Status of $\Lambda(1405)$ in chiral dynamics

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Introduction

Pole structure of the $\Lambda(1405)$ region

- Chiral SU(3) dynamics
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);
M. Tanabashi, et al. (Particle Data Group), PRD 98, 030001 (2018)

Some comments from recent studies

- $K^{-} p$ correlation function \rightarrow Talk by Y . Kamiya

ALICE collaboration, arXiv:1905.13470 [nucl-ex];
(Friday)
Y. Kamiya. T. Hyodo, K Morita, A. Ohnishi, in preparation

- Pole and finite volume spectrum
Y. Tsuchida, T. Hyodo, Phys. Rev. C97, 0552113 (2018)

\bar{K} meson and $\bar{K} N$ interaction

Two aspects of K / \bar{K} meson

- NG boson of chiral $\operatorname{SU}(3)_{\mathrm{R}} \otimes \operatorname{SU}(3)_{\mathrm{L}} \rightarrow \mathrm{SU}(3)_{\mathrm{V}}$
- Massive due to strange quark: $m_{K} \sim 496 \mathrm{MeV}$
-> Spontaneous/explicit symmetry breaking

$\bar{K} N$ interaction ...

T. Hyodo, D. Jido, PPNP 67, 55 (2012)

- is coupled with $\pi \Sigma$ channel
- generates $\Lambda(1405)$ below threshold

molecule

three-quark
- is fundamental building block for \bar{K}-nuclei, \bar{K} in medium, $\ldots{ }_{3}$

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays
M. Bazzi, et al., PLB 704, 113 (2011); NPA 881, 88 (2012)

EM int.

EM value

- Shift and width of atomic state $<>K^{-} p$ scattering length U.G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Quantitative constraint on the $\bar{K} N$ interaction at fixed energy

Strategy for $\bar{K} N$ interaction

Above the $\bar{K} N$ threshold: direct constraints

- $K^{-} p$ total cross sections (old data)
- $\bar{K} N$ threshold branching ratios (old data)
- $K^{-} p$ scattering length (new data: SIDDHARTA)

Below the $\bar{K} N$ threshold: indirect constraints

- $\pi \Sigma$ mass spectra (new data: LEPS, CLAS, HADES,...)

Construction of the realistic amplitude

Chiral SU(3) coupled-channels ($\bar{K} N, \pi \Sigma, \pi \Lambda, \eta \Lambda, \eta \Sigma, K \Xi$) approach Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 88198 (2012)

Chiral perturbation theory

Pole structure of the $\Lambda(1405)$ region

Best-fit results

	TW	TWB	NLO	Experiment	
$\Delta E[\mathrm{eV}]$	373	377	306	$283 \pm 36 \pm 6$	$[10]$

Accurate description of all existing data ($\chi^{2} / \mathrm{d} . \mathrm{o} . \mathrm{f} \sim 1$)

Comparison with SIDDHARTA

	TW	TWB	NLO
X $^{2 / d . o . f . ~}$	1.12	1.15	0.957

TW and TWB are reasonable, while best-fit requires NLO.

Pole structure of the $\Lambda(1405)$ region

Subthreshold extrapolation

Uncertainty of $\bar{K} N \rightarrow \bar{K} N(I=0)$ amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, NPA 954, 41 (2016)

- c.f. without SIDDHARTA
R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

Extrapolation to complex energy: two poles

Two poles: superposition of two states

J.A. Oller, U.G. Meissner, PLB 500, 263 (2001);
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, NPA 723, 205 (2003);
T. Hyodo, W. Weise, PRC 77, 035204 (2008)

- Attractions of TW in 1 and 8 ($\bar{K} N$ and $\pi \Sigma$) channels

NLO analysis confirms the two-pole structure.

PDG changes

PDG particle listing of $\Lambda(1405)$

M. Tanabashi, et al., PRD 98, 030001 (2018), http://pdg. lbl.gov/

$K^{-} p$ correlation function

Correlation function

$K^{-} p$ total cross sections
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)

- Old bubble chamber data
$K^{-} p$ correlation function
ALICE collaboration, arXiv:1905.13470 [nucl-ex]

$$
C(\mathbf{q})=\frac{N_{K^{-} p}\left(\mathbf{p}_{K^{-}}, \mathbf{p}_{p}\right)}{N_{K^{-}}\left(\mathbf{p}_{K^{-}}\right) N_{p}\left(\mathbf{p}_{p}\right)}
$$

- Excellent precision ($\bar{K}^{0} n$ cusp)
- Low-energy data below $\bar{K}^{0} n$

$$
C(\mathbf{q}) \simeq \int d^{3} \mathbf{r} S(\mathbf{r})\left|\Psi_{\mathbf{q}}^{(-)}(\mathbf{r})\right|^{2}
$$

—> Important constraint on $\bar{K} N$ and $\Lambda(1405)$
$\kappa^{-} p$ correlation function

Results

Developing theoretical framework to calculate $C(q)$ with

- interaction: coupled-channel $\bar{K} N-\pi \Sigma-\pi \Lambda$ potential
K. Miyahara. T. Hyodo, W. Weise, PRC98, 025201 (2018)
- static spherical source $S(\mathbf{r})$, weight $\omega_{i}=1$

- $\bar{K}^{0}{ }_{n}$ cusp is prominent with inclusion of $\psi_{\bar{K}^{0_{n}}}$
- Coupled channels enhance $K^{-} p$ correlation

Pole and finite volume spectrum

Resonance and finite volume spectrum

Sharp resonance and finite volume spectrum (toy model)
Y. Tsuchida, T. Hyodo, Phys. Rev. C97, 0552113 (2018)

- dashed: free eigenenergy
- solid: with interaction
- additional energy level

$\Lambda(1405)$ case (amplitude with two poles)
- Only one additional level
- \# of additional energy levels
= \# of $\pi / 2$ crossings of phase shift \# \# of poles

Y. Tsuchida, T. Hyodo, Phys. Rev. C97, 0552113 (2018)
: 2

Finite volume spectrum does not directly indicate the pole structure.
 Finite volume spectrum does not directly indicate the pole structure.

 -
 \square

```
$
```

```
$
```

sa
a0

