Hadronic molecules and their structure (part I)

Tetsuo Hyodo

Tokyo Metropolitan University

<u>2022, Jun. 28th</u>

Contents

Contents

Part I : Basics

- Chiral symmetry

S. Scherer and M. R. Schindler, *A Primer for Chiral Perturbation Theory* (Springer, Berlin, 2012)

- Resonances

J.R. Taylor, *Scattering Theory* (Wiley, New York, 1972); <u>T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021)</u>

Part II : Application

- $\bar{K}N$ scattering and $\Lambda(1405)$ resonance

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th]

- Compositeness of hadrons

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

Part I : Introduction

Observed hadrons (2020)

Particle Data Group (PDG) 2020 eddition

http://pdg.lbl.gov/

						_									
	n	$1/2^{+}$	****	A(1232)	3/2+ **	**	Σ^+	$1/2^{+}$	****	=0	$1/2^{+}$	****	-++		***
	р р	1/2+	****	A(1600)	3/2+ **	**	∠ √0	1/2	****	=-	1/2+	****	- cc		
	11 N(1440)	1/2	4444	$\Delta(1000)$	1/0- **		Σ Γ-	1/2	****	-	2/2	****	10	1/2+	***
	N(1440)	1/2	4444	$\Delta(1620)$	1/2 ***			1/2	****	=(1530)	3/2		1 _b	1/2	ي ي ي
	N(1520)	3/2	****	$\Delta(1700)$	3/2 **	**	2(1385)	3/21	****	=(1620)		÷	$h_b(5912)^{\circ}$	1/2	***
	N(1535)	$1/2^{-}$	****	$\Delta(1750)$	1/2+ *		Σ(1580)	3/2-	*	$\Xi(1690)$		***	$\Lambda_b(5920)^0$	3/2	***
	N(1650)	$1/2^{-}$	****	$\Delta(1900)$	1/2 **	*	Σ(1620)	$1/2^{-}$	*	$\Xi(1820)$	3/2-	***	$\Lambda_b(6146)^0$	3/2+	***
	N(1675)	$5/2^{-}$	****	$\Delta(1905)$	5/2+ **	**	Σ(1660)	$1/2^{+}$	***	$\Xi(1950)$		***	$\Lambda_b(6152)^0$	$5/2^{+}$	***
	N(1680)	$5/2^{+}$	****	<i>∆</i> (1910)	1/2+ **	**	Σ(1670)	3/2-	****	Ξ(2030)	$\geq \frac{5}{2}$	***	Σ_b	$1/2^{+}$	***
	N(1700)	$3/2^{-}$	***	$\Delta(1920)$	3/2+ **	*	Σ(1750)	$1/2^{-}$	***	$\Xi(2120)$	-	*	Σ_{h}^{*}	3/2+	***
	N(1710)	$1/2^{+}$	****	$\Delta(1930)$	5/2- **	*	$\Sigma(1775)$	$5/2^{-}$	****	=(2250)		**	$\Sigma_{b}(6097)^{+}$		***
	N(1720)	$3/2^{+}$	****	$\Delta(1940)$	3/2- **		$\Sigma(1780)$	$3/2^{+}$	*	=(2370)		**	Σ.(6097)-		***
	N(1860)	5/2+	**	$\Delta(1950)$	7/2+ **	**	$\Sigma(1880)$	1/2+	**	=(2500)		*	=0 =-	$1/2^{+}$	***
	N(1875)	3/2-	***	$\Delta(2000)$	5/2+ **		Σ(1900)	$1/2^{-}$	**	=(2500)			= D' = D =' (5935)-	1/2+	***
	N(1880)	1/2+	***	A(2150)	1/2 *		Σ(1910)	3/2-	***	0-	3/2+	****	= 6(3330)	2/2+	***
	N(1905)	1/2	****	A(2200)	7/0- **	*	$\Sigma(1015)$	5/2+	****	0(2012)-	2-	***	$= b(5945)^{-}$	3/2	
	N(1000)	2/2+	****	A(2200)	0/2+ **		$\Sigma(1040)$	3/2+	*	O(2012)	•	***	$=_{b}(5955)$	3/2 '	-
	N(1900)	3/21	**	A(2200)	9/2 *		Z(1940)	3/2-	*	$\Omega(2250) =$		**	$=_{b}(6227)$		***
	N(1990)	1/2' F/0+		∆(2350) A(2200)	5/2 *		2 (2010)	3/2	-	32(2380)		**	Ω_b^-	$1/2^{-}$	***
	N(2000)	5/21	**	ZI(2390)	1/2 *		2 (2030)	1/2	****	32(2470)		**			
	N(2040)	3/2*	*	$\Delta(2400)$	9/2 **		$\Sigma(2070)$	5/2	*		a (a-1-	ale a la ale ale	$P_{c}(4312)^{+}$		*
_	N(2060)	5/2-	***	<i>∆</i> (2420)	11/2+ **	**	Σ(2080)	3/2+	*	Λ_{c}	1/2 '	****	$P_{c}(4380)^{+}$		*
	N(2100)	$1/2^{+}$	***	$\Delta(2750)$	13/2 **		Σ(2100)	7/2-	*	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***	$P_{c}(4440)^{+}$		*
	N(2120)	$3/2^{-}$	***	<i>∆</i> (2950)	15/2+ **		Σ(2160)	$1/2^{-}$	*	$\Lambda_{c}(2625)^{+}$	3/2-	***	$P_{c}(4457)^{+}$		*
	N(2190)	$7/2^{-}$	****				Σ(2230)	3/2+	*	$\Lambda_{c}(2765)^{+}$		*			
	N(2220)	9/2+	****	Λ	1/2+ **	**	Σ(2250)		***	$\Lambda_{c}(2860)^{+}$	3/2+	***			
	N(2250)	$9/2^{-}$	****	Λ	1/2" **		Σ(2455)		**	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***			
	N(2300)	$1/2^{+}$	**	A(1405)	1/2- **	**	$\Sigma(2620)$		**	$\Lambda_{c}(2940)^{+}$	3/2-	***			
	N(2570)	$5/2^{-}$	**	A(1520)	3/2- **	**	Σ(3000)		*	$\Sigma_{c}(2455)$	$1/2^{+}$	****			
	N(2600)	11/2-	***	A(1600)	1/2+ **	**	$\Sigma(3170)$		*	$\Sigma_{c}(2520)$	3/2+	***			
	N(2700)	13/2+	**	A(1670)	1/2- **	**	()			Σ.(2800)	<i>'</i>	***			
	(-0/-		A(1690)	3/2- **	**				=+	$1/2^{+}$	***			
				$\Lambda(1710)$	$\frac{1}{2^{+}} *$						1/2+	****			
				A(1800)	1/2 **	*				-c ='+	1/2+	***			
				A(1810)	1/2+ **	*				= c'	1/2	***			
				A(1820)	5/2+ **	**				='c	1/2	***			
				A(1020)	J/2	**				$=_{c}(2645)$	3/2⊤	***			
				/(1000)	5/2 ···	**				$\Xi_{c}(2790)$	$1/2^{-}$	***			
				/(1090)	3/2					$\Xi_c(2815)$	3/2-	*		-	
				/(2000)	1/2 *					$\Xi_c(2930)$					
-				/(2050)	3/2 *					$\Xi_{c}(2970)$					
				A(2070)	3/2 *					$\Xi_{c}(3055)$					
				Л(2080)	5/2 *					$\Xi_{c}(3080)$					7
				A(2085)	7/2+ **					$\Xi_{c}(3123)$		*			
				A(2100)	7/2 **	**				Ω^{0}	$1/2^{+}$	***			
				A(2110)	5/2+ **	*				ົ້າ	a' a +	***			
				A(2325)	3/2- *										
				A(2350)	9/2+ **	*		_							
				A(2585)	**			~ 1	h	\mathbf{r}	12	r	IN		
				l`´´			-	-				u j			
										342(3120)~		10.00	I		

