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 in meson-baryon scatteringΛ(1405)
Introduction: Λ(1405)

 does not fit in standard picture —> exotic structure?Λ(1405)

: experiment

Λ(1405)

: theory

N. Isgur, G. Karl, PRD18, 4187 (1978)
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Pole positions determined
Recent analyses with chiral SU(3) dynamics at NLO

[14,15] Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012),

Introduction: Λ(1405)

66 Y. Ikeda et al. / Physics Letters B 706 (2011) 63–67

Fig. 3. Real part (left) and imaginary part (right) of the K − p → K − p forward scattering amplitude extrapolated to the subthreshold region. The empirical real and imaginary
parts of the K − p scattering length deduced from the recent kaonic hydrogen measurement (SIDDHARTA [10]) are indicated by the dots including statistical and systematic
errors. The shaded uncertainty bands are explained in the text.

vation, as previous calculations have commonly used an average
decay constant as a mere fit parameter, irrespective of physical
constraints. In summary, the parameters used for χ2 fits are the
isospin symmetric subtraction constants, ai(µ), and the renormal-
ized constants in the NLO terms, b̄0, b̄D , b̄F and di .

With the TW terms alone a reasonable overall fit (with
χ2/d.o.f. = 1.12) can be reached but the kaonic hydrogen energy
shift comes out too large ("E = 373 eV) and some of the subtrac-
tion constants ai in Eq. (7), especially those in the πΛ and ηΣ
channels, exceed their expected “natural” values ∼ 10−2 by more
than an order of magnitude [14]. This clearly indicates the neces-
sity of including higher order terms in the interaction kernel V ij .
It also emphasizes the important role of the accurate kaonic hy-
drogen data in providing sensitive constraints.

The additional inclusion of direct and crossed meson–baryon
Born terms does not change "E and χ2/d.o.f. in any significant
way. It nonetheless improves the situation considerably since the
subtraction constants ai now come down to their expected “natu-
ral” sizes.

The best fit (with χ2/d.o.f. = 0.96) is achieved when incorpo-
rating NLO terms in the calculations. The inputs used are: the de-
cay constants fπ = 92.4 MeV, f K = 110.0 MeV, fη = 118.8 MeV,
and axial vector couplings D = 0.80, F = 0.46 (i.e. g A = D + F =
1.26); subtraction constants at a renormalization scale µ = 1 GeV
(all in units of 10−3): a1 = a2 = −2.38, a3 = −16.57, a4 = a5 =
a6 = 4.35, a7 = −0.01, a8 = 1.90, a9 = a10 = 15.83; and NLO pa-
rameters (in units of 10−1 GeV−1): b̄0 = −0.48, b̄D = 0.05, b̄F =
0.40, d1 = 0.86, d2 = −1.06, d3 = 0.92, d4 = 0.64. Within the set
of altogether “natural”-sized constants ai the relative importance of
the KΞ channels involving double-strangeness exchange is worth
mentioning.

As seen in Table 1, the results are in excellent agreement with
threshold data. The same input reproduces the whole set of K − p
cross section measurements as shown in Fig. 2 (Coulomb interac-
tion effects are included in the diagonal K −p → K −p channel as
in Ref. [7]). A systematic uncertainty analysis has been performed
by varying the parameters obtained from χ2 fits within the range
permitted by the uncertainty measures of the kaonic hydrogen ex-
perimental data. Since the shift and width of kaonic hydrogen are
rather insensitive to the I = 1 scattering amplitudes, the total cross
section of K − p → π0Λ reaction is also used for the uncertainty
analysis. We find that all cross sections are well reproduced with
the constraint from the kaonic hydrogen measurement as shown
by the shaded areas in Fig. 2. A detailed description of this analy-
sis will be given in a longer forthcoming paper [15].

