kN and *ΩN* interactions in effective field theory

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Introduction

RN interaction

- Chiral SU(3) dynamics (scattering amplitude)
 - Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881, 98 (2012)
- Local $\overline{KN}(-\pi\Sigma-\pi\Lambda)$ potentials

T. Hyodo, W. Weise, PRC 77, 035204 (2008); K. Miyahara. T. Hyodo, PRC93, 015201 (2016); K. Miyahara. T. Hyodo, W. Weise, PRC98, 025201 (2018)

ΩN interaction

- Potential (effect from inelastic channels)

T. Sekihara, Y. Kamiya, T. Hyodo, PRC98, 015205 (2018)

Introduction

ĒN interaction

Strategy for *KN* interaction

Above the $\bar{K}N$ threshold: direct constraints

- *K*⁻*p* total cross sections (old data)
- *KN* threshold branching ratios (old data)
- K⁻p scattering length (new data: SIDDHARTA)

Below the $\bar{K}N$ threshold: indirect constraints

- $\pi\Sigma$ mass spectra (new data: LEPS, CLAS, HADES,...)

<u> </u><i>KN interaction

Construction of the realistic amplitude

Chiral SU(3) coupled-channels ($\bar{K}N, \pi\Sigma, \pi\Lambda, \eta\Lambda, \eta\Sigma, K\Xi$) approach

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

ĒN interaction

Best-fit results

		TW	TWB	NLO	Experiment	۰.
D O	$\Delta E [\mathrm{eV}]$	373	377	306	$283\pm 36\pm 6$	[10]
Õ	$\Gamma \ [eV]$	495	514	591	$541\pm89\pm22$	[10]
þ	γ	2.36	2.36	2.37	2.36 ± 0.04	[11]
Ň	R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]
	R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]
X	χ^2 /d.o.f	1.12	1.15	0.96		

SIDDHARTA

Branching ratios

Accurate description of all existing data ($\chi^2/d.o.f \sim 1$)

KN interaction

Comparison with SIDDHARTA

	TW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957

TW and **TWB** are reasonable, while best-fit requires **NLO**.

RN interaction

Subthreshold extrapolation

Uncertainty of $\bar{K}N \rightarrow \bar{K}N(I=0)$ amplitude below threshold

<u>Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise,</u> <u>NPA 954, 41 (2016)</u>

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

Construction of *kN* **potential**

Local *KN* potential is useful for

- Extraction of the wave function of $\Lambda(1405)$
- Applications to few-body K-nuclei/atoms, correlation fn., ...

Strategy

T. Hyodo, W. Weise, PRC 77, 035204 (2008)

- Equivalence of the scattering amplitude

Thin: chiral SU(3)

Thick: V_{local}(r, E) + Schrödinger eq.

Realistic *KN* **potential**

New single-channel potential (Kyoto *k̄*_N potential)

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- Chiral SU(3) at NLO with SIDDHARTA
- Improvement of construction
 : pole positions in 1 MeV precision
- Wave function: $\psi_{K^-p}(r), \psi_{\bar{K}^0n}(r)$

Coupled-channels $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential

K. Miyahara. T. Hyodo, W. Weise, PRC98, 025201 (2018)

- Real-valued potential strengths
- Wave function: $\psi_{K^-p}(r), \psi_{\bar{K}^0n}(r), \psi_{\pi^+\Sigma^-}(r), \psi_{\pi^0\Sigma^0}(r), \psi_{\pi^-\Sigma^+}(r), \psi_{\pi^0\Lambda}(r)$

Realistic potentials $(\chi^2/d.o.f \sim 1)$ are now available.

ĒN interaction

Summary: *KN* interaction

 $\bar{K}N$ interaction is studied with chiral EFT. All existing data (scattering + K-hydrogen) are reproduced with $\chi^2/d.o.f \sim 1$. Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012) **Realistic** local potentials: basic construction method T. Hyodo, W. Weise, PRC 77, 035204 (2008) effective single $\bar{K}N$ channel potential K. Miyahara. T. Hyodo, PRC93, 015201 (2016) coupled-channels potential $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ K. Miyahara. T. Hyodo, W. Weise, PRC98, 025201 (2018)

Lattice QCD

T. Iritani, et al., HAL QCD, Phys. Lett. B792, 284 (2019)

Note:

- Effective single-channel framework (inelastic/d-wave ΩN channels are not explicitly included)
- Not exactly at physical point ($m_{\pi} \sim 146 \text{ MeV}$)
- Physical origin (mechanism) of the potential?

Effective field theory can fill this gap.

(a)

N-

(b)

Long range part: known physical mechanisms

- B: correlated two-meson exchanges

Short range part

- C: contact term N Ω (c)

- determined by lattice QCD (scattering length@ $m_{\pi} \sim 146 \text{ MeV}$)

Mechanism of ΩN interaction

Non-local potential (in momentum space, V(p, p))

Strong short range attraction is needed. $\Sigma \Xi$ and $\Lambda \Xi$ channels

d-wave ΩN channels

2650 MeV

0.8

Diagonal (contact) >> $\Sigma \Xi$ and $\Lambda \Xi$ >> d-wave ΩN

Quasi-bound state

Scattering length and quasi-bound state

mπ	Vstrong	Vc	a [fm]	B [MeV]	「[MeV]
146	real	off	7.4 (input)		
146	comp	off	4.1-3.1i		
phys	real	off		0.3	0
phys	comp	off	5.3-4.3i	0.1	1.5
phys	comp	on		1.0	2.0

- HAL QCD final: $a \sim 5.3 \text{ fm} @ m_{\pi} \sim 146 \text{ MeV}$
- m_{π} extrapolation: binding decreases
- Im V_{strong} : dispersive repulsive shift
- $V_{\rm C}$: binding increases ~ 1 MeV

Equivalent local potential

Equivalent local potential

- superposition of Yukawa fns

$$V_{\text{local}}(r) = \text{F.T.} \sum_{n=1}^{9} \frac{C_n}{q^2 + m_n^2} \left(\frac{\Lambda^2}{\Lambda^2 + q^2}\right)^2$$

- fit nonlocal potential with C_n

Comparison with HAL QCD potential

J. Haidenbauer, U.G. Meissner, Eur. Phys. J. A55, 70 (2019)

- long-range tail?

Summary: Ω*N* interaction

 $\Omega N(J = 2)$ interaction is studied. long range: known meson exchanges short range: contact term <- lattice QCD Strong short-range attraction is needed on top of meson exchanges. $\Sigma \Xi$ and $\Lambda \Xi$ channels give small imaginary part (absorption) of the potential. $\Omega^{-}p$ quasi-bound state (with Coulomb) $B \sim 1 \text{ MeV}, \Gamma \sim 2 \text{ MeV}$ T. Sekihara, Y. Kamiya, T. Hyodo, PRC98, 015205 (2018)