高エネルギー衝突実験での チャームメソン系の運動量相関関数

神谷有輝A,B,<u>兵藤哲雄B,C</u>,大西明D Bonn Univ.^A,理研iTHEMS^B,都立大理^C,京大基研^D <u>2022, Mar. 17th</u>

閾値近傍の T_{cc} と X(3872)

2

- 定義

$$C(\boldsymbol{q}) = \frac{N_{K^-p}(\boldsymbol{p}_{K^-}, \boldsymbol{p}_p)}{N_{K^-}(\boldsymbol{p}_{K^-})N_p(\boldsymbol{p}_p)}$$

(相互作用/量子統計性なしのとき=1)

- 理論(Koonin-Pratt公式)

$$C(\boldsymbol{q}) \simeq \left[d^3 \boldsymbol{r} \, S(\boldsymbol{r}) \, | \, \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \, |^2 \right]$$

ソース関数 S(r) <-> 2体波動関数(相互作用) ALICE collaboration, Nature 588, 232 (2020); ... $D^{-}p$ 相関関数

D⁻p 相関関数の測定

高エネルギー衝突でのチャームメソンを含む相関関数の測定

ALICE collaboration, arXiv:2201.05352 [nucl-ex]

D⁻p 系に対する初の実験的情報

 $D^{-}p$ 相関関数

DN 散乱の理論模型

- 各模型の散乱長 *f*₀ = *f*(*E* = 0) [fm]

Model	$f_0 (\mathbf{I} = 0)$	$f_0 (\mathbf{I} = 1)$	n_{σ}
Coulomb			(1.1-1.5)
Haidenbauer et al. [21]			
$-g_{\sigma}^{2}/4\pi = 1$	0.14	-0.28	(1.2 - 1.5)
$-g_{\sigma}^{2}/4\pi = 2.25$	0.67	0.04	(0.8 - 1.3)
Hofmann and Lutz [22]	-0.16	-0.26	(1.3-1.6)
Yamaguchi et al. [24]	-4.38	-0.07	(0.6 - 1.1)
Fontoura et al. [23]	0.16	-0.25	(1.1 - 1.5)

[21] J. Hofmann, M.F.M. Lutz, NPA763, 90 (2005);
[22] J. Haidenbauer *et al.*, EPJA33, 107 (2007);
[24] Y. Yamaguchi *et al.*, PRD84, 014032 (2011);
[23] C. Fontoura *et al.*, PRD87, 025206 (2013)

- 散乱長を再現するガウシアンポテンシャルで相関関数を計算
- DN に引力がある模型がfavorされる

DD*/DD*相関関数

DD*/DD* 相互作用の定式化

有効2チャンネル DD*/DD* 相互作用

- V₀ ∈ C < - T_{cc}, X(3872) に関する情報 $a_0^{D^+D^{*0}}$ [fm] $a_0^{D^0D^{*+}}$ [fm] DD^* V_0 [MeV] LHCbの解析 -36.569 - i1.243-7.16 + i1.85-1.75 + i1.82 $a_0^{\{D^0\bar{D}^{*0}\}}$ [fm] $a_0^{\{D^+D^{*-}\}}$ [fm] $\{D\bar{D}^*\}$ V_0 [MeV] PDGの固有エネルギ・ -4.23 + i3.95-43.265 - i6.091-0.41 + i1.47

DD*/DD*相関関数

 D^0D^{*+} 、 D^+D^{*0} 相関関数 (T_{cc} チャンネル)

- 両方のチャンネルで<mark>準束縛状態</mark>を反映するソースサイズ依存性
- *D*⁰*D*^{*+} で非常に強いシグナル、*D*⁺*D*^{*0} でもそれなりの強度
- D^0D^{*+} 相関での弱い D^+D^{*0} カスプ ($q \simeq 52$ MeV)

Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation

$D^{0}\bar{D}^{*0}$ 、 $D^{+}\bar{D}^{*-}$ 相関関数 (X(3872)チャンネル)

- D⁰ *D*^{*0} 相関は準束縛状態を反映
- *D*+*D**- 相関はクーロン相互作用が支配的
- $D^0 \bar{D}^{*0}$ 相関での $D^+ D^{*-}$ カスプ ($q \simeq 126 \text{ MeV}$)

Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation

