$\Lambda(1405)$ and the antikaonnucleon potential

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Λ(1405) in meson-baryon scattering

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

$\bar{K}N$ potentials and their applications

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

- Kaonic nuclei

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

- Kaonic deuterium

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- K⁻p correlation function

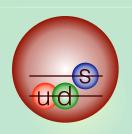
Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

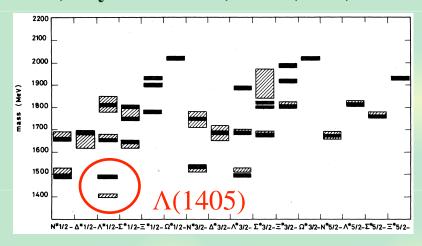
Summary

$\Lambda(1405)$ and $\bar{K}N$ scattering

$\Lambda(1405)$ does not fit in standard picture —> exotic candidate

N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978)



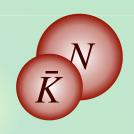


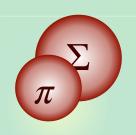
: theory

: experiment

Resonance in coupled-channel scattering

- coupling to MB states





Detailed analysis of $\bar{K}N$ - $\pi\Sigma$ scattering is necessary.

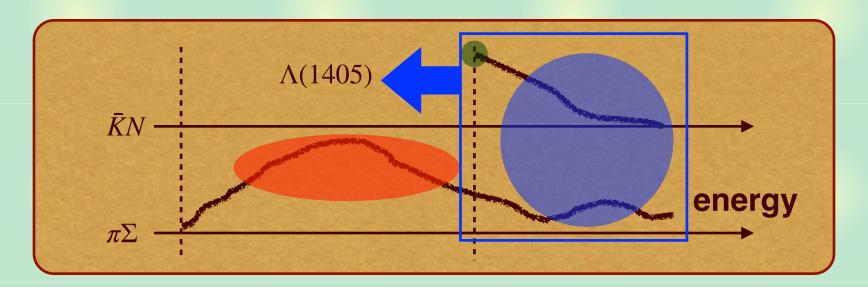
Strategy for $\bar{K}N$ interaction

Above the $\bar{K}N$ threshold : direct constraints

- K⁻p total cross sections (old data)
- $\bar{K}N$ threshold branching ratios (old data)
- K⁻p scattering length (new data : SIDDHARTA)

Below the $\bar{K}N$ threshold: indirect constraints

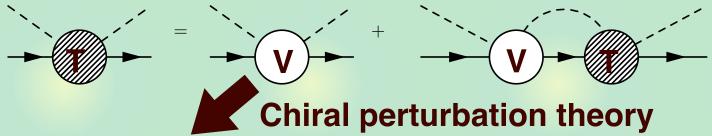
- $\pi\Sigma$ mass spectra (new data : LEPS, CLAS, HADES, ...)

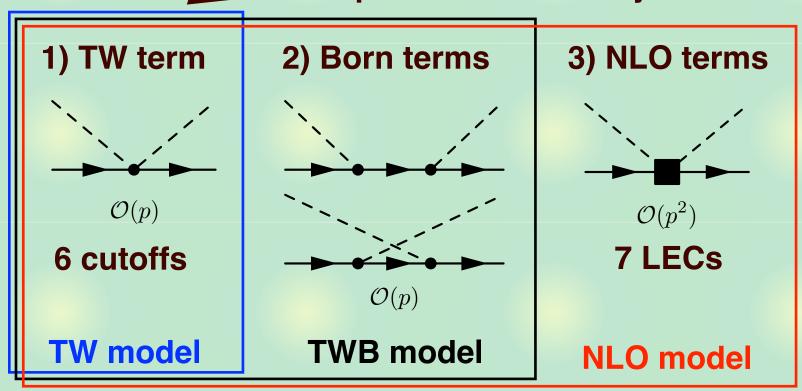


Construction of the realistic amplitude

Chiral SU(3) coupled-channels $(\bar{K}N, \pi\Sigma, \pi\Lambda, \eta\Lambda, \eta\Sigma, K\Xi)$ approach

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)