Equipped with the best fit to the observables at K − p threshold
and above, an optimized prediction for the subthreshold extrapo-
lation of the complex s-wave K − p → K −p amplitude can now be
given. The result is shown in Fig. 3, including again a conservative
uncertainty estimate. The real and imaginary parts of this ampli-
tude display as expected the Λ(1405) resonance as a quasibound
K̄ N (I = 0) state embedded in the πΣ continuum. The present
NLO calculation confirms the two-poles scenario [2,16,17] of the
coupled K − p ↔ πΣ system. Using the best-fit input, the result-
ing locations of the two poles in the complex energy plane are as
follows: “upper” pole (K̄ N-dominated): 1424 − i26 MeV; “lower”
pole (πΣ-dominated): 1381 − i81 MeV. Unlike previously found
patterns in which the location of the lower pole has been sub-
ject to large model uncertainties, the pole positions now remain
remarkably stable with respect to changes of the input. The shift
of the real parts of both these pole positions from the “TW” and
“TW + Born terms” steps to the full NLO calculation is less than
5 MeV. The corresponding change in the imaginary parts is only
slightly larger (between about 10 and 20 MeV).

The K −p scattering length, a(K − p), deduced from the kaonic
hydrogen measurements [10] and with inclusion of Coulomb cor-
rections (see Eq. (10)) is:

Re a
(

K −p
)
= −0.65 ± 0.10 fm,

Im a
(

K −p
)
= 0.81 ± 0.15 fm, (12)

with an error estimate based on the uncertainties assigned to the
measured kaonic hydrogen energy shift and width. Our best fit
NLO result, a(K − p) = −0.70+ i0.89 fm, is perfectly consistent with
Eq. (12). Note that this new determination of the K − p scatter-
ing length has shifted quite significantly in the value of Re a(K −p)
from previous ones [7,9,18,19], mainly because of the new con-
straints from the much improved SIDDHARTA data.

5. Summary

Given the significantly more accurate constraints from the new
kaonic hydrogen measurements, an improved theory of low-energy
antikaon–nucleon interactions on the basis of chiral SU(3) effective
field theory with coupled-channels is now at hand. The results and
conclusions are summarized as follows:

(1) Kaonic hydrogen data are now consistent with low-energy
K − p elastic, charge exchange and strangeness exchange cross sec-
tions.

J.A. Oller, U.G. Meißner, PLB 500, 263 (2001);

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meißner, NPA 723, 205 (2003)

- Two poles: superposition of two eigenstates

[17] Z.H. Guo, J.A. Oller, PRC 87, 035202 (2013), 

[18] M. Mai, U.G. Meißner, EPJA 51, 30 (2015)

2 83. Pole Structure of the »(1405) Region

LEPS collaboration [21] and from the CLAS collaboration [22, 23], electroproduction data from
the CLAS collaboration [24], and proton-proton collision data from COSY [25] and the HADES
collaboration [26]), will shed light on the position of the second pole. The fiÀ spectra from the
CLAS data are analyzed in Ref. [27] and Ref. [18]. It was shown in Ref. [18] that several solutions,
which agree with the scattering data, are ruled out if confronted with the recent CLAS data. The
remaining solutions are collected as solution #2 and solution #4 in Table 83.1. The HADES data
are analyzed in Ref. [28] and Ref [29]. Although the result of the pole found in Ref. [28] is not
compatible with other results, the authors of Ref. [29] invoke the anomalous triangle singularity
mechanism to argue that the invariant mass distribution of the fiÀ system is found at lower masses
than in other reactions. It is thus desirable to perform more comprehensive analyses of fiÀ spectra
together with the systematic error analysis of the scattering data.

