Hadron-hadron interaction from heavy-ion results

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Introduction – T_{cc} and X(3872)

Production yields (1-hadron detection)

S. Cho et al., ExHIC collaboration, PRL 106, 212001 (2011); S. Cho et al., ExHIC collaboration, PRC 84, 064910 (2011); S. Cho et al., ExHIC collaboration, PPNP 95, 279 (2017)

Correlation functions (2-hadron detection) - K⁻p interactions Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

- D meson sector

Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation

cor.

Introduction

Observation of *T_{cc}*

T_{cc} observed in $D^0D^0\pi^+$ spectrum

LHCb collaboration, arXiv 2109.01038 [hep-ex], 2109.01056 [hep-ex]

- Signal near DD* threshold
- Charm $C = +2 : \sim cc\bar{u}\bar{d}$
- Level structure

3870

3875 $\begin{bmatrix} \text{Energy (MeV)} \\ ---- D^+ D^{*0} (3876.51) \\ ---- D^0 D^{*+} (3875.10) \\ \hline T_{cc} \end{bmatrix}$

Very small (few MeV ~ keV) energy scale involved

 $D^0 D^+ \pi^0 (3869.45)$

 $D^0 D^0 \pi^+ (3869.25)$

Introduction

Production yields

ExHIC collaboration

Hadron production yields and internal structure

PRL 106, 212001 (2011)	PHYSICAL REVIEW LETTERS	week ending 27 MAY 2011					
Identifying Multiquark Hadrons from Heavy Ion Collisions							
Sungtae Cho. ¹ Takenori Furumoto. ^{2,3} Tetsuo Hyodo. ⁴ Daisuke Jido. ² Che Ming Ko. ⁵ Su Houng Lee. ^{1,2}							
Marina Nielsen, ⁶ A	kira Ohnishi, ² Takayasu Sekihara, ^{2,7} Shigehiro Yasui, ⁸ an	nd Koichi Yazaki ^{2,3}					
	(ExHIC Collaboration)						

PHYSICAL REVIEW C 84, 064910 (2011)

Exotic hadrons in heavy ion collisions

Sungtae Cho,¹ Takenori Furumoto,²³ Tetsuo Hyodo,⁴ Daisuke Jido,² Che Ming Ko,⁵ Su Houng Lee,¹ Marina Nielsen,⁶ Akira Ohnishi,² Takayasu Sekihara,^{2,7} Shigehiro Yasui,⁸ and Koichi Yazaki^{2,9} (ExHIC Collaboration)

Contents lists available at ScienceDirect Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 95 (2017) 279-322

journal homepage: www.elsevier.com/locate/ppnp

And National Andread

(CrossMark

Review

Exotic hadrons from heavy ion collisions*

Sungtae Cho^a, Tetsuo Hyodo^b, Daisuke Jido^c, Che Ming Ko^d, Su Houng Lee^{e,*}, Saori Maeda^f, Kenta Miyahara^g, Kenji Morita^b, Marina Nielsen^h, Akira Ohnishi^b, Takayasu Sekiharaⁱ, Taesoo Song^j, Shigehiro Yasui^f, Koichi Yazaki^k (ExHIC Collaboration)

Statistical model

Statistical production yield for hadron h

A. Andronic, P. Braun-Munzinger, J. Stachel, NPA 772, 167 (2006)

$$N_{h}^{\text{stat}} = V_{H} \frac{g_{h}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\gamma_{h}^{-1} e^{E_{h}/T_{H}} \pm 1}$$

- Fugacity γ_h : chemical equilibrium for u, d, s, tuned for c, b

- works well for normal hadrons

Coalescence model

Coalescence (overlap of constituents and hadron w.f.)