Best-fit results

Experiment

 $283 \pm 36 \pm 6$

 $541 \pm 89 \pm 22$

 2.36 ± 0.04

 0.189 ± 0.015

 0.664 ± 0.011

[10]

[11]

[11]

[11]

NLO

306

591

2.37

0.19

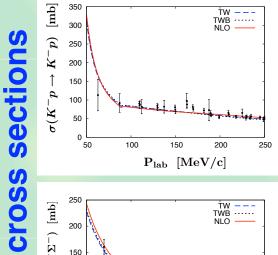
0.66

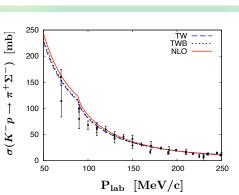
0.96

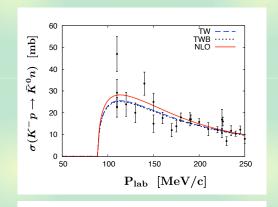
TWTWB $\Delta E \text{ [eV]}$ 377 373 Γ [eV] 495 514 2.36 2.36 0.200.19 R_c 0.660.66 $\chi^2/\mathrm{d.o.f}$ 1.12 1.15

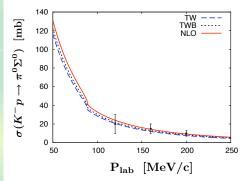
SIDDHARTA

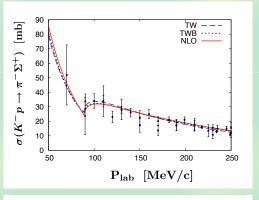
Branching ratios

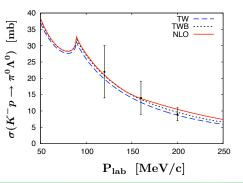








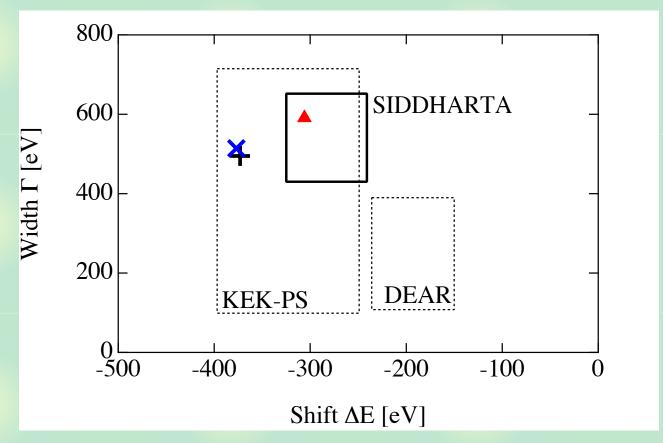




Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

Comparison with SIDDHARTA

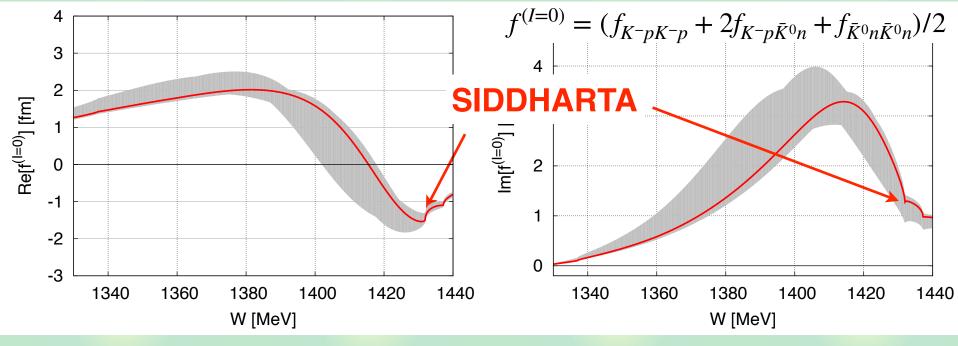
	TW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957



TW and TWB are reasonable, while best-fit requires NLO.