	LIGHT UN	FLAVORED		STRAN	IGE	CHARMED,	STRANGE	C <u>C</u> COI	ntinued
	$P(\mathcal{F}^{C})$	= <i>B</i> = 0)	$P(\mathcal{P}^{\mathcal{C}})$	(5 = ±1, C :	= B = 0) I(J ^P)	(c = 5	= ±1) (P)	• ±(2770)	$P^{-}(J^{-})$
• π^{\pm}	1-(0-)	• ma(1670)	$1^{-}(2^{-}+)$	• K [±]	1/2(0-)	 D[±] 	0(0-)	 ψ(3110) ψ₂(3823) 	$0^{-}(2^{-})$
• <i>π</i> ⁰	$1^{-}(0^{-+})$	 φ(1680) 	$0^{-}(1^{-})$	• K ⁰	$1/2(0^{-})$	• D ^{*±}	0(??)	 ψ₃(3842) 	0-(3)
 η 	0+(0-+)	 ρ₃(1690) 	1+(3)	• K_S^0	1/2(0-)	• D*(2317)	⊧ 0(0+́)	χ _{d0} (3860)	$0^{+}(0^{++})$
 f₀(500) 	0+(0++)	 ρ(1700) 	1+(1)	• KŽ	1/2(0-)	• D ₅₁ (2460)	• 0(1 ⁺)	 χ_{c1}(3872) 	$0^{+}(1^{++})$
 ρ(770) 	$1^+(1^-)$	• a ₂ (1700)	$1^{-}(2^{++})$	• K ₀ (700)	1/2(0+)	 D_{S1}(2536)[±] 	= 0(1 ⁺)	• Z _c (3900)	$1^{+}(1^{+-})$
 ω(782) μ(0π0) 	$0^{-}(1^{-})$	• f ₀ (1/10)	$0^+(0^{++})$	• K*(892)	$1/2(1^{-})$	 D[*]₅₂(2573) 	0(2+)	• X (3915)	$0^{+}(0/2^{+})$
• # (956) • £ (090)	$0^+(0^{++})$	$\eta(1760)$	1-(0-+)	• K ₁ (1270)	$1/2(1^+)$	• $D_{s1}^{*}(2700)$	= 0(1-)	 	7?(7??)
• a (980)	$1^{-}(0^{++})$	• #(1000) 6(1810)	$0^{+}(2^{++})$	• $K_1(1400)$ • $K^*(1410)$	$\frac{1}{2(1^{-})}$	$D_{s1}^{*}(2860)$	= 0(1)	• X(4020) [±]	$1^{+}(?^{-})$
 φ(1020) 	$0^{-}(1^{-})$	X(1835)	$?(0^{-}+)$	• K*(1430)	$\frac{1}{2}(1)$	$D_{53}(2860)^{\circ}$	- U(3)	 ψ(4040) 	$0^{-}(1^{-})$
 h₁(1170) 	$0^{-}(1^{+})$	 φ₃(1850) 	$0^{-}(3^{-}-)$	• K [*] (1430)	$1/2(0^+)$	$D_{sJ}(3040)^{-1}$	- 0(?)	X(4050)±	$1^{-(?^{+})}$
 b₁(1235) 	$1^{+}(1^{+})$	 η₂(1870) 	$0^{+}(2^{-+})$	K(1460)	$1/2(0^{-1})$	BOT	ГОМ	X(4055) [±]	$1^{+}(??^{-})$
 a₁(1260) 	$1^{-}(1^{++})$	 π₂(1880) 	$1^{-}(2^{-+})$	K ₂ (1580)	1/2(2-)	(B =	±1)	$X(4100)^{\pm}$	$1^{-}(?'')$
 f₂(1270) 	$0^+(2^{++})$	$\rho(1900)$	1+(1)	K(1630)	$1/2(?^{?})$	• B [±]	$1/2(0^{-})$	• $\chi_{c1}(4140)$	$0^{+}(1^{++})$
• f ₁ (1285)	$0^+(1^{++})$	$f_2(1910)$	$0^+(2^{++})$	$K_1(1650)$	$1/2(1^+)$	• B ⁰	1/2(0-)	 ψ(4160) ψ(4160) 	$0^{-}(1^{-})$
 η(1295) - (1200) 	1 - (0 - +)	ab(1950)	1(0++)	 K*(1680) 	$1/2(1^{-})$	• B [±] /B ⁰ AL	MIXTURE	Z (4100)	$\frac{1+(1+-)}{1+(1+-)}$
• $\pi(1300)$	$1^{-}(2^{+}+)$	• I ₂ (1950) • 2.(1970)	$1^{-}(4^{++})$	 K₂(1770) 	1/2(2-)		/ <i>b</i> -baryon RE	≥ _c (4200)	$0^{-}(1^{-})$
• f ₂ (1320)	$0^{+}(0^{+}+)$	• aq(1570) aq(1990)	$\frac{1}{1+(3)}$	• K ₃ (1780)	1/2(3)	V _{cb} and V _u	b CKM Ma-	$R_{co}(4240)$	1+(0)
 π1(1400) 	$1^{-}(1^{-}+)$	$\pi_2(2005)$	$1^{-}(2^{-}+)$	 N₂(1020) K(1920) 	1/2(2)	trix Elemen	ts	X(4250)±	$1^{-}(?^{?+})$
 η(1405) 	$0^{+}(0^{-}+)$	• f2(2010)	$0^{+}(2^{+}+)$	K*(1950)	$1/2(0^+)$	• B • B: (5721)+	$\frac{1}{2(1^{+})}$	$\psi(4260)$	0-(1)
 h₁(1415) 	$0^{-}(1^{+-})$	$f_0(2020)$	0+(0++)	K3(1980)	$1/2(2^+)$	• B ₁ (5721) ⁰	$1/2(1^+)$	 <i>χ</i>_{C1}(4274) 	$0^+(1^{++})$
$a_1(1420)$	$1^{-}(1^{++})$	 f₄(2050) 	0+(4++)	 K[*]₄(2045) 	$1/2(4^+)$	B*(5732)	?(??)	X(4350)	$0^{+}(?^{!+})$
