$\Lambda(1405)$

as a hadronic molecule

Tetsuo Hyodo

Tokyo Metropolitan Univ.

$\Lambda(1405)$ in meson-baryon scattering

$\Lambda(1405)$ does not fit in standard picture $\rightarrow>$ exotic structure?
N. Isgur, G. Karl, PRD18, 4187 (1978)

Resonance in coupled-channel scattering
R.H. Dalitz, T.C. Wong, G. Rajasekaran, PR153, 1617 (1967)

- coupling to MB states

Detailed analysis of $\bar{K} N-\pi \Sigma$ scattering is necessary.

Pole positions determined

Recent analyses with chiral SU(3) dynamics at NLO

 Kaonic hydrogen

 Kaonic hydrogen by SIDDHARTA

 by SIDDHARTA}[14,15] Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012), [17] Z.H. Guo, J.A. Oller, PRC 87, 035202 (2013),
[18] M. Mai, U.G. Meißner, EPJA 51, 30 (2015)

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. [14, 15], NLO	$1424_{-23}^{+7}-i 26_{-14}^{+3}$	$1381_{-6}^{+18}-i 81_{-8}^{+19}$
Ref. [17], Fit II	$1421_{-2}^{+3}-i 19_{-5}^{+8}$	$1388_{-9}^{+9}-i 114_{-25}^{+24}$
Ref. [18], solution \#2	$1434_{-2}^{+2}-i 10_{-1}^{+2}$	$1330_{-5}^{+4}-i 56_{-11}^{+17}$
Ref. [18], solution \#4	$1429_{-7}^{+8}-i 12_{-3}^{+2}$	$1325_{-15}^{+15}-i 90_{-18}^{+12}$

- Two poles: superposition of two eigenstates
J.A. Oller, U.G. Meißner, PLB 500, 263 (2001);
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meißner, NPA 723, 205 (2003)

Introduction: $\Lambda(1405)$

$\Lambda(1405)$ in PDG

2020 update of PDG

P.A. Zyla, et al., PTEP 2020, 083C01 (2020); http://pdg. lbl . gov/

- Particle Listing section:

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
$\Lambda(1405) 1 / 2^{-} \quad I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)$Status: $* * * *$

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, $083 \mathrm{C01}$ (2020) new!
^(1380) $1 / 2^{-}$

$$
j^{p}=\frac{1^{-}}{l^{-}}
$$

Status: * *

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021);
T. Hyodo, W. Weise, arXiv: 2202.06181 [nucl-th]

- $\Lambda(1405)$ is no longer at 1405 MeV but ~ $\mathbf{1 4 2 0} \mathbf{~ M e V}$.
- Lower pole: two-star resonance $\Lambda(1380)$

Next step: internal structure

Structure of $\Lambda(1405)$?

Weak binding relation for stable bound states

S. Weinberg, Phys. Rev. 137, B672 (1965)

Generalization to unstable resonances

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

Compositeness X threshold channel

"Elementarity" Z other contributions
or

observables $\left(a_{0}, E_{h}\right)$

Compositeness of bound states

Weak-binding relation for stable states

Compositeness X of s-wave weakly bound state $\left(R \gg R_{\text {typ }}\right)$
S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

$$
|d\rangle=\sqrt{X}|N N\rangle+\sqrt{1-X} \mid \text { others }\rangle
$$

range of interaction
$a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\frac{\stackrel{R_{\text {vep }}}{R}}{\mathrm{q}}\right)\right\}, \quad R=\frac{1}{\sqrt{2 \mu \bar{B}}}$
scattering length
radius of bound state

- Deuteron is $N N$ composite: $a_{0} \sim R \Rightarrow X \sim 1$
- Internal structure from observables $\left(a_{0}, B\right)$

Quantitative discussion?

Detour: deuteron in more detail

Weak-binding relation

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\frac{R_{\mathrm{YyP}}}{R}\right)\right\}, \quad R=\frac{1}{\sqrt{2 \mu B}}
$$

- empirical values for deuteron case

$$
a_{0} \sim 5.42 \mathrm{fm}, \quad R \sim 4.32 \mathrm{fm}
$$

- neglecting $\mathcal{O}\left(R_{\mathrm{typ}} / R\right)$ term : contradiction with $0 \leq X \leq 1$?
Y. Kamiya, T. Hyodo, PoS INPC2016, 270 (2017),
Y. Li, F.K. Guo, J.Y. Pang, J.J. Wu, arXiv:2110.02766 [hep-ph],
J. Song, L.R. Dai, E, Oset arXiv:2201.04414 [hep-ph].

$$
X \sim 1.68
$$

If $0 \leq X \leq 1$, then $a_{0}<R$
$\rightarrow>$ For systems with $a_{0}>R, \mathcal{O}\left(R_{\mathrm{typ}} / R\right)$ term is important.
T. Kinugawa, T. Hyodo, in preparation

Detour: range correction

Uncertainty estimation with $\mathcal{O}\left(R_{\mathrm{typ}} / R\right)$ term
Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

$$
X_{\mathrm{u}}=\frac{a_{0} / R+\xi}{2-a_{0} / R-\xi}, \quad X_{\mathrm{l}}=\frac{a_{0} / R-\xi}{2-a_{0} / R+\xi}, \quad \xi=\frac{R_{\mathrm{typ}}}{R}
$$

- exclude region outside $0 \leq X \leq 1$ Application and finite range correction

$$
R_{\mathrm{typ}}=\max \left\{R_{\mathrm{int}}, R_{\mathrm{eff}}\right\}
$$

T. Kinugawa, T. Hyodo, arXiv:2111.06619; 2112.00249; 2201.04283 [hep-ph]

Bound state	$R_{\text {typ }}=R_{\text {eff }}$	$R_{\text {typ }}=R_{\text {int }}$	This work
d	$1.68_{-0.943}^{+3.19}$	$1.68_{-0.823}^{+2.4}$	$0.738 \leq X \leq 1$
$X(3872)$	$0.743_{-0.213}^{+0.282}$	$0.743_{-0.0627}^{+0.0675}$	$0.530 \leq X \leq 1$
$N \Omega$ dibaryon	$1.40_{-0.600}^{+1.20}$	$1.40_{-0.364}^{+0.523}$	$0.801 \leq X \leq 1$
$\Omega \Omega$ dibaryon	$1.56_{-0.773}^{+1.95}$	$1.56_{-0.626}^{+1.22}$	$0.791 \leq X \leq 1$
${ }_{\Lambda}^{3} \mathrm{H}$	$1.35_{-0.366}^{+0.531}$	$1.35_{-0.603}^{+1.241}$	$0.745 \leq X \leq 1$
${ }^{4}$ He dimer	$1.08_{-0.152}^{+0.179}$	$1.08_{-0.115}^{+0.129}$	$0.926 \leq X \leq 1$

Compositeness of bound states

Effective field theory

Low-energy scattering with near-threshold bound state

- Nonrelativistic EFT with contact interaction
D.B. Kaplan, Nucl. Phys. B494, 471 (1997)
E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

$$
\begin{aligned}
& H_{\text {free }}=\int d \mathbf{r}\left[\frac{1}{2 M} \nabla \psi^{\dagger} \cdot \nabla \psi+\frac{1}{2 m} \nabla \phi^{\dagger} \cdot \nabla \phi+\frac{1}{2 M_{0}} \nabla B_{0}^{\dagger} \cdot \nabla B_{0}+\omega_{0} B_{0}^{\dagger} B_{0}\right] \\
& H_{\mathrm{int}}=\int d \mathbf{r}\left[g_{0}\left(B_{0}^{\dagger} \phi \psi+\psi^{\dagger} \phi^{\dagger} B_{0}\right)+v_{0} \psi^{\dagger} \phi^{\dagger} \phi \psi\right]
\end{aligned}
$$

- cutoff: $\Lambda \sim 1 / R_{\text {typ }}$ (interaction range of microscopic theory)
- At low momentum $p \ll \Lambda$, interaction \sim contact

Compositeness of bound states

Compositeness and "elementarity"