Subthreshold extrapolation

Uncertainty of $\bar{K}N \rightarrow \bar{K}N(I=0)$ amplitude below threshold

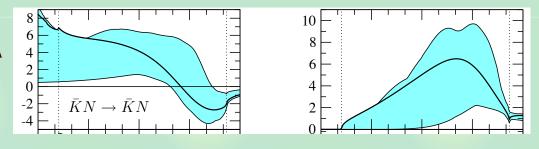


Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise,

NPA 954, 41 (2016)

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)



SIDDHARTA is essential for subthreshold extrapolation.

Extrapolation to complex energy: two poles

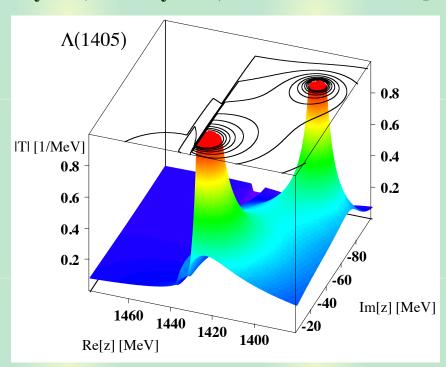
Two poles: superposition of two eigenstates

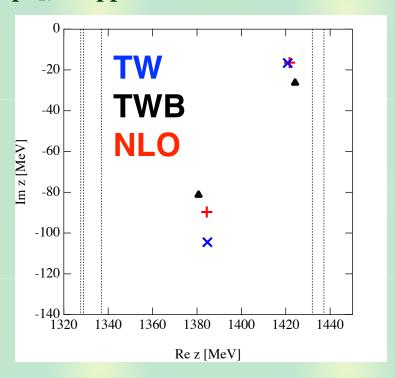
J.A. Oller, U.G. Meißner, PLB 500, 263 (2001);

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meißner, NPA 723, 205 (2003);

U.G. Meißner, Symmetry 12, 981 (2020); M. Mai, arXiv: 2010.00056 [nucl-th];

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP





T. Hyodo, D. Jido, PPNP 67, 55 (2012)

NLO analysis confirms the two-pole structure.

PDG has changed

2020 update of PDG

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); ▲

Z.H. Guo, J.A. Oller, PRC87, 035202 (2013); ×

M. Mai, U.G. Meißner, EPJA51, 30 (2015) ■ ○

- Particle Listing section:

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

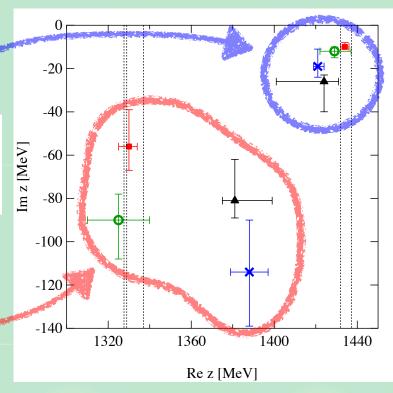
$$I(J^P) = O(\frac{1}{2})$$
 Status: ***

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

$$J^P = \frac{1}{2}^-$$

Status: **

new



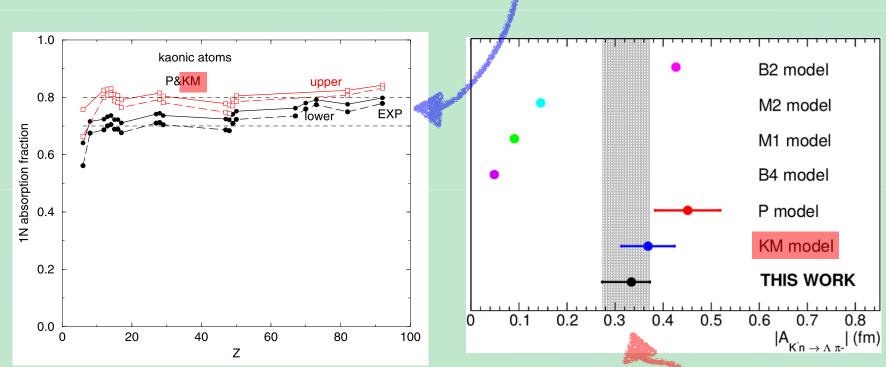
T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

- "Λ(1405)" is no longer at 1405 MeV but ~ 1420 MeV.
- Lower pole: two-star resonance $\Lambda(1380)$