 f₁(1420) 	$0^+(1^{++})$	$\pi_2(2100)$	$1^{-}(2^{-+})$	K2(2250)	1/2(2-)	• B [*] ₂ (5747) ⁺	$1/2(2^+)$	 ψ(4360) ψ(4360) 	$0^{-}(1^{-})$
• ω(1420) f (1420)	0(1)	$f_0(2100)$	$0^+(0^{++})$	K3(2320)	$1/2(3^+)$	• $B_2^*(5747)^0$	$1/2(2^+)$	$\psi(4390)$	0(1)
12(1450) • ====================================	$1^{-}(0^{+}^{+})$	(2150) (2150)	$1^{+}(1^{-})$	K [*] ₅ (2380)	$1/2(5^{-})$	B_(5840)+	$1/2(?^{?})$	• $\psi(4413)$ • 7.(4430)	$1^{+}(1^{+})$
• a((1450)	$1^{+}(1^{-})$	• φ(2130)	$0^{-}(1^{-})$	K4(2500)	$1/2(4^{-})$	B _J (5840) ⁰	$1/2(?'_{2})$	× (4500)	$0^{+}(0^{+}+)$
• n(1475)	$0^{+}(0^{-}+)$	fo(2200)	$0^{+}(0^{+}+)$	K(3100)	?!(?!!)	• B _J (5970) ⁺	1/2(?!)	 ψ(4660) 	$0^{-}(1^{-})$
 f₀(1500) 	0+(0++)	$f_{J}(2220)$	$0^{+}(2^{++})$	CHARM	1ED	• BJ(59/0) ^o	1/2(?`)	$\chi_{c0}(4700)$	$0^{+}(0^{++})$
$f_1(1510)$	0+(1++)		or 4 ⁺⁺)	(C = ±	-1)	BOTTOM,	STRANGE		τ
• $f'_2(1525)$	$0^+(2^{++})$	η(2225)	0+(0-+)	• D^{\pm}	1/2(0^)	$(B = \pm 1,$	$S = \mp 1$)	ر + possibly n	on- <i>ati</i> states)
$f_2(1565)$	$0^+(2^{++})$	$\rho_3(2250)$	$1^+(3^{})$	• D ⁰	$1/2(0^{-})$	• B ⁰ _s	0(0-)	() p====)	0+(0-+)
$\rho(1570)$	$1^{+}(1^{-})$	• T ₂ (2300) f (2200)	$0^{+}(2^{++})$	• D*(2007) ⁰	$1/2(1^{-})$	• B [*] _S	$0(1^{-})$	• T(15)	$0^{-}(1^{-})$
n1(1595)	$1^{-}(1^{-}+)$	f ₄ (2300)	$0^{+}(0^{+})$	 D*(2010)[±] D*(2000)⁰ 	$1/2(1^{-})$	X(5568)±	?(?')	• Y to(1P)	$0^{+}(0^{+}+)$
• a (1640)	$1^{-}(1^{++})$	• fs(2340)	$0^+(2^{++})$	• D ₀ (2300) [±]	$1/2(0^+)$ $1/2(0^+)$	• B ₅₁ (5830) ⁰	0(1+)	 χ_{b1}(1P) 	$0^{+}(1^{++})$
f5(1640)	n+m++j	ρ ₅ (2350)	1+(5)	$D_0(2300)$	$1/2(0^{+})$ $1/2(1^{+})$	 D_{S2}(5040)⁴ D[*] (E9E0) 	2(2)	 h_b(1P) 	$0^{-}(1^{+-})$
 η₂(164^F) 		$f_6(2510)$	$0^{+}(6^{++})$	$D_1(2420)^{\pm}$	$1/2(1^{-})$	$D_{sJ}(3030)$:(:)	• $\chi_{b2}(1P)$	0+(2++)
• $\omega(1^{c}$	-	OTHER		$D_1(2430)^0$	$1/2(1^+)$	BOTTOM,	CHARMED	$\eta_b(2S)$	$0^+(0^{-+})$
• <i>w</i> 3		vor Ct		 D[*]₂(2460)⁰ 	$1/2(2^+)$	(B = C	= ±1)	• 7 (25)	0(1)
		C 30	10	 D₂[*](2460)[±] 	$1/2(2^+)$	• B _c ⁺	0(0-)	• T ₂ (1D)	0(2)
				D(2550) ⁰	1/2(??)	$B_c(2S)^{\pm}$	0(0-)	• $\chi_{b0}(2P)$	$0^{+}(1^{++})$
				D*j(2600)	1/2(?')	C	C	$h_b(2P)$	$0^{-}(1^{+})$
				D*(2640) [±]	1/2(?*)	(+ possibly no	on-qq states)	• χ _{b2} (2P)	$0^{+}(2^{+}+)$
				D(2740) ^o	1/2(?)	• $\eta_c(1S)$	0+(0 - +)	• 7(3S)	0-(1)
				D(3000)9	1/2(3)	 J/ψ(1S) 	0_(1)	• $\chi_{b1}(3P)$	0+(1++)
				D(3000)"	1/2(:)	• ~ 10(1P)	$0^+(0^{++})$	• χ _{b2} (3P)	$0^+(2^{++})$
	_	_				(1P)	$0^{-}(1^{++})$	• 7 (45)	$0 (1^{-})$
	1	Λ.		00		:(1P) -(1P)	0 (1 + -) 0 + (2 + +)	 Z_b(10610) Z_b(10650) 	1+(1+-)
~		UI	I IE	!S()	115	(25)	$0^{+}(0^{-}+)$	$\gamma(10753)$	$\frac{1}{2}?(1)$
					_		~ (~)	. ()	(-)
		•				(25)	$0^{-}(1^{-})$	 <i>γ</i>(10860) 	$0^{-}(1^{-})$
		· ·				(25)	0-(1)	 <i>γ</i>(10860) <i>γ</i>(11020) 	$0^{-}(1^{-})) 0^{-}(1^{-})$