V. Greco, C. M. Ko, P. Levai, PRL 90, 202302 (2003)

$$N_{h}^{\text{coal}} = g_{h} \int \prod_{i=1}^{n} \left[\frac{1}{g_{i}} \frac{p_{i} \cdot d\sigma_{i}}{(2\pi)^{3}} \frac{d^{3}p_{i}}{E_{i}} f(x_{i}, p_{i}) \right] f^{W}(x_{1}, \dots, x_{n}; p_{1}, \dots, p_{n})$$

- Model parameters < statistical yields of normal hadrons
- **Prediction for exotic hadrons**
- Multiquarks by quark coalescence

- Hadronic molecule by hadron coalescence

Yield estimation

Coalescence-statistical ratio

S. Cho et al., ExHIC collaboration, PPNP 95, 279 (2017)

- Definition

 $C(\boldsymbol{q}) = \frac{N_{K^-p}(\boldsymbol{p}_{K^-}, \boldsymbol{p}_p)}{N_{K^-}(\boldsymbol{p}_{K^-})N_p(\boldsymbol{p}_p)} \quad \text{(= 1 in the absence of FSI/QS)}$

- Theory (Koonin-Pratt formula)

$$C(\boldsymbol{q}) \simeq \left| d^3 \boldsymbol{r} \, S(\boldsymbol{r}) \, | \, \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \, |^2 \right|^2$$

Source function <--> two-body wave function (FSI)

ALICE collaboration, Nature 588, 232 (2020); ...

Correlation functions : K⁻p interactions

Experimental data of *K*⁻*p* **correlation**

K⁻*p* total cross sections

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)</u>

- Old bubble chamber data
- Resolution is not good
- Threshold cusp is not visible

K⁻p correlation function

ALICE collaboration, PRL 124, 092301 (2020)

- Excellent precision ($\bar{K}^0 n$ cusp)
- Low-energy data below $\bar{K}^0 n$

-> Important constraint on $\bar{K}N$ and $\Lambda(1405)$

Correlation <u>functions</u> : *K*⁻*p* interactions

Coupled-channel correlation function

Schrödinger equation (s-wave)

Coupled-channel formulation

R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz, Phys. Atom. Nucl. 61, 2050 (1997); J. Haidenbauer, NPA 981, 1 (2019)

$$C_{K^{-}p}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-}p}(\boldsymbol{r}) \, |\Psi_{K^{-}p,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-}p} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$
- ω_i : weight of source channel *i* relative to K^-p

Correlation functions : *K⁻p* interactions

Correlation from chiral SU(3) dynamics

Wave function $\Psi_q^{(-)}(r)$: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara, T. Hyodo, W. Weise, PRC98, 025201 (2018)

- Source function S(r): Gaussian, $R \sim 1$ fm in K^+p data
- Source weight $\omega_{\pi\Sigma} \sim 2$ by simple statistical model estimate

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020)

Correlation function by ALICE is well reproduced

Correlation functions : K⁻p interactions

Source size dependence

New data of Pb-Pb collisions at 5.02 TeV

ALICE collaboration, PLB 822, 136708 (2021)

- Scattering length $a_{K^-p} = -0.91 + 0.92i$ fm

Correlation is suppressed at larger *R***, as predicted**

Schematic threshold structures in *D* meson sector

One-range gaussian potentials $V(r) = V_0 \exp\{-m^2 r^2\}$

- V_0 <— Scattering length in theoretical models (DN, DN)
- V_0 <- Binding energies of T_{cc} , X(3872) (DD^* , $D\bar{D}^*$)

Exotic *DN* sector

- D^-p correlation functions (*āduud*, exotic)
 - Coupled with $\bar{D}^0 n$
 - No decay channels below
 - Theoretical models
 - [1] J. Hofmann, M.F.M. Lutz, NPA763, 90 (2005);
 - [2] J. Haidenbauer et al., EPJA33, 107 (2007);
 - [3] Y. Yamaguchi et al., PRD84, 014032 (2011);
 - [4] C. Fontoura et al., PRD87, 025206 (2013)
 - Gaussian potentials with $a_0(I = 0, 1)$

- Model 3 with a bound state : dip structure
- To be compared with experiments in future

Non-exotic *DN* **sector**

D^+p correlation functions (*cduud*, non-exotic)

- No isospin partner in DN
- With decay channels $(\pi \Lambda_c, \pi \Sigma_c)$
- Theoretical models
 - [1] J. Hofmann, M.F.M. Lutz, NPA763, 90 (2005);
 - [2] T. Mizutani, A. Ramos, PRC74, 065201 (2006);
 - [3] C. Garcia-Recio et al., PRD79, 054004 (2009);
 - [4] J. Haidenbauer et al., EPJA47, 18 (2011);
 - [5] U. Raha et al., PRC98, 034002 (2018)
- Effective single-channel potential