Further check of amplitude

Single-nucleon absorption on kaonic atoms

E. Friedman, A. Gal, NPA959, 66 (2017)



 $|f_{K^-n\to\pi^-\Lambda}|$ from K^- absorption on ⁴He at **DA** Φ **NE**

K. Piscicchia, et al., PLB782, 339 (2018)

Our amplitude (KM model) is compatible with these analyses

Contents

Λ(1405) in meson-baryon scattering

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

$\bar{K}N$ potentials and their applications

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018)

- Kaonic nuclei

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017)

- Kaonic deuterium

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

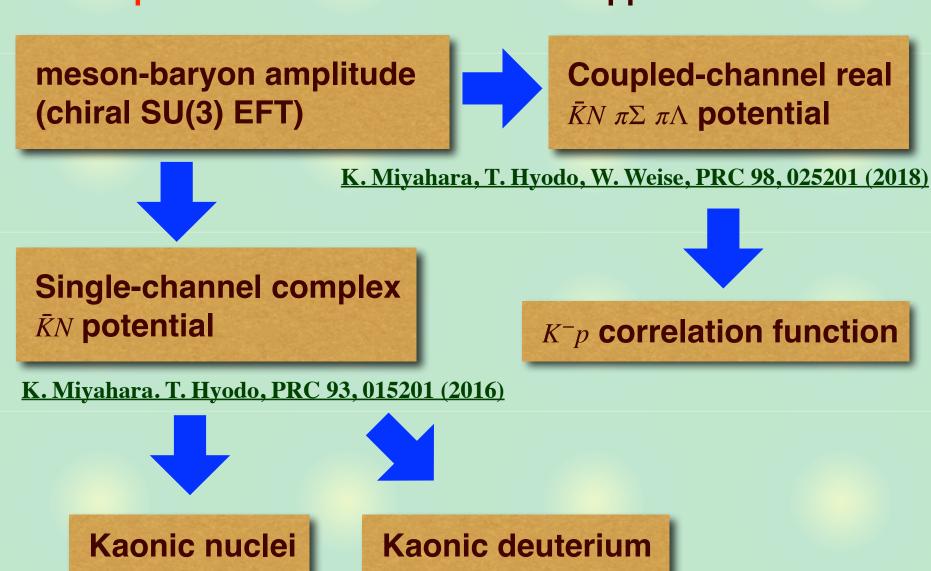
- K^-p correlation function

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Summary

Construction of $\bar{K}N$ potentials

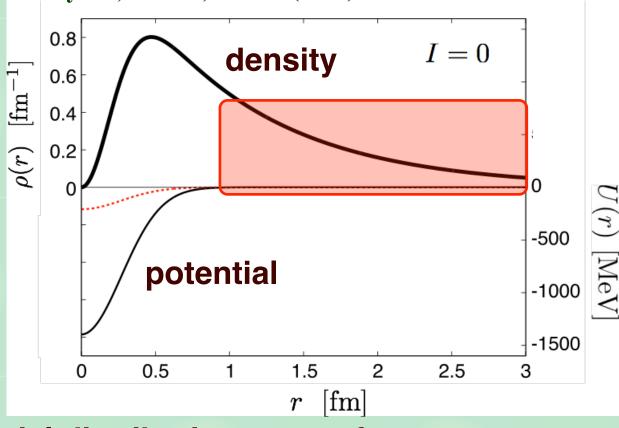
Local KN potential is useful for various applications



Spatial structure of $\Lambda(1405)$

$\bar{K}N$ wave function at $\Lambda(1405)$ pole

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)



- substantial distribution at r > 1 fm
- root mean squared radius $\sqrt{\langle r^2 \rangle} = 1.44$ fm

The size of $\Lambda(1405)$ is much larger than ordinary hadrons.