Part I : Introduction

Observed hadrons (2022)

Particle Data Group (PDG) 2022 eddition

http://pdg.lbl.gov/

All ~ 380 hadrons emerge from single QCD Lagrangian

Part I: Introduction

Unstable states via strong interaction

Stable/unstable hadrons

http://pdg.lbl.gov/

p	$1/2^{+}$	****	△(1232)	3/2+	****	Σ^+	$1/2^{+}$	****	Λ_c^+	$1/2^{+}$	****	Λ_{b}^{0}	1/2+	***
n	1/2+	****	$\Delta(1600)$	3/2+	****	Σ^0	1/2+	****	$\Lambda_{c}(2595)^{+}$	1/2-	***	A _b (5912) ⁰	1/2-	***
N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	Σ^{-}	$1/2^{+}$	****	$\Lambda_{c}(2625)^{+}$	3/2-	***	$\Lambda_{b}(5920)^{0}$	3/2-	***
N(1520)	3/2-	****	$\Delta(1700)$	3/2-	****	Σ(1385)	3/2+	****	$\Lambda_{c}(2765)^{+}$	1	*	$\Lambda_{b}(6146)^{0}$	3/2+	***
N(1535)	$1/2^{-}$	****	$\Delta(1750)$	1/2+	*	$\Sigma(1580)$	3/2-	*	$\Lambda_{c}(2860)^{+}$	3/2+	***	$\Lambda_{b}(6152)^{0}$	5/2+	***
N(1650)	$1/2^{-}$	****	$\Delta(1900)$	$1/2^{-}$	***	$\Sigma(1620)$	1/2-	*	$\Lambda_{c}(2880)^{+}$	5/2+	***	Σ_h	1/2+	***
N(1675)	5/2-	****	$\Delta(1905)$	5/2+	****	$\Sigma(1660)$	1/2+	***	$\Lambda_{c}(2940)^{+}$	3/2-	***	Σ_{h}^{*}	3/2+	***
N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^{+}$	****	Σ(1670)	3/2-	****	$\Sigma_{-}(2455)$	1/2+	****	$\Sigma_{b}^{\nu}(6097)^{+}$	· (***
N(1700)	3/2-	***	$\Delta(1920)$	3/2+	***	$\Sigma(1750)$	$1/2^{-}$	***	$\Sigma_{c}(2520)$	3/2+	***	$\Sigma_{\rm b}(6097)^{-1}$		***
N(1710)	$1/2^{+}$	****	$\Delta(1930)$	5/2-	***	$\Sigma(1775)$	5/2-	****	Σ-(2800)	· /	***	Ξ.	$1/2^{+}$	***
N(1720)	3/2+	****	$\Delta(1940)$	3/2-	*ek	$\Sigma(1780)$	3/2+	*	==	$1/2^{+}$	***		$1/2^+$	***
N(1860)	5/2+	**	$\Delta(1950)$	7/2+	****	$\Sigma(1880)$	$1/2^{+}$	**	=0	1/2+	****	$= \frac{1}{2}$	1/2+	***
N(1875)	3/2-	***	$\Delta(2000)$	5/2+	*ek	Σ(1900)	1/2-	**	='+	$1/2^+$	***	$= \frac{1}{6}(5000)$	3/2+	***
N(1880)	1/2+	***	$\Delta(2150)$	1/2-	*	Σ(1910)	3/2-	***	- <i>c</i> =/0	1/2+	***	$=_{p(5,955)}$	3/2+	***
N(1895)	1/2-	****	$\Delta(2200)$	7/2-	***	Σ(1915)	5/2+	****	=c =(2645)	3/2+	***	$=_{b}(5555)$	3/2-	***
N(1900)	3/2+	****	$\Delta(2300)$	9/2+	*ek	Σ(1940)	3/2+	*	= (2790)	1/2-	***	$=_{p(0100)}$	5/2	***
N(1990)	7/2+	**	$\Delta(2350)$	5/2-	*	Σ(2010)	3/2-	*	$=_{c(2150)}$ $=_{c(2815)}$	3/2-	***	$=_{b}(6227)^{0}$		***
N(2000)	5/2+	**	$\Delta(2390)$	7/2+	*	Σ(2030)	7/2+	****	= (2013)	3/2	**	-p(0221)	1/2+	***
N(2040)	3/2+	*	∆(2400)	9/2-	**	Σ(2070)	5/2+	*	= (2923)		**	$O_{1}(6316) =$	1/2	*
N(2060)	5/2-	***	$\Delta(2420)$	$11/2^+$	****	Σ(2080)	3/2+	*	$=_{C(2930)}$	1/2+	***	12b(0310)		*
N(2100)	$1/2^{+}$	***	$\Delta(2750)$	13/2-	**	Σ(2100)	7/2-	*	$=_{C}(200)$	1/2	***	$Q_{1}(6340) =$		*
N(2120)	3/2-	***	$\Delta(2950)$	15/2+	**	Σ(2110)	1/2-	*	$=_{C}(3030)$		***	J26(0340)		*
N(2190)	7/2-	****		,		$\Sigma(2230)$	3/2+	*	= (3123)		*	326(0300)		
N(2220)	9/2+	****	Λ	$1/2^{+}$	****	$\Sigma(2250)$, i	**	-2(3123)	1/2+	***	P.(4312)+		*
N(2250)	9/2-	****	<i>A</i> (1380)	$1/2^{-}$	**	$\Sigma(2455)$		*	³² C O (0770)0	2/2+	***	P_(4380)+		*
N(2300)	$1/2^{+}$	**	A(1405)	$1/2^{-}$	****	$\Sigma(2620)$		*	0 (2000)0	3/2 .	***	$P_{-}(4440)^{+}$		*
N(2570)	5/2-	**	A(1520)	3/2-	****	Σ(3000)		*	322(3000)		***	P-(4457)+		*
N(2600)	11/2-	***	A(1600)	$1/2^{+}$	****	Σ(3170)		*	J2C(3000)		***	1 ((+151)		
N(2700)	13/2+	**	A(1670)	$1/2^{-}$	****				0 (2000)		***			
	,		A(1690)	3/2-	****	=0	$1/2^{+}$	****	0 (2120)0		***			
			A(1710)	$1/2^{+}$	*	Ξ-	$1/2^{+}$	****	320(3120)					
			A(1800)	$1/2^{-}$	***	Ξ(1530)	3/2+	****	=+		*			
			A(1810)	$1/2^{+}$	***	Ξ(1620)		*	=++		***			
			Л(1820)	5/2+	****	Ξ(1690)		***	- <i>cc</i>					
			Л(1830)	5/2-	****	Ξ(1820)	3/2-	***						
			A(1890)	3/2+	****	Ξ(1950)	2	***						
			Л(2000)	$1/2^{-}$	*	Ξ(2030)	$\geq \frac{5}{2}$	***						
			A(2050)	3/2-	*	Ξ(2120)		*						
			<i>A</i> (2070)	3/2+	*	Ξ(2250)		**						
			<i>A</i> (2080)	5/2-	*	<i>Ξ</i> (2370)		**						
			A(2085)	7/2+	*ok	Ξ(2500)		*						
			A(2100)	7/2-	****									
			A(2110)	5/2+	***	Ω^{-}	3/2+	****	I					
			A(2325)	3/2-	*	$\Omega(2012)$								
			A(2350)	9/2+	***	Ω(2250	-	7		-	-			
			A(2585)		*	Ω(238	~ I		() r	าส	r\	/nr	15	
						Ω(2470	-			<i>J</i> U	L .			
									1					
												I		