Table 83.1: Comparison of the pole positions of »(1405) in the complex
energy plane from next-to-leading order chiral unitary coupled-channel
approaches including the SIDDHARTA constraint. The lower two results
also include the CLAS photoproduction data.

approach pole 1 [MeV] pole 2 [MeV]
Refs. [14, 15], NLO 1424+7

≠23 ≠ i 26+3
≠14 1381+18

≠6 ≠ i 81+19
≠8

Ref. [17], Fit II 1421+3
≠2 ≠ i 19+8

≠5 1388+9
≠9 ≠ i 114+24

≠25
Ref. [18], solution #2 1434+2

≠2 ≠ i 10+2
≠1 1330+4

≠5 ≠ i 56+17
≠11

Ref. [18], solution #4 1429+8
≠7 ≠ i 12+2

≠3 1325+15
≠15 ≠ i 90+12

≠18
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 in PDGΛ(1405)

2020 update of PDG
P.A. Zyla, et al., PTEP 2020, 083C01 (2020); http://pdg.lbl.gov/
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- Particle Listing section:

-  is no longer at 1405 MeV but ~ 1420 MeV.Λ(1405)
- Lower pole: two-star resonance Λ(1380)

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ(1405) 1/2− I (JP ) = 0(12
−) Status: ∗∗∗∗

In the 1998 Note on the Λ(1405) in PDG 98, R.H. Dalitz discussed
the S-shaped cusp behavior of the intensity at the N-K threshold ob-
served in THOMAS 73 and HEMINGWAY 85. He commented that
this behavior ”is characteristic of S-wave coupling; the other below
threshold hyperon, the Σ (1385), has no such threshold distortion
because its N-K coupling is P-wave. For Λ(1405) this asymmetry is

the sole direct evidence that JP = 1/2−.”

A recent measurement by the CLAS collaboration, MORIYA 14,

definitively established the long-assumed JP = 1/2− spin-parity
assignment of the Λ(1405). The experiment produced the
Λ(1405) spin-polarized in the photoproduction process γ p →

K+Λ(1405) and measured the decay of the Λ(1405)(polarized) →

Σ+ (polarized)π−. The observed isotropic decay of Λ(1405) is
consistent with spin J = 1/2. The polarization transfer to the

Σ+(polarized) direction revealed negative parity, and thus estab-

lished JP = 1/2−.

See the related review(s):
Pole Structure of the Λ(1405) Region

Λ(1405) POLE POSITIONΛ(1405) POLE POSITIONΛ(1405) POLE POSITIONΛ(1405) POLE POSITION

REAL PARTREAL PARTREAL PARTREAL PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

1429+ 8
− 7

1 MAI 15 DPWA

1434± 2 2 MAI 15 DPWA

1421+ 3
− 2 GUO 13 DPWA

1424+ 7
−23 IKEDA 12 DPWA

1Solution number 4.
2 Solution number 2.

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

24+ 4
− 6

1 MAI 15 DPWA

20+ 4
− 2

2 MAI 15 DPWA

38+16
−10 GUO 13 DPWA

52+ 6
−28 IKEDA 12 DPWA

1Solution number 4.
2 Solution number 2.

HTTP://PDG.LBL.GOV Page 1 Created: 6/1/2020 08:30

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Λ(1380) 1/2− JP = 1
2
− Status: ∗∗

OMITTED FROM SUMMARY TABLE
See the related review on ”Pole Structure of the Λ(1405) Region.”

Λ(1380) POLE POSITIONΛ(1380) POLE POSITIONΛ(1380) POLE POSITIONΛ(1380) POLE POSITION

REAL PARTREAL PARTREAL PARTREAL PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

1325±15 1 MAI 15 DPWA

1330+ 4
− 5

2 MAI 15 DPWA

1388± 9 GUO 13 DPWA

1381+18
− 6 IKEDA 12 DPWA

1Solution number 4.
2 Solution number 2.

−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART−2×IMAGINARY PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

180+24
−36

1 MAI 15 DPWA

112+34
−22

2 MAI 15 DPWA

228+48
−50 GUO 13 DPWA

162+38
−16 IKEDA 12 DPWA

1Solution number 4.
2 Solution number 2.

Λ(1380) REFERENCESΛ(1380) REFERENCESΛ(1380) REFERENCESΛ(1380) REFERENCES

MAI 15 EPJ A51 30 M. Mai, U.-G. Meissner (BONN, JULI)
GUO 13 PR C87 035202 Z.-H. Guo, J. Oller
IKEDA 12 NP A881 98 Y. Ikeda, T. Hyodo, W. Weise (MUNT, RIKEN, TINT)

HTTP://PDG.LBL.GOV Page 1 Created: 6/1/2020 08:31

new!