Eigenstates

$$
\begin{aligned}
& H_{\text {free }}\left|B_{0}\right\rangle=\omega_{0}\left|B_{0}\right\rangle, \quad H_{\text {free }}|\mathbf{p}\rangle=\frac{\mathbf{p}^{2}}{2 \mu}|\mathbf{p}\rangle \\
& \left(H_{\text {free }}+H_{\text {int }}\right)|B\rangle=-B|B\rangle
\end{aligned}
$$

free (discrete + continuum)
full (bound state)

- normalization of $|B\rangle+$ completeness relation

$$
\langle B \mid B\rangle=1, \quad 1=\left|B_{0}\right\rangle\left\langle B_{0}\right|+\int \frac{d \mathbf{p}}{(2 \pi)^{3}}|\mathbf{p}\rangle\langle\mathbf{p}|
$$

- projections onto free eigenstates
$1=Z+X, \quad Z \equiv\left|\left\langle B_{0} \mid B\right\rangle\right|^{2}, \quad X \equiv \int \frac{d \mathbf{p}}{(2 \pi)^{3}}|\langle\mathbf{p} \mid B\rangle|^{2}$
"elementarity" compositeness

Z, X : real and nonnegative $\rightarrow>$ interpreted as probability

Compositeness of bound states

Weak binding relation

$\psi \phi$ scattering amplitude (exact result)

$$
\begin{aligned}
& f(E)=-\frac{\mu}{2 \pi} \frac{1}{[v(E)]^{-1}-G(E)} \\
& v(E)=v_{0}+\frac{g_{0}^{2}}{E-\omega_{0}}, \quad G(E)=\frac{1}{2 \pi^{2}} \int_{0}^{\Lambda} d p \frac{p^{2}}{E-p^{2} /(2 \mu)+i 0^{+}}
\end{aligned}
$$

Compositeness $X \leftarrow v(E), G(E)$

$$
X=\frac{G^{\prime}(-B)}{G^{\prime}(-B)-[1 / v(-B)]^{\prime}}
$$

$1 / R=\sqrt{2 \mu B}$ expansion of scattering length a_{0}

$$
a_{0}=-f(E=0)=R\left\{\frac{2 X}{1+X} \overline{1+\mathcal{O}\left(\frac{R_{v p}}{R}\right)}\right\} \text { renormalization dependent }
$$

renormalization independent
If $R \gg R_{\text {typ }}$, correction terms neglected: $X \leftarrow\left(a_{0}, B\right)$

Compositeness of quasi-bound states

Inclusion of decay channel

Introduce decay channel

$$
\begin{aligned}
& H_{\text {free }}^{\prime}=\int d \mathbf{r}\left[\frac{1}{2 M^{\prime}} \nabla \psi^{\prime \dagger} \cdot \nabla \psi^{\prime}-\nu_{\psi} \mu^{\prime} \psi^{\dagger} \psi^{\prime}+\frac{1}{2 m^{\prime}} \nabla \phi^{\dagger} \cdot \nabla \phi^{\prime}-\nu_{\phi} \phi^{\dagger} \phi^{\prime}\right] \\
& H_{\mathrm{int}}^{\prime}=\int d \mathbf{r}\left[g_{0}^{\prime}\left(B_{0}^{\dagger} \phi^{\prime} \psi^{\prime}+\psi^{\dagger \uparrow} \phi^{\dagger} B_{0}\right)+v_{0}^{\prime} \psi^{\dagger} \phi^{\dagger} \phi^{\prime} \psi^{\prime}+v_{0}^{t}\left(\psi^{\dagger} \phi^{\dagger} \phi^{\prime} \psi^{\top}+\psi^{\dagger} \phi^{\dagger} \phi \psi\right)\right]
\end{aligned}
$$

Quasi-bound state : complex eigenvalue

$$
\begin{aligned}
& H=H_{\text {free }}+H_{\text {free }}^{\prime}+H_{\mathrm{int}}+H_{\mathrm{int}}^{\prime} \\
& H|h\rangle=E_{h}|h\rangle, \quad E_{h} \in \mathbb{C}
\end{aligned}
$$

$$
v_{\psi}+v_{\phi}=v
$$

Generalized relation : correction from threshold difference

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\mathrm{typ}}}{R}\right|\right)+\mathcal{O}\left(\left|\frac{\ell}{R}\right|^{3}\right)\right\}, \quad R=\frac{1}{\sqrt{-2 \mu E_{h}}}, \quad \ell \equiv \frac{1}{\sqrt{2 \mu \nu}}
$$

