Status of A(1405) in chiral dynamics

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Contents

Introduction

Pole structure of the $\Lambda(1405)$ region

- Chiral SU(3) dynamics

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012);</u> <u>M. Tanabashi, *et al.* (Particle Data Group), PRD 98, 030001 (2018)</u>

Some comments from recent studies

 - K⁻p correlation function —> Talk by Y. Kamiya ALICE collaboration, arXiv:1905.13470 [nucl-ex]; (Friday) Y. Kamiya. T. Hyodo, K Morita, A. Ohnishi, in preparation

- Pole and finite volume spectrum

Y. Tsuchida, T. Hyodo, Phys. Rev. C97, 0552113 (2018)

Introduction

\bar{K} meson and $\bar{K}N$ interaction

Two aspects of K/\bar{K} meson

- NG boson of chiral $SU(3)_R \otimes SU(3)_L \rightarrow SU(3)_V$
- Massive due to strange quark: $m_K \sim 496 \text{ MeV}$
 - -> Spontaneous/explicit symmetry breaking

- is fundamental building block for \bar{K} -nuclei, \bar{K} in medium, ...

Introduction

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., PLB 704, 113 (2011); NPA 881, 88 (2012)

- Shift and width of atomic state <-> K⁻p scattering length U.G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Quantitative constraint on the $\bar{K}N$ interaction at fixed energy

Strategy for *KN* interaction

Above the $\bar{K}N$ threshold: direct constraints

- *K*⁻*p* total cross sections (old data)
- *KN* threshold branching ratios (old data)
- K⁻p scattering length (new data: SIDDHARTA)

Below the $\bar{K}N$ threshold: indirect constraints

- $\pi\Sigma$ mass spectra (new data: LEPS, CLAS, HADES,...)

Construction of the realistic amplitude

Chiral SU(3) coupled-channels ($\bar{K}N, \pi\Sigma, \pi\Lambda, \eta\Lambda, \eta\Sigma, K\Xi$) approach

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Best-fit results

		TW	TWB	NLO	Experiment		
St	$\Delta E \; [eV]$	373	377	306	$283\pm 36\pm 6$	[10]	
Ö	$\Gamma \ [eV]$	495	514	591	$541\pm89\pm22$	[10]	
	γ	2.36	2.36	2.37	2.36 ± 0.04	[11]	
Ø	R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]	
K	R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]	
	χ^2 /d.o.f	1.12	1.15	0.96			

SIDDHARTA

Branching ratios

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

Comparison with SIDDHARTA

	TW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957

TW and TWB are reasonable, while best-fit requires NLO.

Subthreshold extrapolation

Uncertainty of $\bar{K}N \rightarrow \bar{K}N(I=0)$ amplitude below threshold

<u>Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise,</u> NPA 954, 41 (2016)

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

Extrapolation to complex energy: two poles

Two poles: superposition of two states

J.A. Oller, U.G. Meissner, PLB 500, 263 (2001);

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, NPA 723, 205 (2003);

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

- Attractions of TW in 1 and 8 ($\bar{K}N$ and $\pi\Sigma$) channels

NLO analysis confirms the two-pole structure.

PDG changes

PDG particle listing of $\Lambda(1405)$

M. Tanabashi, et al., PRD 98, 030001 (2018), http://pdg.lbl.gov/

 $I(J^P) = O(\frac{1}{2}^{-})$ Status **2014** The nature of the $\Lambda(1405)$ has been a puzzle for decades: t.... quark state or hybrid; two poles or one. We cannot here survey the rather extensive literature. See, for example, CIEPLY 10, KISSLINGER 11, SEKIHARA 11, and SHEVCHENKO 12A for discussions and earlier references.

A(1405) 1/2⁻

105. Pole Structure of the $\Lambda(1405)$ Region

Written November 2015 by Ulf-G. Meißner (Bonn Univ. / FZ Jülich) and Tetsuo Hyodo (YITP, Kyoto Univ.).

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S = -1 and isospin I = 0. It is the archetype of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan [1]. The most powerful and

Our analysis (+ 2 other groups)

- Pole positions are now tabulated, prior to mass/width.

 $\Lambda(1405) 1/2^{-1}$

$I(J^P) = 0(\frac{1}{2}^{-}) \le 2018$

11

In the 1998 Note on the A(1405) in PDG 98, R.H. Dalitz uiscusseu the S-shaped cusp behavior of the intensity at the $N-\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\overline{K}$ coupling is *P*-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P = 1/2^-$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P = 1/2^-$ spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow$ $K^+ \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) \rightarrow Σ^+ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin J = 1/2. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P = 1/2^-$.

See the related review(s): Pole Structure of the $\Lambda(1405)$ Region

	A(1405) REGION POLE POSITIO					
REAL PART VALUE (MeV)		DOCUMENT	ID	TECN		
• • • We do not u	se the following da	ata for aver	ages, fits,	limits, etc		
1429^{+}_{-} $^{8}_{7}$	1	MAI	15	DPWA		
1325^{+15}_{-15}	2	MAI	15	DPWA		
$1434^{+}_{-}2^{2}_{2}$	3	MAI	15	DPWA		
1330^{+}_{-} $^{4}_{5}$	4	MAI	15	DPWA		
1421^+ $\frac{3}{2}$	5	GUO	13	DPWA		
1388± 9	6	GUO	13	DPWA		
1424^{+}_{-23}	7	IKEDA	12	DPWA		
1381^{+18}	8	IKEDA	12	DPWA		

K⁻p correlation function

Correlation function

250

200

50

0

50

100

150

[mb]

 $\left(egin{matrix} \mathbf{d} & 150 \ \mathbf{H} & \mathbf{J} \end{array}
ight)$

↑ 100

 $\sigma(\mathbf{K}^{-}\mathbf{p})$

cross section

200

 \mathbf{P}_{lab}

 $250 \left[MeV/c \right]$

K⁻*p* total cross sections

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)</u>

- Old bubble chamber data

K⁻p correlation function

ALICE collaboration, arXiv:1905.13470 [nucl-ex]

Developing theoretical framework to calculate C(q) with

- interaction: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara. T. Hyodo, W. Weise, PRC98, 025201 (2018)

- static spherical source $S(\mathbf{r})$, weight $\omega_i = 1$

- $\bar{K}^0 n$ cusp is prominent with inclusion of $\psi_{\bar{K}^0 n}$
- Coupled channels enhance *K*⁻*p* correlation

Pole and finite volume spectrum

Resonance and finite volume spectrum

Sharp resonance and finite volume spectrum (toy model)

<u>Y. Tsuchida, T. Hyodo, Phys. Rev. C97, 0552113 (2018)</u>

- dashed: free eigenenergy
- solid: with interaction
- additional energy level

 $\Lambda(1405)$ case (amplitude with two poles)

- Only one additional level
- # of additional energy levels
 # of π/2 crossings of phase shift
 # of poles

Summary

Summary

Pole structure of the $\Lambda(1405)$ region is now well constrained by the experimental data. Nominal $\Lambda(1405)$ can be a superposition of two states.

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012); M. Tanabashi, *et al.* (Particle Data Group), PRD 98, 030001 (2018)

K^-p correlation function will be a new accurate constraint on the $\Lambda(1405)$

ALICE collaboration, arXiv:1905.13470 [nucl-ex]; Y. Kamiya. T. Hyodo, K Morita, A. Ohnishi, in preparation

Finite volume spectrum does not directly indicate the pole structure.

Y. Tsuchida, T. Hyodo, Phys. Rev. C97, 0552113 (2018)