T. Hyodo, M. Niiyama, PPNP 120, 103868 (2021);

T. Hyodo, W. Weise, arXiv:2202.06181 [nucl-th]

Introduction: Λ(1405)
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Structure of ?


Weak binding relation for stable bound states


Generalization to unstable resonances

Λ(1405)

Compositeness X “Elementarity” Z
other contributionsthreshold channel

Next step: internal structure

S. Weinberg, Phys. Rev. 137, B672 (1965)

observables (a0, Eh)

or


 ↑

Compositeness

N
K̄ u d

s Σ
π

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)
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Compositeness  of s-wave weakly bound state X (R ≫ Rtyp)
S. Weinberg, Phys. Rev. 137, B672 (1965);

T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

Weak-binding relation for stable states

Quantitative discussion?

|d⟩ = X |NN⟩ + 1 − X |others⟩

a0 = R { 2X
1 + X

+ 𝒪 ( Rtyp

R )}, R =
1
2μB

radius of bound statescattering length

range of interaction

- Deuteron is  composite: NN a0 ∼ R ⇒ X ∼ 1
- Internal structure from observables (a0, B)

 

continuum
NN

deuteron

Compositeness of bound states
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Weak-binding relation
Detour: deuteron in more detail

Compositeness of bound states

a0 ∼ 5.42 fm, R ∼ 4.32 fm

a0 = R { 2X
1 + X

+ 𝒪 ( Rtyp

R )}, R =
1
2μB

- empirical values for deuteron case

- neglecting  term : contradiction with  ?𝒪(Rtyp /R) 0 ≤ X ≤ 1

X ∼ 1.68

Y. Kamiya, T. Hyodo, PoS INPC2016, 270 (2017),

Y. Li, F.K. Guo, J.Y. Pang, J.J. Wu, arXiv:2110.02766 [hep-ph],

J. Song, L.R. Dai, E, Oset arXiv:2201.04414 [hep-ph]. 

If , then 0 ≤ X ≤ 1 a0 < R

T. Kinugawa, T. Hyodo, in preparation

—> For systems with ,  term is important.a0 > R 𝒪(Rtyp /R)
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Uncertainty estimation with  term𝒪(Rtyp /R)

Detour: range correction
Compositeness of bound states

Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

Xu =
a0 /R + ξ

2 − a0 /R − ξ
, Xl =

a0 /R − ξ
2 − a0 /R + ξ

, ξ =
Rtyp

R

T. Kinugawa, T. Hyodo, arXiv:2111.06619; 2112.00249; 2201.04283 [hep-ph] 

Application and finite range correction

APPLICATION OF THE WEAK-BINDING RELATION WITH RANGE CORRECTION 3

TABLE I. Properties of the bound states near the threshold of the two-body system. The scattering length a0, the effective range re, and the
interaction range Rint of the two-body system are shown. The binding energy of the bound state B is measured from the threshold of the
two-body system in this table. B.R. stands for the Bohr radius.

Bound state Two-body system a0 re Rint B
d pn(3S1) 5.42 fm 1.75 fm 1.43 fm 2.22 MeV

X(3872) D0D̄∗0 28.5 fm −5.34 fm 1.43 fm 18 keV
NΩ dibaryon nΩ(5S2) 5.30 fm 1.26 fm 0.676 fm 1.54 MeV
ΩΩ dibaryon ΩΩ(1S0) 4.6 fm 1.27 fm 0.949 fm 1.6 MeV

3
ΛH dΛ 16.8 fm 2.3 fm 4.31 fm 0.13 MeV

4He dimer 4He4He 189 B.R. 13.8 B.R. 10.2 B.R. 1.30 mK

X(3872), the pion exchange is possible in the corresponding
two-body systems. Because the pion is the lightest hadron
which can be exchanged, we estimate the interaction range
Rint by the pion Compton wavelength Rint ∼ 1/mπ. In
Ref. [15], the NΩ potential is parametrized by Gaussian
+(Yukawa)2 form with the lattice pion mass mlat

