeV}$)
- D+D*- correlation : Coulomb attraction dominance

Mixture of compact quark states : DD*, DD̄* potentials

Effect of compact quark states

- Coupling to compact quark states $-> DD^*, D\overline{D}^*$ potentials?
 - s-channel exchange of bare state $\psi \sim cc\bar{u}\bar{d}, c\bar{c}$

Feshbach method : effective DD^* **potential with** ψ **effect**

H. Feshbach, Ann. Phys. 5, 357 (1958); ibid, 19, 287 (1962)

$$\langle \mathbf{r}_{DD^*}^{\prime} | V_{\text{eff}}^{DD^*}(E) | \mathbf{r}_{DD^*} \rangle = V^{DD^*}(\mathbf{r}) \delta(\mathbf{r}^{\prime} - \mathbf{r}) + \frac{\langle \mathbf{r}_{DD^*}^{\prime} | V^{t} | \psi \rangle \langle \psi | V^{t} | \mathbf{r}_{DD^*} \rangle}{E - \nu_0}$$
$$= V(\mathbf{r}_{DD^*}^{\prime}, \mathbf{r}_{DD^*}^{\prime}; E)$$

- Effective potential is non-local and energy-dependent

I. Terashima, T. Hyodo, arXiv:2208.14075 [nucl-th]

Mixture of compact quark states : DD*, DD̄* potentials

local approximation

Non-local potential with Yukawa FF $\langle r_{DD^*} | V^t | \psi \rangle = g_0 e^{-\Lambda r} / r$

S. Aoki and K. Yazaki, PTEP2022, 033B04 (2022)

- Wave function $\psi_k(r)$ is analytically solvable ($k = \sqrt{2\mu E}$)

Local approximations : $\{D^0 \overline{D}^{*0}\}$ **potentials for** *X*(3872) **at** *E* = 0

I. Terashima, T. Hyodo, in preparation

- Formal derivative expansion

$$V^{\text{formal}}(r, E) = \frac{4\pi g_0^2}{\Lambda^2 (E - \nu_0)} \frac{e^{-\Lambda r}}{r} + \mathcal{O}(\nabla)$$

- HALQCD (reproduces $\delta(E)$)

$$\mathcal{V}^{\text{HAL}}(r, E) = \frac{1}{2\mu r \psi_k(r)} \frac{d^2}{dr^2} [r \psi_k(r)] + \mathcal{O}(\nabla^2)$$

Compositeness theorem

Near-threshold s-wave states are all molecules!

- Compositeness theorem

T. Hyodo, PRC90, 055208 (2014)

1 =

$$\frac{|\langle T_{cc} | \psi \rangle|^2 + \int d\mathbf{r} |\langle T_{cc} | \mathbf{r}_{DD^*} \rangle|^2}{\mathbf{compositeness } X}$$

-> Fully molecule state X = 1 in $B \rightarrow 0$ limit

- Low-energy universality

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006); P. Naidon, S. Endo, Rept. Prog. Phys. 80, 056001 (2017)

- Threshold rule of cluster nuclei

H. Horiuchi, K. Ikeda, Y. Suzuki, PTPS 55, 89 (1972)

- Peculiar pole trajectories

C. Hanhart, A. Nefediev, arXiv:2209.10165 [hep-ph]

Model setup

EFT model for *T_{cc}* (single channel)

T. Kinugawa, T. Hyodo, in preparation

- DD^* coupled with a bare state ψ (no direct DD^* int.)

Parameters : coupling g_0 and bare energy ν_0 (cutoff $\Lambda = m_{\pi}$)

- Bound state condition with $B \longrightarrow g_0(\nu_0; \Lambda, B)$
- ν_0 free parameter (c.f. quark model ~ 7 MeV)

M. Karlinar, J.L. Rosner, PRL 119, 202001 (2018)

Compositeness $X(\nu_0; \Lambda, B)$: fraction of DD^* molecule

<u>Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017);</u> <u>T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022)</u>

Structure of bound state

Natural binding energy < - scale of strong interaction : 1 fm

T. Kinugawa, T. Hyodo, in preparation

$$B \sim \frac{1}{2\mu_{DD^*}(1 \text{ fm})^2} \sim 20 \text{ MeV}$$

Natural : B = 20 MeV

- X > 0.5 for 15% of ν_0
- Elementary dominance
- < -- Bare state origin

Shallow : B = 0.36 MeV

- X > 0.5 for 78% of ν_0

- Composite dominance even without DD* direct interaction
- To have X < 0.5, fine tuning of ν_0 is necessary

Application to T_{cc} and X(3872)

T_{cc} and X(3872) : single-channel case

T. Kinugawa, T. Hyodo, in preparation

- X > 0.5 for 78% of ν_0 for T_{cc} , X > 0.5 for 92% of ν_0 for X(3872)
- X(3872) is more composite < smaller B
- To have X < 0.5, extreme fine tuning of ν_0 is necessary

More realistic T_{cc} and X(3872)

T_{cc} and X(3872) : coupled-channel case

T. Kinugawa, T. Hyodo, in preparation

- $X(\text{single}) \sim X_1 + X_2$: Z is stable
- DD* effect is shared by 1 and 2
- $X_{2,T_{cc}} > X_{2,X(3872)} < \text{closer } D^+ D^{*0}$

16

Further realistic T_{cc} and X(3872)

T_{cc} and X(3872) : coupled-channel case with decay width

T. Kinugawa, T. Hyodo, in preparation

Summary

 $\bigcup D^0 D^{*+}$ and $D^0 \overline{D}^{*0}$ correlations - (quasi-)bound nature of T_{cc} and X(3872) Y. Kamiya, T. Hyodo, A. Ohnishi, EPJA58, 131 (2022) **Coupling to compact quark states** - Potential becomes non-local and E-dep., but effective local potential can be constructed. I. Terashima, T. Hyodo, in preparation **Compositeness theorem** - Near-threshold s-wave states are molecules, no matter how you construct them. T. Hyodo, PRC 90, 055208 (2014); T. Kinugawa, T. Hyodo, in preparation