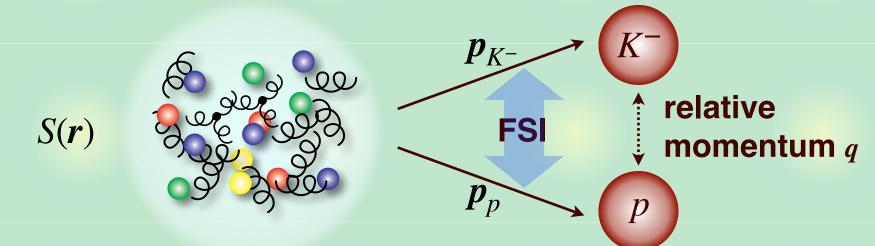
Analysis of meson-baryon correlation functions in high-energy collisions

Yuki Kamiya^A, <u>Tetsuo Hyodo^B</u>, Akira Ohnishi^C


ITP Beijing^A, Tokyo Metropolitan Univ.^B, YITP, Kyoto^C

Introduction

Correlation function and hadron interaction

High-energy collision: chaotic source S(r) of hadron emission

- Definition

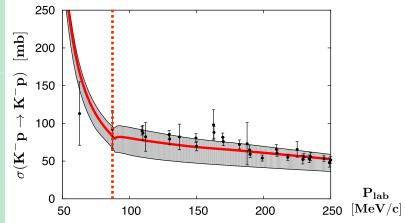
$$C(\boldsymbol{q}) = \frac{N_{K^-p}(\boldsymbol{p}_{K^-}, \boldsymbol{p}_p)}{N_{K^-}(\boldsymbol{p}_{K^-})N_p(\boldsymbol{p}_p)} \quad \text{(= 1 in the absence of FSI)}$$

- Theory (Koonin-Pratt formula)

$$C(\boldsymbol{q}) \simeq \left[d^3 \boldsymbol{r} \, S(\boldsymbol{r}) \, | \, \Psi_{\boldsymbol{q}}^{(-)}(\boldsymbol{r}) \, |^2 \right]$$

Source function <--> two-body wave function (FSI)

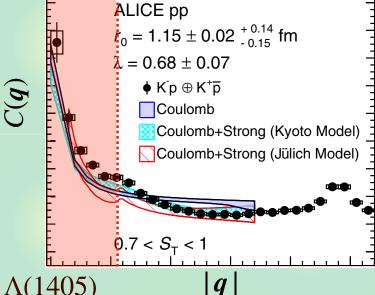
ALICE collaboration, Nature 588, 232 (2020); ...


Experiments

Experimental data of *K*⁻*p* **correlation**

K⁻*p* total cross sections

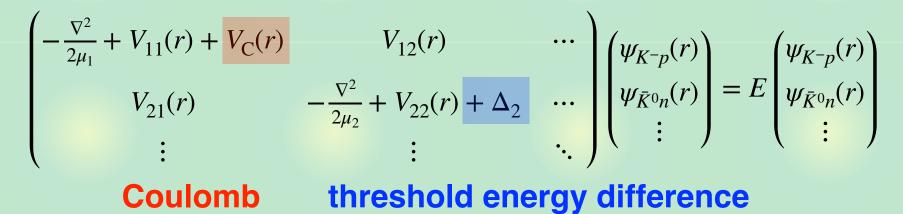
<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)</u>


- Old bubble chamber data
- Resolution is not good
- Threshold cusp is not visible

K⁻p correlation function

ALICE collaboration, PRL 124, 092301 (2020)

- Excellent precision ($\bar{K}^0 n$ cusp)
- Low-energy data below $\bar{K}^0 n$



-> Important constraint on $\bar{K}N$ and $\Lambda(1405)$

Formulation

Coupled-channel correlation function

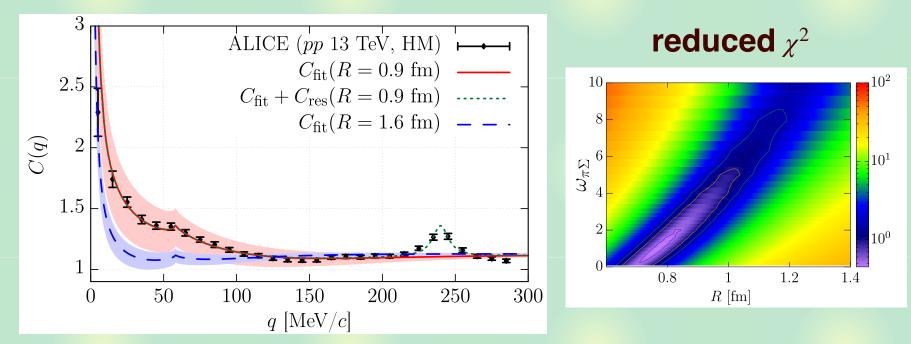
Schrödinger equation (s-wave)

Coupled-channel formulation

R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz, Phys. Atom. Nucl. 61, 2050 (1997); J. Haidenbauer, NPA 981, 1 (2019)

$$C_{K^{-p}}(\boldsymbol{q}) \simeq \int d^3 \boldsymbol{r} \, S_{K^{-p}}(\boldsymbol{r}) \, |\Psi_{K^{-p},\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \boldsymbol{r} \, S_i(\boldsymbol{r}) \, |\Psi_{i,\boldsymbol{q}}^{(-)}(\boldsymbol{r})|^2$$

- Transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$
- ω_i : weight of source channel *i* relative to K^-p


Results

Correlation from chiral SU(3) dynamics

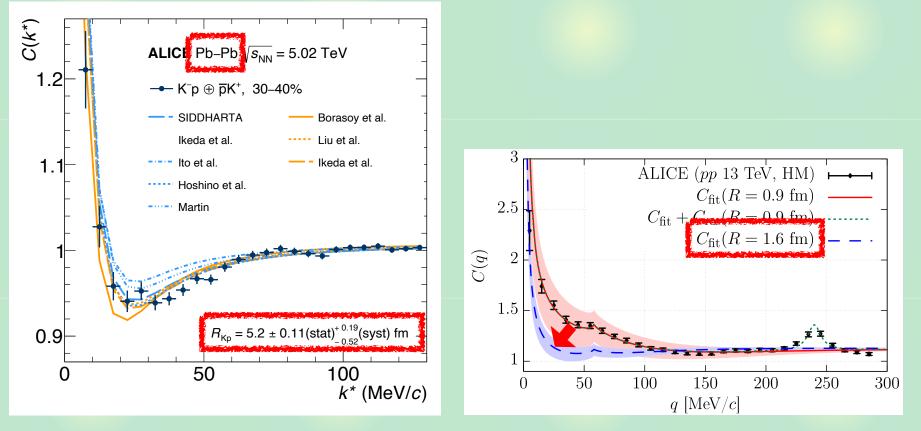
Wave function $\Psi_q^{(-)}(r)$: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara, T. Hyodo, W. Weise. PRC98, 025201 (2018)

- **Source function** S(r) : Gaussian, $R \sim 1$ fm in K^+p data
- Source weight $\omega_{\pi\Sigma} \sim 2$ by simple statistical model estimate

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Correlation function by ALICE is well reproduced

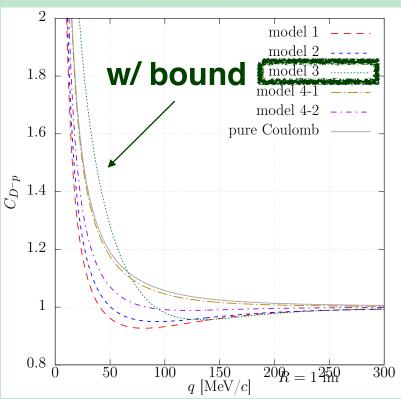

Results

Source size dependence

New data of Pb-Pb collisions at 5.02 TeV

ALICE collaboration, arXiv:2105.05683 [nucl-ex]

- Scattering length $a_{K^-p} = -0.91 + 0.92i$ fm



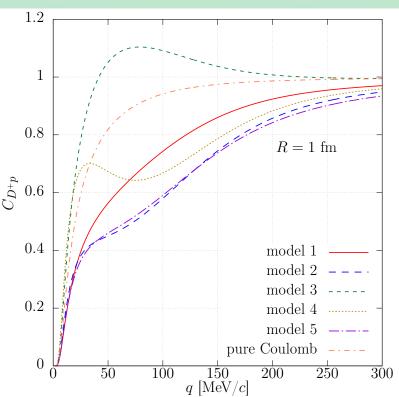
Correlation is suppressed at larger *R***, as predicted**

Applications

Exotic charm sector

- D^-p correlation functions (*cduud*, exotic channel)
 - Coupled with $\bar{D}^0 n$
 - No decay channels below
 - Theoretical models
 - [1] J. Hofmann, M.F.M. Lutz, NPA763, 90 (2005);
 - [2] J. Haidenbauer et al., EPJA33, 107 (2007);
 - [3] Y. Yamaguchi et al., PRD84, 014032 (2011);
 - [4] C. Fontoura *et al.*, PRD87, 025206 (2013)
 - Effective potentials <— $a_0(I = 0, 1)$

- Model 3 with a bound state : dip structure
- To be compared with experiments in future


Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation

Applications

Non-exotic charm sector

D^+p correlation functions (*cduud*, non-exotic channel)

- No isospin partner in DN
- With decay channels $(\pi \Lambda_c, \pi \Sigma_c)$
- Theoretical models
 - [1] J. Hofmann, M.F.M. Lutz, NPA763, 90 (2005);
 - [2] T. Mizutani, A. Ramos, PRC74, 065201 (2006);
 - [3] C. Garcia-Recio et al., PRD79, 054004 (2009);
 - [4] J. Haidenbauer et al., EPJA47, 18 (2011);
 - [5] <u>U. Raha et al., PRC98, 034002 (2018)</u>
- Effective single-channel potential
 - **<--** $a_0(I=1)$

- Sizable dependence on the scattering length

Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation

Summary

Correlation functions are useful to study hadron interactions.

K⁻p correlation in *pp* collisions can be well described by chiral SU(3) dynamics. Source size dependence will be further studied.

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

 D⁻p and D⁺p correlations are predicted based on scattering lengths in various models.
Measurements will give first experimental information in these sectors.
Y. Kamiya, T. Hyodo, A. Ohnishi, in preparation