π = 146
MeV for the Yukawa term. Because this potential is expo-
nentially suppressed beyond the distance 1/2mlat

π , we esti-
mate Rint ∼ 1/2mlat

π = 0.676 fm (the range of the Gaussian
part is ∼ 0.1 fm). As for the dΛ system, we estimate the
interaction range Rint by the radius of the deuteron. The in-
teraction range of the 4He dimer is estimated by the van der
Waals length Rint ∼ lvdW = (mC6/!2)1/4 with the coeffi-
cients C6 calculated in Ref. [26].

4.2. Evaluation of the compositeness

In Table I, we find that the scattering length is the largest
length scale, a0 > |re|, Rint in each system. This justifies
the use of the weak-binding relation to study the composite-
ness of these bound states, even though the length scale of
the strong interaction (fm) is completely different from that
in the atomic system (Å). In addition, except for the hyper-
triton, the magnitude of the effective range is larger than the
estimated interaction range Rint.

Comparing with the applicability of the weak-binding re-
lations with respect to Reff and Rint, we find that X(3872)
lies in the region where only the improved weak-binding re-
lation with Eq. (3) can be applied. Also, the NΩ dibaryon
lies close to the boundary of the applicability of the previous
relation with Eq. (2). This implies that the range correction is
particularly important for these cases, and the weak-binding
relation with the previous correction term (2) might fail to
estimate the compositeness.

Following the uncertainty estimation procedure proposed
in Ref. [9], we apply the weak-binding relations to the bound
states in Table I. In Table II, we show the estimated values of
the compositeness of the bound state X including the uncer-
tainties with the typical length scale Rtyp = Reff = |re| and
Rtyp = Rint, separately. The previous weak-binding relation
with Eq. (2) gives the results in the column Rtyp = Rint,
while for the improved one with Eq. (3), the results with
Rtyp = Reff are adopted except for 3

ΛH. We find that the

lower bound of the compositeness of the NΩ dibaryon is 1.04
for Rtyp = Rint. This contradicts with the definition of the
compositeness of the bound state 0 ≤ X ≤ 1. Namely, the
previous weak-binding relation (Rtyp = Rint) cannot be used
for the NΩ dibaryon. On the other hand, the lower bound is
0.801 with Rtyp = Rint, and therefore the improved relation
with Rtyp = Reff provides the compositeness X consistent
with the definition.

Taking into account the definition of the compositeness
0 ≤ X ≤ 1, the results of the weak-binding relation with the
improved correction term (3) are shown in the fourth column
of Table II. The results show that the composite component
dominates the internal structure of the bound states studied
here. In particular, more than 90% of the 4He dimer consists
of the composite component. On the other hand, while the
composite dominance holds for X(3872), the lower bound
around 0.5 indicates the nonnegligible mixing of the compo-
nents other than the D0D̄∗0 one.

TABLE II. Estimation of the compositeness of bound states X by
the weak-binding relation with Rtyp = Reff (second column) and
Rtyp = Rint (third column). The fourth column shows the results
by the improved correction term (3) together with the constraint
from the definition 0 ≤ X ≤ 1.

Bound state Rtyp = Reff Rtyp = Rint This work

d 1.68+3.19
−0.943 1.68+2.14

−0.823 0.738 ≤ X ≤ 1

X(3872) 0.743+0.282
−0.213 0.743+0.0675

−0.0627 0.530 ≤ X ≤ 1

NΩ dibaryon 1.40+1.20
−0.600 1.40+0.523

−0.364 0.801 ≤ X ≤ 1

ΩΩ dibaryon 1.56+1.95
−0.773 1.56+1.22

−0.626 0.791 ≤ X ≤ 1
3
ΛH 1.35+0.531

−0.366 1.35+1.241
−0.603 0.745 ≤ X ≤ 1

4He dimer 1.08+0.179
−0.152 1.08+0.129

−0.115 0.926 ≤ X ≤ 1

5. Summary

Based on the discussion of the length scales, we propose the
range correction in the weak-binding relation by modifying
the correction term. From the hadrons, nuclei, and atomic
systems, we list the weakly bound states with the sizable ef-
fective range. The compositeness of these bound states is
quantitatively evaluated by using the weak-binding relations.
It is shown that the range correction of the weak-binding re-

Rev. Mex. Fis. ?? (*?*) (????) ???–???