 $< - a_0(I = 1)$

Sizable dependence on the scattering length

$DD^* \sim T_{cc}$ sector

 D^0D^{*+} and D^+D^{*0} correlation functions (*ccud*, exotic)

- Bound state feature (source size dep.) in both channels
- Strong signal in D^0D^{*+} , weaker one in D^+D^{*0}
- D^+D^{*0} cusp in D^0D^{*+} ($q \sim 52$ MeV) is not very prominent

$D\bar{D}^* \sim X(3872)$ sector

$D^0 \overline{D}^{*0}$ and $D^+ \overline{D}^{*-}$ correlation functions ($c \overline{c} q \overline{q}$)

- Bound state feature in $D^0 \overline{D}^{*0}$ correlation
- Sizable D^+D^{*-} cusp in $D^0\overline{D}^{*0}$ ($q \sim 126 \text{ MeV}$)
- D+D*- correlation : Coulomb attraction dominance

Summary

Hadron production yields <- internal structure S. Cho et al., ExHIC collaboration, PRL 106, 212001 (2011); S. Cho et al., ExHIC collaboration, PRC 84, 064910 (2011); S. Cho et al., ExHIC collaboration, PPNP 95, 279 (2017) **K**⁻*p* correlation in *pp* collisions - well described by chiral SU(3) dynamics Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise, PRL124, 132501 (2020) $D^{-}p$ and $D^{+}p$ correlations - sizable scattering length dependence $D^0 D^{*+}$ and $D^0 \overline{D}^{*0}$ correlations - (quasi-)bound nature of T_{cc} and X(3872) Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation

Production yields

ExHIC parameters

Table 3.1

Statistical and coalescence model parameters for Scenario 1 and 2 at RHIC (200 GeV), LHC (2.76 TeV) and LHC (5.02 TeV), and those given in Refs. [14,15]. Quark masses are taken to be $m_q = 350$ MeV, $m_s = 500$ MeV, $m_c = 1500$ MeV and $m_b = 4700$ MeV. In Refs. [14,15], light quark masses were taken to be $m_q = 300$ MeV.

	RHIC		LHC (2.76 TeV)		LHC (5.	02 TeV)	RHIC	LHC (5 TeV)	
	Sc. 1 Sc. 2		Sc. 1	Sc. 2	Sc. 1	Sc. 2	– Refs [14,15]		
T_H (MeV)		162		156				175	
V_H (fm ³)		2100		5380				5152	
μ_B (MeV)		24		0			20	0	
μ_s (MeV)		10		0			10	0	
γc		22		39 50			6.40	15.8	
γ_b	$4.0 imes 10^7$		$8.6 imes 10^8$		1	$.4 \times 10^{9}$	2.2×10^6	3.3×10^7	
T_C (MeV)	162	166	156	166	156	166		175	
V_C (fm ³)	2100	1791	5380	3533	5380	3533	1000	2700	
ω (MeV)	590	608	564	609	564	609		550	
$\omega_{\rm s}~({\rm MeV})$	431	462	426	502	426	502		519	
ω_c (MeV)	222	2 244 219 278 220 2		279	385				
ω_b (MeV)	183	202	181	232	182	234		338	
$N_u = N_d$	320	302	700	593	700	593	245	662	
$N_s = N_{\bar{s}}$	183	176	386	347	386	347	150	405	
$N_c = N_{\bar{c}}$	4.1			11		14	3	20	
$N_b = N_{\bar{b}}$	0.03			0.44 0.71		0.71	0.02	0.8	
T_F (MeV)	119			115				125	
V_F (fm ³)	20355		50646			11322	30569		
N_K	67.5		134				142 ^a	363 ^a	
$N_{\bar{K}}$	59.6			134			127 ^a	363 ^a	
N _N	20			32			62 ^a	150 ^a	
N_{Δ}	18			28			-	-	
N_{Λ}	3.8			6.5			-	-	
N_{Ξ}	2.6			4.4			4.7	13	
N_{Ω}	0.37		0.62			0.81	2.3		
$N_D = N_{\bar{D}}$	1.5			4.0		5.2	1.0	6.9	
$N_{D^*} = N_{\bar{D}^*}$	2.0		5.4			6.9	1.5	10	
$N_{D_1} = N_{\overline{D}_1}$	0.20		0.49			0.63	0.19	1.3	
$N_B = N_{\bar{B}}$	$8.1 imes 10^{-3}$		0.12			0.20	$5.3 imes 10^{-3}$	0.21	
$N_{B^*} = N_{\bar{B}^*}$	1.9×10^{-2}			0.27		0.45	1.2×10^{-2}	0.49	
N_{A_c}	0.17			0.36		0.46	-	-	
N_{Σ_c}	0.2			0.41			-	-	
$N_{\Sigma_c^*}$	0.28			0.56		0.71	-	-	
N_{Ξ_c}	0.11			0.25		0.32	0.10	0.65	

^a Values contain feed down contributions.