	LIGHT UN	FLAVORED		STRANGE		CHARMED, STRANGE		cc continued		
	(S = C)	= B = 0)	IC (PC)	$(S = \pm 1, C)$	= B = 0)	$(C = \pm 1, (\pm n))$	$S = \pm 1$) $n_{-}and states)$		$P(\mathcal{P}^{\mathbb{C}})$	
 	$P(J^{C})$		P(J C)		()	(∓ possibily ne	I(P)	 ψ₂(3823) 	0-(2)	
• π^{\pm}	$1^{-}(0^{-})$	• π ₂ (1670)	1-(2-+)	• K=	1/2(0-)	. D [±]	0(0=)	 ψ₃(3842) 	$0^{-}(3^{-})$	
• #0	$1^{-}(0^{-})$	• ϕ (1680)	0 (1 -)	• K ⁰	1/2(0-)	• D _S	0(0)	$\chi_{c0}(3860)$	$0^{+}(0^{+})$	
• η • ϵ (E00)	$0^{+}(0^{+}^{+})$	 ρ₃(1690) (1700) 	$1^+(3^-)$	• KS	1/2(0)	• D _s • D* (2217)=	0(0+)	• $\chi_{c1}(3872)$	1+(1+-)	
• /0(300)	1+(1)	• p(1700)	1 - (2 + +)	• KY	1/2(0)	$D_{s0}(2317)$	0(1+)	$ 2_{C}(3900) $	$0^{\pm}(0^{\pm}^{\pm})$	
• $\mu(782)$	$0^{-}(1^{-})$	$f_2(1700)$	0+(0++)	• K ₀ (700)	$1/2(0^{-1})$	$D_{S1}(2400)$	$0(1^{+})$	• X (3930)	$0^+(2^{++})$	
• n'(958)	$0^{+}(0^{-}+)$	X(1750)	7-(1)	• K (092)	$\frac{1}{2(1+)}$	D _{so} (2573)	$0(2^+)$	X(3940)	7?(7??)	
• fn(980)	$0^{+}(0^{+}+)$	n(1760)	$0^{+}(0^{-}+)$	• K ₁ (1400)	$\frac{1}{2(1+)}$	$D_{co}(2590)^+$	00-	• X(4020) [±]	$1^{+}(?^{?-})$	
• an(980)	$1^{-}(0^{+}+)$	 π(1800) 	1-(0-+)	• K*(1410)	1/2(1-)	 D[*]_{c1}(2700)[±] 	0(1-)	 ψ(4040) 	$0^{-}(1^{-})$	
 \$\phi(1020)\$ \$ \$ \$	0-(1)	f ₂ (1810)	$0^{+}(2^{++})$	 K[*]₀(1430) 	1/2(0+)	D*1(2860)±	$0(1^{-})$	$X(4050)^{\pm}$	$1^{-}(?^{?+})$	
 h₁(1170) 	$0^{-}(1^{+-})$	X(1835)	? [?] (0 ⁻⁺)	 K[*]₂(1430) 	$1/2(2^+)$	 D[*]₅₃(2860)[±] 	0(3-)	$X(4055)^{\pm}$	$1^{+}(??^{-})$	
 b1(1235) 	1+(1+-)	• \$\phi_3(1850)\$	0-(3)	• K(1460)	$1/2(0^{-})$	X ₀ (2900)	?(0+)	$X(4100)^{\pm}$	$1^{-}(?')$	
• a ₁ (1260)	$1^{-}(1^{++})$	 η₂(1870) 	0+(2-+)	$K_2(1580)$	$1/2(2^{-})$	X1(2900)	$?(1^{-})$	• $\chi_{c1}(4140)$	$0^{+}(1^{++})$	
• f ₂ (1270)	$0^+(2^{++})$	• π ₂ (1880)	$1^{-}(2^{-+})$	K(1630)	1/2(??)	D _{sJ} (3040) [±]	= 0(? [?])	 ψ(4160) ψ(4160) 	$0^{-}(1^{-})$	
• T1(1285) (1005)	$0^{+}(1^{-})$	ρ(1900)	1'(1)	• K ₁ (1650)	$1/2(1^+)$	POT 1	-OM	7 (4160)	1+(1+-)	
• η(1295) • π(1300)	$1^{-}(0^{-})$	72(1910)	$1^{-}(0^{+}^{+})$	• K*(1680)	$1/2(1^{-})$	(B=	±1)	2 _C (4200)	$0^{-}(1^{-})$	
• a (1320)	1-(2++)	a0(1950)	$0^+(2^++)$	• K ₂ (1770)	1/2(2)	• B [±]	1/2(0=)	R _{c0} (4240)	1+(0)	
• fp(1320)	$0^{+}(0^{+}^{+})$	a.(1970)	$1^{-}(a^{++})$	• K ₃ (1/80)	1/2(3-)	• B ⁰	$1/2(0^{-})$	$X(4250)^{\pm}$	$1-(7^{2}+)$	
• π1(1400)	$1^{-}(1^{-}+)$	ρ ₂ (1990)	$1^{+}(3^{-})$	• K ₂ (1820)	1/2(2)	 B[±]/B⁰ AD 	MIXTURE	• Xc1(4274)	$0^{+}(1^{+})$	
• n(1405)	$0^{+}(0^{-}+)$	$\pi_2(2005)$	$1^{-}(2^{-}+)$	A (1830)	$\frac{1}{2}(0^{+})$	 B[±]/B⁰/B⁰_c 	/b-baryon	X(4350)	0+(??+)	
 h₁(1415) 	$0^{-(1+-)}$	• f2(2010)	$0^{+}(2^{+}+)$	$K^{*}(1990)$	$\frac{1}{2}(0^{+})$	ADMIXTU	RE	 ψ(4360) 	$0^{-}(1^{-})$	
• f1(1420)	$0^{+}(1^{+}^{+})$	f ₀ (2020)	$0^{+}(0^{+}+)$	• K [*] (2045)	$\frac{1}{2}(2^{+})$	V _{cb} and V _{ul}	, CKM Ma-	 ψ(4415) 	$0^{-}(1^{-})$	
 ω(1420) 	0-(1)	 f₄(2050) 	$0^{+}(4^{++})$	K ₄ (2043)	$\frac{1}{2}(4)$ $\frac{1}{2}(2^{-})$	• B*	1/2(1-)	• Z _c (4430)	$1^{+}(1^{+-})$	
f ₂ (1430)	$0^{+}(2^{++})$	π ₂ (2100)	1-(2-+)	K ₂ (2320)	$1/2(3^+)$	• B ₁ (5721)	$1/2(1^+)$	$\chi_{c0}(4500)$	$0^{+}(0^{++})$	
• a ₀ (1450)	$1^{-}(0^{++})$	f ₀ (2100)	0+(0++)	K=(2380)	1/2(5-)	B [*] _J (5732)	?(??)	X(4630)	0+(?:+)	
 ρ(1450) 	1+(1)	$f_2(2150)$	0+(2++)	K1(2500)	1/2(4-)	 B[*]₂(5747) 	1/2(2+)	• \psi(4660)	$0^{-}(1^{-})$	
• η(1475)	$0^+(0^-+)$	$\rho(2150)$	1 ⁺ (1)	K(3100)	(???)	B _J (5840)	$1/2(?^{?})$	$\chi_{c1}(4685)$	0'(1'')	
• T ₀ (1500)	$0^+(0^+)$	• φ(21/0) • (2000)	0(1)	CUADI		• Bj(5970)	1/2(?')	$\chi_{c0}(4700)$	0.(0)	
f'(1510)	$0^{+}(2^{+}+)$	$f_0(2200)$ $f_1(2220)$	$0^+(2^{++})$		1ED •1)	BOTTOM	STRANGE	b	Б	
fo(1565)	$0^{+}(2^{+}+)$	1)(2220)	(r_4^{++})	• D [±]	1/2(0=)	$(B = \pm 1,$	S = ∓1)	(+ possibly no	on qq states)	
e(1570)	1+(1)	n(2225)	0+(0-+)	• D ⁰	$\frac{1}{2}(0^{-})$	• B ⁰ _c	$0(0^{-})$	 η_b(1S) 	$0^{+}(0^{-+})$	
h1 (1595)	$0^{-}(1^{+}-)$	ρ ₃ (2250)	1+(3)	 D*(2007)⁰ 	1/2(1-)	• B [*] _c	$0(1^{-1})$	 <i>Υ</i>(15) 	0-(1)	
 π1(1600) 	$1^{-}(1^{-}+)$	• f ₂ (2300)	$0^{+}(2^{++})$	 D*(2010)[±] 	$1/2(1^{-1})$	X(5568)±	?(??)	 χ_{b0}(1P) 	0+(0++)	
• a ₁ (1640)	$1^{-}(1^{++})$	f ₄ (2300)	0+(4++)	 D[*]₀(2300) 	1/2(0+)	 B_{s1}(5830)⁰ 	$0(1^{+})$	 χ_{b1}(1P) 	0+(1++)	
$f_2(1640)$	$0^{+}(2^{++})$	f ₀ (2330)	0+(0++)	 D1(2420) 	$1/2(1^+)$	 B[*]₅₂(5840)⁰ 	0(2+)	• $h_b(1P)$	$0^{-}(1^{+})$	
 η₂(1645) 	0+(2 - +)	• f ₂ (2340)	0+(2++)	 D₁(2430)⁰ 	$1/2(1^+)$	$B_{sJ}^{*}(5850)$?(? [?])	• χ _{b2} (1P)	0'(2'')	
 ω(1650) 		ρ ₅ (2350)	1'(5)	 D[*]₂(2460) 	1/2(2+)	$B_{sJ}(6063)^0$	$0(?^{i}_{2})$	η _b (25)	$0^{-}(1^{-})$	
• W3(16/		(2370)	$p_{i}^{(i)}(i, r)$	$D_0(2550)^0$	1/2(0-)	B _{sJ} (6114) ⁰	0(?:)	• T ₂ (1D)	$0^{-}(2^{-})$	
		5510)	0.(0)	D (2600) ⁰	1/2(1-)	BOTTOM.	HARMED	• YE0(2P)	$0^{+}(0^{+}+)$	
				D*(2640)=	1/2(?:)	(B = C	= ±1)	 χ_{b1}(2P) 	$0^{+}(1^{+}+)$	
				$D_2(2740)^{\circ}$	1/2(2-)	• B_c^+	$0(0^{-})$	 h_b(2P) 	$0^{-(1+-)}$	
	—			• D ₃ (2750)	1/2(3)	 • B_c(2S)[±] 	00-	 χ_{b2}(2P) 	$0^{+}(2^{++})$	
				$D_1(2700)^{\circ}$	1/2(1)	,	. ,	 <i>Υ</i>(35) 	0-(1)	
				D(3000)*	1/2(?`)	CC (⊥ pocsibly po	n_azi states)	 χ_{b1}(3P) 	$0^+(1^{++})$	
						(10)	ot (o = to	 χ_{b2}(3P) 	0+(2++)	
						• $\eta_c(1S)$	0-(1)	• 7(45)	$0^{-}(1^{-})$	
		1		I		• J/ψ(15) (1P)	$0^{+}(0^{+}^{+})$	 Z_b(10610) Z_b(106E0) 	$1^{+}(1^{+})$ $1^{+}(1^{+})$	
						(1P)	$0^+(1^++)$	• 2 _b (10000) 22(10752)	2?(1)	
	N 4	Λ.				1P)	$0^{-}(1^{+}-)$	• 7(10860)	$0^{-}(1^{-})$	
\sim			Me	SO		(1P)	$0^+(2^+)$	• $\gamma(11020)$	0-(1)	
						25)	0+(0-+)	. ((-)	
		_		_		<i>(S</i>)	0-(1)	OTH	HR .	
						+ al.(2770)	$0^{-}(1^{-})$	Eurther Sta	tes	