Kaonic nuclei

Rigorous few-body approach to \bar{K} nuclear systems

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

- Stochastic variational method with correlated gaussians

$$\hat{V} = \hat{V}^{\bar{K}N}(\text{Kyoto } \bar{K}N) + \hat{V}^{NN}(AV4')$$
 (single channel)

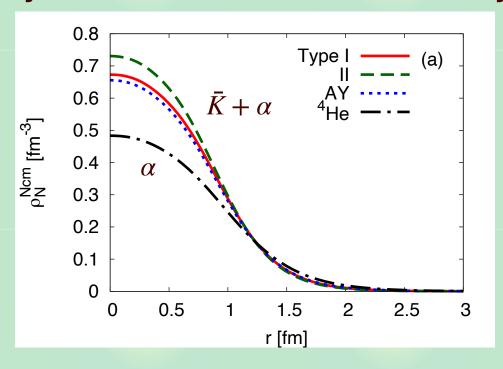
Results for kaonic nuclei with A = 2, 3, 4, 6

	KNN	KNNN	KNNNN	KNNNNNN
B [MeV]	25-28	45-50	68-76	70-81
Γ _{πΥΝ} [MeV]	31-59	26-70	28-74	24-76

- quasi-bound state below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy

High density?

Nucleon density distribution in four-nucleon system

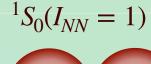


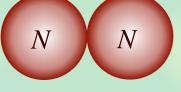
- central density increases (not substantially <- NN core)
- B = 68-76 MeV (Kyoto $\bar{K}N$)
- -B = 85-87 MeV (AY)

Central density is not always proportional to B < - tail of w.f.

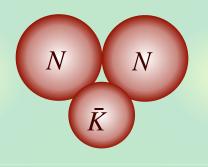
Interplay between NN and $\bar{K}N$ correlations 1

Two-nucleon system





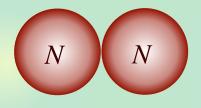
unbound



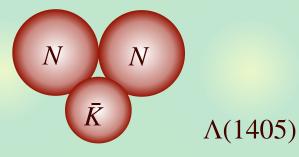
(quasi-)bound

$$\frac{\bar{K}N(I=0)}{\bar{K}N(I=1)} = 3$$

$$^{3}S_{1}(I_{NN}=0)$$



bound (d)



unbound

$$\frac{\bar{K}N(I=0)}{\bar{K}N(I=1)} = \frac{1}{3}$$

NN correlation $\langle \bar{K}N \rangle$ correlation (also in A=6)

Interplay between NN and $\bar{K}N$ correlations 2

Four-nucleon system with $J^P = 0^-$, I = 1/2, $I_3 = +1/2$

$$|\bar{K}NNNN\rangle = C_1 \begin{pmatrix} p & p \\ p & n \end{pmatrix} + C_2 \begin{pmatrix} p & p \\ \bar{K}^0 & n \end{pmatrix}$$

- KN correlation

$$I = 0$$
 pair in K^-p (3 pairs) or \bar{K}^0n (2 pairs) : $|C_1|^2 > |C_2|^2$

- NN correlation

ppnn forms
$$\alpha : |C_1|^2 < |C_2|^2$$

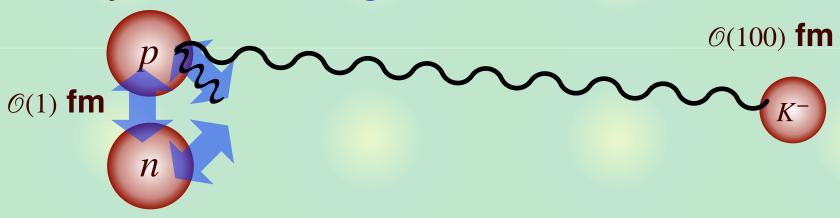
- Numerical result

$$|C_1|^2 = 0.08, \quad |C_2|^2 = 0.92$$

NN correlation > $\bar{K}N$ correlation

Kaonic deuterium: background

K⁻*pn* system with strong + Coulomb interaction



- Experiments are planned at J-PARC E57, SIDDHARTA-2

Theoretical requirements:

- Rigorous three-body treatment of strong + Coulomb
- Inclusion of SIDDHARTRA constraint (realistic KN)
- c.f. advanced Faddeev calculations
 - P. Doleschall, J. Revai, N.V. Shevchenko, PLB 744, 105 (2015);
 - J. Revai, PRC 94, 054001 (2016)

Check of kaonic hydrogen

Kaonic hydrogen $(K^{-}p)$ in the present setup?