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

If $|R| \gg\left(R_{\text {typ }}, \ell\right)$, correction terms neglected: $X \leftarrow\left(a_{0}, E_{h}\right)$

Evaluation of compositeness

Generalized weak-binding relation

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\text {vep }}}{R}\right|\right)+\mathcal{O}\left(\left|\frac{\ell}{R}\right|^{3}\right)\right\}, \quad R=\frac{1}{\sqrt{-2 \mu E_{h}}}, \quad \ell \equiv \frac{1}{\sqrt{2 \mu \nu}}
$$

$\left(a_{0}, E_{h}\right)$ determinations by several groups

- neglecting correction terms:

	$E_{h}[\mathrm{MeV}]$	$a_{0}[\mathrm{fm}]$	$X_{\bar{K} N}$	$\tilde{X}_{\bar{K} N}$	$U / 2$
Set 1 [35]	$-10-i 26$	$1.39-i 0.85$	$1.2+i 0.1$	1.0	0.3
Set 2 [36]	$-4-i 8$	$1.81-i 0.92$	$0.6+i 0.1$	0.6	0.0
Set 3 [37]	$-13-i 20$	$1.30-i 0.85$	$0.9-i 0.2$	0.9	0.1
Set 4 [38]	$2-i 10$	$1.21-i 1.47$	$0.6+i 0.0$	0.6	0.0
Set 5 [38]	$-3-i 12$	$1.52-i 1.85$	$1.0+i 0.5$	0.8	0.3

- In all cases, $X \sim 1$ with small $U / 2$ (complex nature)

Uncertainty estimation

Estimation of correction terms: $|R| \sim 2$ fm

$$
a_{0}=R\left\{\frac{2 X}{1+X}+\mathcal{O}\left(\left|\frac{R_{\text {ypp }}}{R}\right|\right)+\mathcal{O}\left(\left|\frac{\ell}{R}\right|^{3}\right)\right\}, \quad R=\frac{1}{\sqrt{-2 \mu E_{h}}}, \quad \ell \equiv \frac{1}{\sqrt{2 \mu \nu}}
$$

- ρ meson exchange picture: $R_{\mathrm{typ}} \sim 0.25 \mathrm{fm}$
- energy difference from $\pi \Sigma$: $\ell \sim 1.08 \mathrm{fm}$

Summary

Pole structure of the $\Lambda(1405)$ region is now well constrained：＂$\Lambda(1405)$＂$\rightarrow \Lambda(1405)$ and $\Lambda(1380)$ ． Y．Ikeda，T．Hyodo，W．Weise，PLB 706， 63 （2011）；NPA 881， 98 （2012）；
 P．A．Zyla，et al．（Particle Data Group），PTEP 2020，083C01（2020）
 T．Hyodo，M．Niiyama，PPNP 120， 103868 （2021）；
 T．Hyodo，W．Weise，arXiv： 2202.06181 ［nucl－th］ 8
 \author{ \qquad

 \author{\author{
\qquad

 ```
\$

```
}
} ss \\ R}


Summary region is now well


？
\(\square\)

9

\section*{e）}



T．Kinugawa，T．Hyodo，arXiv：2111．06619；2112．00249； 2201.04283 ［hep－ph］ Generalized weak－binding relation shows that \(\Lambda(1405)\) is dominated by molecular \(\bar{K} N\) state．

Y．Kamiya，T．Hyodo，PRC93， 035203 （2016）；PTEP2017，023D02（2017） \\ \title{
With the uncertainty estimation and range \\ \title{
With the uncertainty estimation and range correction，deuteron is quantitatively shown to be composite．
}
T．Kinugawa，T．Hyodo，arXiv：2111．06619；2112．00249； 2201.04283 ［hep－ph］
Generalized weak－binding relation shows that
\(\Lambda\)（1405）is dominated by molecular \(\bar{K} N\) state．
Y．Kamiya，T．Hyodo，PRCO3，035203（2010）；PTEP2017，023D02（2017）

T Kinugawa， C
\(=\)```