Most of hadrons are unstable (above two-hadron threshold) 5

Part I : Introduction

Aim of this lecture

Various excitations of hadrons

Strategy :

- use symmetry principle to constrain hadron interactions
- treat unstable hadrons as resonances in scattering

Contents

Contents

Part I : Basics

- Chiral symmetry

S. Scherer and M. R. Schindler, *A Primer for Chiral Perturbation Theory* (Springer, Berlin, 2012)

- Resonances

J.R. Taylor, *Scattering Theory* (Wiley, New York, 1972); <u>T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021)</u>

Part II : Application

- $\bar{K}N$ scattering and $\Lambda(1405)$ resonance

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th]

- Compositeness of hadrons

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

QCD and isospin symmetry

QCD Lagrangian (*u*, *d* **quark part)**

 $\mathscr{L}_{\text{QCD}} = \bar{q}(i\gamma^{\mu}D_{\mu})q - \bar{q}Mq + (\text{gluons, heavy quarks})$ **kinetic term mass term**

$$q = \begin{pmatrix} u \\ d \end{pmatrix}, \quad \bar{q} = (\bar{u} \quad \bar{d}) = q^{\dagger} \gamma^{0}, \quad M = \begin{pmatrix} m_{u} & m_{d} \end{pmatrix}$$

Flavor SU(2)_V (isospin) transformation $U^{\dagger}U = 1$, det U = 1

$$q \rightarrow U q, \quad \bar{q} \rightarrow \bar{q} U^{\dagger}$$

 $m_u \simeq m_d$: \mathscr{L}_{QCD} has an approximate $SU(2)_V$ symmetry $\bar{q}q \rightarrow \bar{q}U^{\dagger}Uq = \bar{q}q$

Consequence: hadrons belog to isospin multiplets

$$N = (p, n), \quad \pi = (\pi^+, \pi^0, \pi^-), \quad \cdots$$

Chiral transformation

Decompose q into right-handed q_R and left-handed q_L

$$q = q_R + q_L, \quad q_R = P_R q, \quad q_L = P_L q, \quad P_{R,L} = (1 \pm \gamma_5)/2,$$

$$\bar{q} = \bar{q}_R + \bar{q}_L, \quad \bar{q}_R = \bar{q}P_L, \quad \bar{q}_L = \bar{q}P_R$$

- Chiral $SU(2)_R \otimes SU(2)_L$ transformation $R^{\dagger}R = L^{\dagger}L = 1$

$$q_{R} \rightarrow R q_{R}, \quad \bar{q}_{R} \rightarrow \bar{q}_{R} R^{\dagger}, \quad q_{L} \rightarrow L q_{L}, \quad \bar{q}_{L} \rightarrow \bar{q}_{L} L^{\dagger}$$

Kinetic term : q_R and q_L are separated —> chiral symmetry $\bar{q}_R(i\gamma^\mu D_\mu)q_R + \bar{q}_L(i\gamma^\mu D_\mu)q_L$

Mass term : q_R and q_L are mixed —> chiral symmetry broken $-m\bar{q}_Rq_L - m\bar{q}_Lq_R$, $\bar{q}_Rq_L \rightarrow \bar{q}_RR^{\dagger}Lq_L \neq \bar{q}_Rq_L$

- invariant if $R = L \longrightarrow SU(2)_V$ is unbroken

Spontaneous symmetry breaking (SSB)

u, *d* quark masses are much smaller than hadron scale

- -> approximately massless
- -> QCD has (approximate) chiral symmetry

Order parameter of SSB : chiral condensate

 $\left<\bar{q}q\right>\equiv\left<0\left|\,\bar{q}q\,\right|\,0\right>$

- $|0\rangle$: QCD vacuum
- Operator $\bar{q}q = \bar{q}_L q_R + \bar{q}_R q_L$ breaks chiral symmetry
- It is known that $\langle \bar{q}q \rangle \neq 0$ at low-energy hadron physics

 $SU(2)_R \otimes SU(2)_L \rightarrow SU(2)_V$

Chiral symmetry is spontaneously broken by QCD vacuum 10

Consequence of SSB 1 : NG bosons

Appearance of massless Nambu-Goldstone (NG) bosons

- Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); Phys. Rev. 124, 246 (1961),
- J. Goldstone, Nuovo Cim. 19, 154 (1961),
- J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962)

- n_{NG} : # of NG bosons, n_{BS} : # of broken generators

 $n_{NG} = n_{BS}$

- $SU(2)_R \otimes SU(2)_L \rightarrow SU(2)_V$ case : $n_{BS} = 3$
- π has I = 1 : 3 components
- π is much lighter than other hadrons

c.f.) in the absence of Lorentz invariance...