Rtyp = max{Rint, Reff}
0

1

X

- exclude region outside 0 ≤ X ≤ 1 Xl

Xu
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Low-energy scattering with near-threshold bound state
Effective field theory

D.B. Kaplan, Nucl. Phys. B494, 471 (1997)

E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

- Nonrelativistic EFT with contact interaction

B0

 

�

g0 + B0

 

�

g0 +

 

�

 

�

v0

 �

B0

Hfree = ∫ dr [ 1
2M

∇ψ† ⋅ ∇ψ +
1

2m
∇ϕ† ⋅ ∇ϕ +

1
2M0

∇B†
0 ⋅ ∇B0 + ω0B†

0 B0]
Hint = ∫ dr [g0 (B†

0 ϕψ + ψ†ϕ†B0) + v0ψ†ϕ†ϕψ]

- cutoff:  (interaction range of microscopic theory)Λ ∼ 1/Rtyp

- At low momentum , interaction ~ contactp ≪ Λ

Compositeness of bound states
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Eigenstates

: real and nonnegative —> interpreted as probabilityZ, X

“elementarity” compositeness

Compositeness and “elementarity”

free (discrete + continuum)
full (bound state)

Hfree |B0⟩ = ω0 |B0⟩, Hfree |p⟩ =
p2

2μ
|p⟩

(Hfree + Hint) |B⟩ = − B |B⟩

- normalization of  + completeness relation|B⟩

⟨B |B⟩ = 1, 1 = |B0⟩⟨B0 | + ∫
dp

(2π)3
|p⟩⟨p |

- projections onto free eigenstates
1 = Z + X, Z ≡ |⟨B0 |B⟩ |2 , X ≡ ∫

dp
(2π)3

|⟨p |B⟩ |2

Compositeness of bound states



11

 scattering amplitude (exact result)ψϕ

Weak binding relation

 

�

 

�

= v0 +
⌫0

g0g0 + v0 +
⌫0

g0 g0

If , correction terms neglected: R ≫ Rtyp X ← (a0, B)

renormalization independent

renormalization dependent

f (E ) = −
μ
2π

1
[v(E )]−1 − G(E )

v(E ) = v0 +
g2

0

E − ω0
, G(E ) =

1
2π2 ∫

Λ

0
dp

p2

E − p2 /(2μ) + i0+

Compositeness X ← v(E), G(E)

X =
G′￼(−B)

G′￼(−B) − [1/v(−B)]′￼

 expansion of scattering length 1/R = 2μB a0

a0 = − f (E = 0) = R { 2X
1 + X

+ 𝒪 ( Rtyp

R )}

Compositeness of bound states
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Introduce decay channel
Inclusion of decay channel

vψ + vϕ = v
μ

μ′￼

 �

B0

 0�0

If , correction terms neglected: |R | ≫ (Rtyp, ℓ) X ← (a0, Eh)

a0 = R
2X

1 + X
+ 𝒪 (

Rtyp

R ) + 𝒪 ( ℓ
R

3

) , R =
1

−2μEh
, ℓ ≡

1
2μν

Generalized relation : correction from threshold difference

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

H′￼free = ∫ dr [ 1
2M′￼

∇ψ′￼† ⋅ ∇ψ′￼− νψ ψ′￼†ψ′￼+
1

2m′￼
∇ϕ′￼† ⋅ ∇ϕ′￼− νϕϕ′￼†ϕ′￼]

