高エネルギー衝突実験での *K⁻p*相関と反*K*中間子核子相互作用

神谷有輝A,兵藤哲雄B,森田健司C,D,大西明E ITPA,首都大理B、量研C,理研仁科セD,京大基研E <u>2019, Sep. 17th</u>

ĒN interaction

\overline{K} meson and $\overline{K}N$ interaction

Two aspects of K/\bar{K} meson

- NG boson of chiral $SU(3)_R \otimes SU(3)_L \rightarrow SU(3)_V$
- Massive by strange quark: $m_K \sim 496 \text{ MeV}$
 - -> Spontaneous/explicit symmetry breaking

- is fundamental building block for \bar{K} -nuclei, \bar{K} in medium, ...

Introduction

Experimental data

K⁻*p* total cross sections

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011)</u>

- Old bubble chamber data
- K⁻ hydrogen
 - Branching ratios (old)
 - Shift/width by SIDDHARTA (new)

ALICE pp s = 5 TeV $r_0 = 1.13 \pm 0.02 \stackrel{+0.17}{_{-0.15}} \text{ fm}$ $\lambda = 1.13 \pm 0.02 \stackrel{+0.17}{_{-0.15}} \text{ fm}$ $\lambda = 1.13 \pm 0.02 \stackrel{+0.17}{_{-0.15}} \text{ fm}$ $\lambda = 1.13 \pm 0.02 \stackrel{+0.17}{_{-0.15}} \text{ fm}$ $\lambda = 1.13 \pm 0.02 \stackrel{+0.17}{_{-0.15}} \text{ fm}$

ALICE collaboration², arXiv:1905.13470 [nucl-ex]

- Excellent precision (\bar{K}^0n cusp)
- Low-energy data below $\bar{K}^0 n$

 $0.7 < S_{T} < 1$ $0.8 \quad 0.7 < S_{T} < 1$ $0.8 \quad 0.7 < S_{T} < 1$ $0.7 < S_{T} < 1$

Introduction

Correlation function

High-energy collision: chaotic source S(r) of hadron emission

- Experiment

$$C(\mathbf{q}) = \frac{N_{K^-p}(\mathbf{p}_{K^-}, \mathbf{p}_p)}{N_{K^-}(\mathbf{p}_{K^-})N_p(\mathbf{p}_p)} = 1 \text{ in the absence of FS}$$

- Theory

$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \, S(\mathbf{r}) |\Psi_{\mathbf{q}}^{(-)}(\mathbf{r})|^2$$

Source function <--> two-body wave function (FSI)

Formulation

Extraction of hadron interaction

ΛΛ interaction

K. Morita, T. Furumoto, A. Ohnishi, PRC 91, 024916 (2015)

Correlation function —> constraint on the interaction

K^-p case:

- Open coupled channels ($\pi^+\Sigma^-, \pi^0\Sigma^0, \pi^-\Sigma^+, \pi^0\Lambda$)
- Coulomb interaction
- Energy difference between K^-p and \bar{K}^0n (isospin breaking)

Formulation

Coupled-channel correlation function

Schrödinger equation (s-wave)

Coupled-channel formulation

R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz, Phys. Atom. Nucl. 61, 2050 (1997); J. Haidenbauer, NPA 981, 1 (2019)

$$C_{K^{-p}}(\mathbf{q}) \simeq \int d^3 \mathbf{r} \, S_{K^{-p}}(\mathbf{r}) \, |\Psi_{K^{-p},\mathbf{q}}^{(-)}(\mathbf{r})|^2 + \sum_{i \neq K^{-p}} \omega_i \int d^3 \mathbf{r} \, S_i(\mathbf{r}) \, |\psi_{i,q}^{(-)}(r)|^2$$

- transition from $\bar{K}^0 n, \pi^+ \Sigma^-, \pi^0 \Sigma^0, \pi^- \Sigma^+, \pi^0 \Lambda$
- ω_i : weight of source channel *i* relative to K^-p

Boundary conditions

Asymptotic $(r \rightarrow \infty)$ wave function

$$\begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} \#e^{-iqr} + \#e^{iqr} \\ \#e^{-iq_2r} + \#e^{iq_2r} \\ \vdots \end{pmatrix}$$

incoming + outgoing

Usual scattering: normalize incoming flux of beam

 $\begin{pmatrix} \psi_{K^-p}(r) \\ \psi_{\bar{K}^0n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} e^{-iqr} + c_1^{(+)}e^{iqr} \\ + c_2^{(+)}e^{iq_2r} \\ \vdots \end{pmatrix}$ **coefficient** ~ S-matrix $c_i^{(+)} \propto S_{1i}(q)$

Correlation function: normalize outgoing flux

$$\psi^{(-)} = \begin{pmatrix} \psi_{K^{-}p}(r) \\ \psi_{\bar{K}^{0}n}(r) \\ \vdots \end{pmatrix} \propto \begin{pmatrix} c_{1}^{(-)}e^{-iqr} + e^{iqr} \\ c_{2}^{(-)}e^{-iq_{2}r} \\ \vdots \end{pmatrix} \qquad c_{i}^{(-)} \propto S_{1i}^{\dagger}(q)$$

-> $\psi^{(-)}$ should be calculated with full coupled channels.

Setup

- interaction: coupled-channel $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential
 - K. Miyahara. T. Hyodo, W. Weise, PRC98, 025201 (2018)
- static spherical source $S(\mathbf{r})$, weight $\omega_i = 1$

- $\bar{K}^0 n$ cusp is prominent with inclusion of $\psi_{\bar{K}^0 n}$
- Coupled channels enhance *K*⁻*p* correlation

Summary

Accurate experimental data of K⁻p correlation function at very low energy is now available. We develop theoretical framework to include - coupled-channel effect, - Coulomb interaction, and - energy difference of K^-p and \bar{K}^0n **Coupled-channel effects** are important for the *K⁻p* correlation function.

Y. Kamiya. T. Hyodo, K Morita, A. Ohnishi, in preparation