H. Watanabe and H. Murayama, Phys. Rev. Lett. 108, 251602 (2012), Y. Hidaka, Phys. Rev. Lett. 110, 091601 (2013)

 $n_I + 2n_{II} = n_{BS}$

 π

Solution $\Delta - - f_0, a_0$ $N - - f_0, a_0$ $- \rho, \omega$

0.1†

Consequence of SSB 2 : low-energy theorems

- Low-energy theorems : relations dictated by chiral symmetry
 - derived by current algebra —> chiral perturbation theory

Gell-Mann Oakes Renner relation

M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)

 $m_{\pi}^2 f_{\pi}^2 = -m\langle \bar{q}q \rangle + \cdots$

- f_{π} : pion decay constant ($\pi^+ \rightarrow \mu^+ \nu_{\mu}$)

Weinberg-Tomozawa theorem

S. Weinberg, Phys. Rev. Lett. 17, 616 (1966), Y. Tomozawa, Nuovo Cim. A46, 707 (1966)

$$a \propto -\frac{m_{\pi}}{f_{\pi}^2} + \cdots$$

- $\pi\pi$, πN scattering lengths $a < -f_{\pi}$

Weinberg-Tomozawa theorem for πN

Meson-baryon interaction V_{WT} and scattering length a_{WT}

$$V_{\rm WT} = -\frac{Cm}{f^2}$$
 —> (Born approx.) $a_{\rm WT} = -\frac{CmM}{8\pi(m+M)f^2}$

- *C* : coupling strength determined by group theory $C^{SU(2)} = -I_{\alpha}(I_{\alpha} + 1) + 2 + I_T(I_T + 1)$
 - —> sign and strength of the interaction are fixed
- proportional to meson mass m
 - -> interaction vanishes in the chiral limit $m \rightarrow 0$

Channel	C	$m \; [{ m MeV}]$	$V_{\rm WT}$ [fm]	$a_{\rm WT}$ [fm]	$a_{\rm emp}$ [fm]
$\pi N(I=1/2)$	2	138	-3.2	0.22	0.240 ± 0.003
$\pi N(I=3/2)$	-1	138	1.6	-0.11	-0.122 ± 0.003

Empirical *πN* scattering lengths are well reproduced

Flavor SU(3) : *k*_N system?

Meson-baryon interaction V_{WT} and scattering length a_{WT}

$$V_{\rm WT} = -\frac{Cm}{f^2}$$
 —> (Born approx.) $a_{\rm WT} = -\frac{CmM}{8\pi(m+M)f^2}$

Channel	C	m [MeV]	$V_{\rm WT}$ [fm]	$a_{\rm WT}$ [fm]	$a_{\rm emp}$ [fm]
$\pi N(I=1/2)$	2	138	-3.2	0.22	0.240 ± 0.003
$\pi N(I=3/2)$	-1	138	1.6	-0.11	-0.122 ± 0.003
$\bar{K}N(I=0)$	3	496	-12.1	0.63	-1.70 + 0.68i
$\bar{K}N(I=1)$	1	496	-4.0	$\overline{0.21}$	0.37 + 0.60i
$\pi\Sigma(I=0)$	4	138	-6.4	0.46	none

- Imaginary part <— decay to $\pi\Sigma, \pi\Lambda$
- Sign of Re $a_{\bar{K}N(I=0)} < \Lambda(1405)$ below threshold

 $\bar{K}N(I = 0)$ interaction is too strong; Born approx. is not valid —> need for nonperturbative resummation (part II)

14

Contents

Contents

Part I : Basics

- Chiral symmetry

S. Scherer and M. R. Schindler, *A Primer for Chiral Perturbation Theory* (Springer, Berlin, 2012)

- Resonances

J.R. Taylor, *Scattering Theory* (Wiley, New York, 1972); <u>T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021)</u>

Part II : Application

- $\bar{K}N$ scattering and $\Lambda(1405)$ resonances

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th]

- Compositeness of hadrons

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

Characterization of resonance

- Various definitions of resonance
 - 1) peak in spectra / cross sections
 - 2) $\pi/2$ crossing of phase shift
 - **3) Eigenstate of Hamiltonian :** $H|R\rangle = E_R|R\rangle$, $E_R \in \mathbb{C}$
 - 4) Pole of the scattering amplitude

We will show that

- 3) and 4) are theoretically unambiguous definitions
- 1) and 2) agree with 3) and 4) in an idealized situation

Gamow theory

Resonance as "eigenstate" of Hamilotonian

- Complex eigenenergy

G. Gamow, Z. Phys. 51, 204 (1928)

Zur Quantentheorie des Atomkernes. Von G. Gamow, z. Zt. in Göttingen. Mit 5 Abbildungen. (Eingegangen am 2. August 1928.) Um diese Schwierigkeit zu überwinden, müssen wir annehmen, daß die Schwingungen gedämpft sind, und E komplex setzen:

$$E = E_0 + i \frac{h \lambda}{4 \pi}$$

wo E_0 die gewöhnliche Energie ist und λ das Dämpfungsdekrement (Zerfallskonstante). Dann sehen wir aber aus den Relationen (2a) und (2b),

- time dependence : decreasing probability

 $\psi = \Psi(q) \cdot e^{+\frac{2\pi i E}{\hbar}t} \propto e^{+2\pi i E_0 t/\hbar} e^{-(\lambda/2)t}, \quad |\Psi|^2 \propto e^{-\lambda t}$

Eigenvalue of Hermitian operator should be real...

- real in Hilbert space (~ square integrable functions) $\int |\psi(\mathbf{r})|^2 d^3r < \infty$

- complex eigenvalue is allowed in extended space

Square well potential

Schödinger equation for radial w.f. $\chi_{\ell}(r)$ in s wave ($\hbar = 1, m = 1$)

$$-\frac{1}{2}\frac{d^2\chi(r)}{dr^2} + V(r)\chi(r) = E\chi(r)$$

- w.f. :
$$\psi_{\ell,m}(\mathbf{r}) = \frac{\chi_{\ell}(r)}{r} Y_{\ell}^m(\hat{\mathbf{r}})$$

- Square well potential

$$V(r) = \begin{cases} -V_0 & (0 \le r \le b) \\ 0 & (b < r) \end{cases}$$

- Scattering solution (E > 0, continuum, b.c. $\chi(r = 0) = 0$)

$$\chi(r) = \begin{cases} C \sin(\sqrt{2(E+V_0)}r) & (0 \le r \le b) \\ A^{-}(p)e^{-i\sqrt{2E}r} + A^{+}(p)e^{+i\sqrt{2E}r} & (b < r) \end{cases}$$

Note : scattering solution is not normalizable

Bound state solution

 $-> A^{-}(i\kappa) = 0$: vanishing incoming wave

Discrete eingenstate satisfies outgoing b.c. at $r \to \infty$

Resonance solution

- **Pure imaginary momentum** $p = i\kappa$ for bound state
 - Physical scattering momentum *p* is real
 - -> Bound state : analytic continuation of momentum

Resonance : momentum continued to complex *p*

- definition of resonance 3)

 $1/|A^{-}(p)|$ in complex *p* plane

- outgoing b.c. $A^{-}(p) = 0$, $p \in \mathbb{C}$

- numerical solution with $V_0 = 10b^{-2}$

	$p \ [b^{-1}]$	$E = p^2/2 \ [b^{-2}]$
Bound state B	+ 3.68i	- 6.78
1st resonance R_1	1.06 - 1.02i	0.05 - 1.08i
2nd resonance R_2	6.29 - 1.41i	18.8 - 8.86i
3rd resonance R_3	9.90 - 1.69i	47.6 - 16.8i
÷		

W.f. of resonance

$1/|A^{-}(p)|$ in complex *p* plane

 Resonance solutions in lower half (Im p < 0) of p plane

$$p = p_R - ip_I, \quad p_R, p_I > 0$$

- Behavior of w.f.