H′￼int = ∫ dr [g′￼0 (B†
0 ϕ′￼ψ′￼+ ψ′￼†ϕ′￼†B0) + v′￼0ψ′￼†ϕ′￼†ϕ′￼ψ′￼+ vt

0(ψ
†ϕ†ϕ′￼ψ′￼+ ψ′￼†ϕ′￼†ϕψ)]

Quasi-bound state : complex eigenvalue

H |h⟩ = Eh |h⟩, Eh ∈ ℂ

H = Hfree + H′￼free + Hint + H′￼int

Compositeness of quasi-bound states
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Evaluation of compositeness

:  composite dominance <— observablesΛ(1405) K̄N

Generalized weak-binding relation

 determinations by several groups(a0, Eh)

PTEP 2017, 023D02 Y. Kamiya and T. Hyodo

Table 2. Properties and results for the higher-energy pole of !(1405) quoted from Ref. [7]: shown are the
eigenenergy Eh, the K̄N (I = 0) scattering length a0, the K̄N compositeness XK̄N and X̃K̄N , and the uncertainty
of the interpretation U .

Eh [MeV] a0 [fm] XK̄N X̃K̄N U/2

Set 1 [35] −10 − i26 1.39 − i0.85 1.2 + i0.1 1.0 0.3
Set 2 [36] − 4 − i 8 1.81 − i0.92 0.6 + i0.1 0.6 0.0
Set 3 [37] −13 − i20 1.30 − i0.85 0.9 − i0.2 0.9 0.1
Set 4 [38] 2 − i10 1.21 − i1.47 0.6 + i0.0 0.6 0.0
Set 5 [38] − 3 − i12 1.52 − i1.85 1.0 + i0.5 0.8 0.3

the K̄N threshold energy, we can study the K̄N compositeness of !(1405) with the generalized
weak-binding relation for quasibound states. To evaluate the compositeness using the weak-binding
relation, we need the I = 0 scattering length of the K̄N channel and the eigenenergy of !(1405).
These quantities can be obtained by detailed fitting analysis of the experimental data in the K̄N
threshold energy region. The most systematic analysis in the previous studies is performed by chiral
SU(3) dynamics [34–38]. In these studies, !(1405) is described by two resonance poles of the
scattering amplitude in the complex energy plane. We consider the K̄N compositeness of the state
represented by the pole at higher energy because this can be regarded as the weakly bound state.7

In Table 2, we show the sets of the scattering length a0 and the eigenenergy of the higher pole state
Eh, based on Refs. [34–38].8 Because of the isospin symmetry breaking, the threshold energies and
the reduced masses of the K̄0n channel and the K−p channel are slightly different. We define the
scattering length for the isospin I = 0 channel as a0 = (f0,K−p(E = 0) + f0,K̄0n(E = 0))/2, where
f0,K−p and f0,K̄0n are the scattering amplitudes of K−p → K−p and K̄0n → K̄0n, respectively,
and the threshold energy E = 0 is specified below for each set. The scattering length of set 1 is
calculated from the NLO amplitude of Refs. [34,35] by using the isospin-averaged hadron masses
at the isospin-averaged K̄N threshold energy. Therefore we use the isospin-averaged mass of K̄ and
N to determine the threshold energy and the reduced mass. Set 3 is based on Fit II of Ref. [37] with
the same isospin-averaging procedure. In the other analyses, the scattering length is calculated at the
K−p threshold energy, so we use the threshold energy and reduced mass of the K−p channel. Sets 2,
4, and 5 are based on Ref. [36], solution #2 of Ref. [38], and solution #4 of Ref. [38], respectively. In
Table 2, the scattering length a0 and the eigenenergy Eh do not converge quantitatively even though
the available data is reproduced at the level of χ2/d.o.f ∼ 1 in all the analyses. We therefore employ
the results of all the analyses to estimate the systematic error.