- Deser-type formula is based on (systematic) expansion.
- $\bar{K}N$ potential is formulated with isospin symmetry.

Two-body calculation with physical masses

$$\begin{pmatrix} \hat{T} + \hat{\mathbf{V}}^{\bar{K}N} + \hat{V}^{EM} & \hat{\mathbf{V}}^{\bar{K}N} \\ \hat{\mathbf{V}}^{\bar{K}N} & \hat{T} + \hat{\mathbf{V}}^{\bar{K}N} + \Delta m \end{pmatrix} \begin{pmatrix} |K^-p\rangle \\ |\bar{K}^0n\rangle \end{pmatrix} = E \begin{pmatrix} |K^-p\rangle \\ |\bar{K}^0n\rangle \end{pmatrix}$$

Result:

- consistent with SIDDHARTA constraint
- Ressumed Deser-type formula works reasonably for K^-p .

Mass	E dependence	$\Delta E \text{ (eV)}$	Γ (eV)
Physical	Self-consistent	283	607
Isospin	Self-consistent	163	574
Physical	$E_{\bar{K}N}=0$	283	607
Expt. [31,32]		$283 \pm 36 \pm 6$	$541 \pm 89 \pm 22$

$\Delta E \text{ (eV)}$	Γ (eV)
283	607
293	596
284	605
	283 293

Formulation

Three-body calculation of K^-d with physical masses

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

$$\begin{pmatrix} \hat{H}_{K^-pn} & \hat{V}_{12}^{\bar{K}N} + \hat{V}_{13}^{\bar{K}N} \\ \hat{V}_{12}^{\bar{K}N} + \hat{V}_{13}^{\bar{K}N} & \hat{H}_{\bar{K}^0nn} \end{pmatrix} \begin{pmatrix} |K^-pn\rangle \\ |\bar{K}^0nn\rangle \end{pmatrix} = E \begin{pmatrix} |K^-pn\rangle \\ |\bar{K}^0nn\rangle \end{pmatrix}$$

$$\hat{H}_{K^-pn} = \sum_{i=1}^{3} \hat{T}_i - \hat{T}_{cm} + \hat{V}_{23}^{NN} + \sum_{i=2}^{3} (\hat{V}_{1i}^{\bar{K}N} + \hat{V}_{1i}^{EM})$$
 Coulomb

$$\hat{H}_{\bar{K}^0nn} = \sum_{i=1}^3 \hat{T}_i - \hat{T}_{cm} + \hat{V}_{23}^{NN} + \sum_{i=2}^3 \hat{V}_{1i}^{\bar{K}N} + \underline{\Delta m} \text{ threshold difference}$$

- (single-channel) realistic $\bar{K}N$ potential

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016)

Few-body technique

- a large number of correlated gaussian basis

Y. Suzuki, K. Varga, Lect. Notes Phys. M54, (1998)

Kaonic deuterium: shift and width

Results of the three-body calculation

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- energy convergence
- a large number of basis

		_	
N	Re[E] (MeV)		
1677	-2.211689436	5	
2194	-2.211722964	1	
2377	-2.211732072	2	
2511	-2.211735493	3	
2621	-2.211737242	2	
2721	-2.211737609)	
2806	-2.211737677	7	
2879	-2.211737682	2	
	+ +	=	
	keV ' 'e		

Shift-width of the 1S state:

$$\Delta E - i\Gamma/2 = (670 - i508) \text{ eV}$$

- No shift in 2P state is shown by explicit calculation.
- Deser-type formula does not work accurately for K⁻d

c.f.) J. Revai, PRC 94, 054001 (2016)

	$\Delta E \text{ (eV)}$	Γ (eV)
Full Schrödinger equation	670	1016
Improved Deser formula (18)	910	989
Resummed formula (19)	818	1188

$$I=1$$
 dependence

Study sensitivity to I = 1 interaction

- introduce parameter β to control the potential strength

Re
$$\hat{V}^{\bar{K}N(I=1)} \rightarrow \beta \times \text{Re } \hat{V}^{\bar{K}N(I=1)}$$