 $\chi(r) \rightarrow A^+(p)e^{ipr} \propto e^{ip_R r}e^{+p_I r}$ oscillating increasing

-> diverges at $r \to \infty$ need modified normalization

Complex eigenvalue <-- non-square-integrable functions

Scattering theory : setup

Basic setup

- nonlerativistic two-body scattering of m_1, m_2
- elastic scattering without internal d.o.f. (spin, etc.)
- rotational symmetry (central potential, [H, L] = 0)
- short range force

Two parameters to determine kinematics

- Energy E or momentum p (1-to-2 correspondence)

$$E = \frac{p^2}{2\mu}, \quad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

- scattering angle θ
- $\theta < ->$ angular momentum ℓ

Scattering theory : physical quantities

Relation between scattering quantities

J.R. Taylor, Scattering theory (Wiley, New York, 1972)

- S matrix $s_{\ell}(p) \in \mathbb{C}$ in ℓ -th partial wave

 $\langle E', \ell', m' | \mathsf{S} | E, \ell, m \rangle = \delta(E' - E) \delta_{\ell'\ell} \delta_{m'm} s_{\ell}(E)$

- phase shift $\delta_{\ell}(p) \in \mathbb{R}$ in ℓ -th partial wave $s_{\ell}(p) = \exp\{2i\delta_{\ell}(p)\}$
- scattering amplitude $f_{\ell}(p) \in \mathbb{C}$ in ℓ -th partial wave

$$f_{\ell}(p) = \frac{s_{\ell}(p) - 1}{2ip}$$

- Total cross section

$$\sigma(p) = \sum_{\ell} 4\pi (2\ell+1) |f_{\ell}(p)|^2 = \sum_{\ell} \sigma_{\ell} < -\ell \text{-th wave cross section}$$

Relation to wave function

Asymptotic wave function (below we focus on $\ell = 0$)

$$\psi_p(r) \rightarrow \frac{i}{2} [J(p)e^{-ipr} - J(-p)e^{+ipr}] \quad (r \rightarrow \infty)$$

- Jost function J(p) : amplitude of incoming wave e^{-ipr}
- amplitude of outgoing wave is -J(-p)
- normalization called "regular solution"
- S matrix, scattering amplitude and Jost function

$$s(p) = \frac{J(-p)}{J(p)} \sim \text{outgoing / incoming ratio}$$
$$f(p) = \frac{s(p) - 1}{2ip} = \frac{J(-p) - J(p)}{2ipJ(p)}$$

Condition for discrete eigenstate

Eigenstate condition : outgoing b.c.

$$\psi_p(r) \rightarrow \frac{i}{2} [J(p)e^{-ipr} - J(-p)e^{+ipr}] \quad (r \rightarrow \infty)$$

- Zero of Jost function $J(p_R) = 0$ with complex p_R
- p_R is pole of S matrix

$$s(p_R) = \frac{J(-p_R)}{J(p_R)} \to \infty$$

- p_R is pole of scattering amplitude —> definition 4)

$$f(p_R) = \frac{J(-p_R) - J(p_R)}{2ip_R J(p_R)} \to \infty$$

Property $J(-p^*) = [J(p)]^*$ —> if *p* is a solution, so is $-p^*$

Complex energy and Riemann sheet

Relation between energy *E* and momentum *p*

$$E = \frac{p^2}{2\mu} = \frac{|p|^2}{2\mu} e^{2i\theta_p} = |E| e^{i\theta_E}$$

- Complex momentum : $p = |p|e^{i\theta_p}$
- Phase of energy $\theta_E = 2\theta_p$
- If θ_p moves $0 \rightarrow 2\pi$, then θ_E moves $0 \rightarrow 4\pi$
- p and -p (θ_p and $\theta_p + \pi$) are mapped onto the same E

Meromorphic function of p (s(p), f(p))

- -> defined on two-sheeted Riemann surface of E
- $0 \le \theta_E < 2\pi$: 1st Riemann sheet of *E* (upper half of *p*)
- $2\pi \le \theta_E < 4\pi$: 2nd Riemann sheet of *E* (lower half of *p*)

Discrete eigenstates (on imaginary axis)

Pure imaginary solution in complex p plane ($p = -p^*$)

- bound state (B) : $E_B < 0$ on 1st Riemann sheet

Re $[p_B] = 0$, Im $[p_B] > 0$

- virtual state (V) : $E_V < 0$ on 2nd Riemann sheet Re $[p_V] = 0$, Im $[p_V] < 0$

Discrete eigenstates (in complex plane)

Complex solution, $p \neq -p^*$, always in pair

- resonance (*R*) : Re $[E_R] > 0$, Im $[E_R] < 0$ on 2nd Riemann sheet Re $[p_R] > 0$, Im $[p_R] < 0$

- anti-resonance (\bar{R}) : Re $[E_{\bar{R}}] > 0$, Im $[E_{\bar{R}}] > 0$ on 2nd sheet Re $[p_{\bar{R}}] < 0$, Im $[p_{\bar{R}}] < 0$

Scattering amplitude on pole and on real axis

Laurent expansion around pole at $E = E_R$

$$f(E) = \frac{C_{-1}}{E - E_R} + \sum_{n=0}^{\infty} C_n (E - E_R)^n = f_{BW}(E) + f_{NR}(E)$$

Breit-Wigner pop-resonant terms

With $E_R = M_R - i\Gamma_R/2$, amplitude is $f(E) = -\frac{\Gamma_R}{2p} \frac{1}{E - M_R + i\Gamma_R/2} + f_{NR}(E)$ $\simeq -\frac{\Gamma_R}{2p} \frac{E - M_R - i\Gamma_R/2}{(E - M_R)^2 + \Gamma_P^2/4}$

29

f(E) diverges at $E = E_R$ (pole) if with f_{NR}

- If we assume that f_{NR} is negligible in comparison with f_{BW} ,

-> real part vanishes and imaginary part peaks at $E = M_R$

Effect on cross section and phase shift

- numerator should be real < — Im $[s(M_R)] = 0$

- $s = e^{2i\delta}$: phase shift $\delta = \pi/2$ at $E = M_R$ —> definition 2)

Both definitions valid only when we assume that f_{NR} is small $_{30}$

Part I : Summary

Summary of Part I

As a consequence of chiral SU(3) symmetry, Weinberg-Tomozawa theorem suggests strongly attractive $\bar{K}N(I = 0)$ interaction.

Resonance : pole of amplitude = eigenstate

T. Hyodo, M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021)

Schrödinger eq. + outgoing b.c. at energy $E~(p=\sqrt{2\mu E})$

- bound states (E < 0)

 $p = i\kappa \quad (\kappa > 0)$

- resonances $(E \in \mathbb{C})$ $p \in \mathbb{C} \quad (\text{Im } p < 0)$

$$\Leftrightarrow \qquad \fbox{zero of Jost function} \\ \swarrow_{\ell}(p) = 0 \qquad \Leftrightarrow \\$$

pole of s-matrix/ scattering amplitude $|f_{\ell}(p)| \to \infty$ $|s_{\ell}(p)| \to \infty$