S. Cho et al., ExHIC collaboration, PPNP 95, 279 (2017)

Production yields

T_{cc} and X(3872) yields

	-	•••	•			
Particle	Scenario 1		Scenario 2	Scenario 2		Stat.
	qq/qqq	Multiquark	qq̄/qqq	Multiquark		
RHIC						
T_{cc}^{1}	-	$5.0 imes 10^{-5}$	-	$5.3 imes 10^{-5}$	-	$8.9 imes10^{-4}$
<i>LD</i>						
LHC (2.76 Te	V)					
T_{cc}^1	-	$1.1 imes 10^{-4}$	-	$1.3 imes 10^{-4}$	-	2.7×10^{-3}
LHC (5.02 Te	V)					
T_{cc}^1	_	1.8×10^{-4}	_	2.1×10^{-4}	_	4.4×10^{-3}

Particle	Scenario 1 Scenario 2				Mol.	Stat.
	q q /qqq	Multiquark	qq/qqq	Multiquark	-	
RHIC						
D _s (2317) X(3872)	2.3×10^{-2} 5.4×10^{-4}	2.4×10^{-3} 5.0×10^{-5}	2.3×10^{-2} 5.6×10^{-4}	2.5×10^{-3} 5.3×10^{-5}	6.5×10^{-3} 9.1×10^{-4}	6.6×10^{-2} 5.7×10^{-4}
LHC (2.76 TeV)						
D _s (2317) X(3872)	$5.2 imes 10^{-2} \ 1.6 imes 10^{-3}$	$\begin{array}{l} 4.3 \times 10^{-3} \\ 1.1 \times 10^{-4} \end{array}$	$5.0 imes 10^{-2}$ $1.7 imes 10^{-3}$	$4.5 imes 10^{-3} \\ 1.3 imes 10^{-4}$	1.4×10^{-2} 2.7×10^{-3}	1.5×10^{-1} 1.7×10^{-3}
LHC (5.02 TeV)						
D _s (2317) X(3872)	$6.5 imes 10^{-2}$ $2.5 imes 10^{-3}$	$5.4 imes 10^{-3}$ $1.8 imes 10^{-4}$	$6.4 imes 10^{-2}$ $2.7 imes 10^{-3}$	$5.7 imes 10^{-3}$ $2.1 imes 10^{-4}$	$1.8 imes 10^{-2} \ 4.5 imes 10^{-3}$	1.9×10^{-1} 2.8×10^{-3}

S. Cho et al., ExHIC collaboration, PPNP 95, 279 (2017)

Correlation functions : *K*⁻*p* **interactions**

Boundary conditions

Asymptotic $(r \rightarrow \infty)$ wave function

$$\begin{pmatrix} \psi_{K^{-}p}(r) \\ \psi_{\bar{K}^{0}n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_{2}r} + \#e^{iq_{2}r} \\ \vdots \end{pmatrix}$$

incoming + outgoing

Usual scattering: normalize incoming flux of beam

Correlation function: normalize outgoing flux

$$\psi^{(-)} = \begin{pmatrix} \psi_{K^{-}p}(r) \\ \psi_{\bar{K}^{0}n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} c_{1}^{(-)}e^{-iqr} + e^{iqr} \\ c_{2}^{(-)}e^{-iq_{2}r} \\ \vdots \end{pmatrix} \qquad c_{i}^{(-)} \propto s_{1i}^{\dagger}(q)$$

 $->\psi^{(-)}$ should be calculated with full coupled channels.

Bound state in correlation function

<u>Y. Kamiya, K. Sasaki, T. Fukui, T. Hyodo, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, arXiv 2108.09644 [hep-ph]</u>

Lednicky-Lyuboshitz model with $r_e = 0$

Bound state —> small size enhancement & large size dip

23