We first estimate the magnitude of the higher-order terms in the weak-binding relation. Using the
eigenenergies in Table 2, we find that the value of R satisfies |R| ! 1.5 fm. The typical range scale
of the hadron interaction can be estimated from the meson exchange mechanism. The longest range
hadronic interaction is mediated by the lightest meson π , which cannot be exchanged between K̄ and
N because the three-point vertex of the pseudoscalar mesons is prohibited by parity conservation.
We therefore estimate the typical range scale of the K̄N interaction from the ρ meson exchange
interaction to obtain Rtyp = 1/mρ ∼ 0.25 fm.9 To estimate the length scale l = 1/

√
2µω, we use

7 We do not consider the compositeness of the state associated with the lower-energy pole, because the
weak-binding relation is derived for the closest pole to the threshold.

8 We thank Jose Antonio Oller and Maxim Mai for correspondences.
9 We do not use the σ exchange to estimate the interaction range because the σ meson has the broad width [1].
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- neglecting correction terms:

- In all cases,  with small  (complex nature)X ∼ 1 U/2

a0 = R
2X

1 + X
+ 𝒪 (

Rtyp

R ) + 𝒪 ( ℓ
R

3

) , R =
1

−2μEh
, ℓ ≡

1
2μν

Application to Λ(1405)
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Uncertainty estimation

 composite dominance holds even with correction terms.K̄N

Estimation of correction terms: |R | ∼ 2 fm

-  meson exchange picture:  ρ Rtyp ∼ 0.25 fm
- energy difference from :  πΣ ℓ ∼ 1.08 fmPTEP 2017, 023D02 Y. Kamiya and T. Hyodo

Fig. 9. The results of error evaluation of the compositeness X̃K̄N of !(1405). The lines denote the central
values and the shaded areas indicate the uncertainty bands.

Fig. 10. I = 0 scattering amplitudes in the K̄N → K̄N (right panel) and π# → π# (left panel) channels
based on Ref. [35] with the isospin-averaged hadron masses. The solid line denotes the real part and the dashed
line denotes the imaginary part.

the π# amplitude has a CDD pole at this energy.10 Thus the ERE description of the π# amplitude
around its threshold will not reach the K̄N threshold because of the CDD pole. The existence of
the CDD pole near the resonance pole in the π# amplitude may be an indication of the non-π#
dominance of !(1405).

In Refs. [20,21,39,40], the compositeness of !(1405) is also calculated in various models by
evaluating the expression in Eq. (89) at the pole position. The results are summarized in Table 4.
In Refs. [39] and [20], the scattering amplitude is calculated from the chiral unitary approach of
Refs. [3] and [35], respectively. In the analysis of Ref. [40], the SU(6) model in Ref. [41] is used.
In Ref. [21], the scattering amplitude based on the unitary chiral perturbation theory in Ref. [37] is
used. We summarize the results in Table 4, specifying the prescription to interpret the compositeness.
We see that these studies give a consistent result for K̄N dominance over the other components. This
is also in good agreement with our model-independent results by the weak-binding relation.

In these studies, Refs. [20] and [21] use the scattering amplitude in Refs. [35] and [37], respectively.
Although Ref. [21] uses a different prescription |X | to determine the compositeness, small U = 0.1 in
set 3 indicates the difference between the prescriptions should be small, as we discussed in Sect. 3.5.

10 In the coupled-channel scattering, each component can have a CDD pole individually. This is in contrast to
the pole of the amplitude representing the eigenstate, which is determined by det F−1 = 0 and the divergence
appears in all the components of Fij.
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a0 = R
2X

1 + X
+ 𝒪 (

Rtyp

R ) + 𝒪 ( ℓ
R

3

) , R =
1

−2μEh
, ℓ ≡

1
2μν

Application to Λ(1405)
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Pole structure of the  region is now well 
constrained: “ ” —>  and .

With the uncertainty estimation and range 
correction, deuteron is quantitatively shown to 
be composite. 


Generalized weak-binding relation shows that 
 is dominated by molecular  state.

Λ(1405)
Λ(1405) Λ(1405) Λ(1380)

Λ(1405) K̄N

Summary
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