Vary β within SIDDHARTA uncertainty of K^-p

- allowed region: $-0.17 < \beta < 1.08$ (negative β may contradict with scattering data)

β	K^-p		K^-d	
	ΔE	Γ	$\overline{\Delta E}$	Γ
1.08	287	648	676	1020
1.00	283	607	670	1016
-0.17	310	430	506	980

- deviation of ΔE of $K^-d \sim 170 \text{ eV}$
- Planned precision: 60 eV (30 eV) at J-PARC (SIDDHARTA-2)

Measurement of K^-d will provide strong constraint on I=1

New data : K^-p correlation function

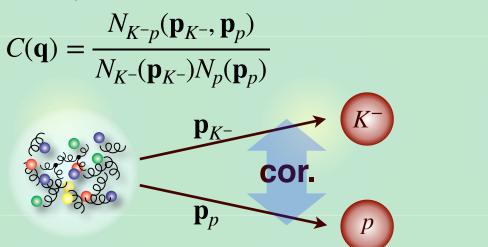
K⁻p total cross sections

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

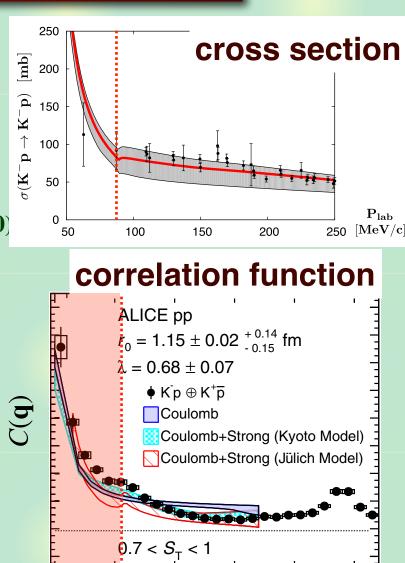
Old bubble chamber data

K⁻p correlation function

S. Acharya et al. (ALICE), PRL 124, 092301 (2020)



- Excellent precision (\bar{K}^0n cusp)
- Low-energy data below $\bar{K}^0 n$
- -> important constraint on $\Lambda(1405)$ theories

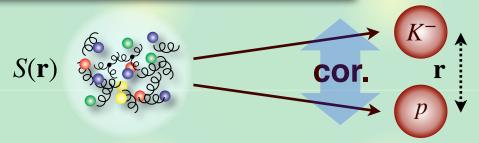


q

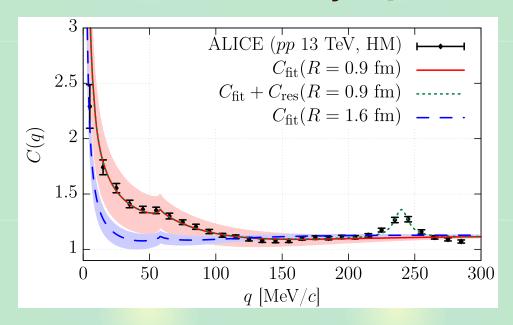
Prediction from chiral SU(3) dynamics

Theoretical calculation of C(q)

$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \, S(\mathbf{r}) |\Psi_{\mathbf{q}}^{(-)}(\mathbf{r})|^2$$



- wave function $\Psi_{\bf q}^{(-)}({\bf r})$: coupled-channel $\bar KN$ - $\pi\Sigma$ - $\pi\Lambda$ potential
- source function $S(\mathbf{r})$: estimated by K^+p data



Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)

Correlation function is well reproduced.

Summary

Pole structure of the $\Lambda(1405)$ region is now well constrained by the experimental data.

" $\Lambda(1405)$ " -> $\Lambda(1405)$ and $\Lambda(1380)$

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);

T. Hyodo, M. Niiyama, arXiv: 2010.07592 [hep-ph], to appear in PPNP

 $\bar{K}N$ potentials are useful for various applications, Kaonic nuclei, Kaonic deuterium, and K^-p correlation function

K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);

K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018);

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017);

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017);

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, W. Weise. PRL124, 132501 (2020)