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Low-energy (s-wave) �  and �  interactionsK̄N ΩN
Introduction

�  interaction ( � )K̄N J = 1/2

�  interaction ( � )ΩN I = 1/2

�  channelI = 1�  channelI = 0

- decays into �πΣ - decays into �  and �πΣ πΛ

- �  resonanceΛ(1405)

�  channel3S1�  channel5S2

- decays into �  and �ΣΞ ΛΞ - decays into �  and �ΣΞ ΛΞ

in d-wave (small) in s-wave (large)

Experimental data

lattice QCD data
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Strategy for   interactionK̄N
  interactionK̄N

Above the   threshold: direct constraintsK̄N

-   total cross sections (old data)K−p

Below the   threshold: indirect constraintsK̄N

-   mass spectra (new data: LEPS, CLAS, HADES,…)πΣ

-   threshold branching ratios (old data)K̄N
-   scattering length (new data: SIDDHARTA)K−p

 ̄KN

 πΣ
energy

 Λ(1405)
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Construction of the realistic amplitude
  interactionK̄N

Chiral SU(3) coupled-channels �  approach(K̄N, πΣ, πΛ, ηΛ, ηΣ, KΞ)

= +

TW model

Chiral perturbation theory

TWB model NLO model

T V TV

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

O(p2)O(p)

O(p)

2) Born terms1) TW term 3) NLO terms

7 LECs6 cutoffs



TW TWB NLO Experiment

�E [eV] 373 377 306 283± 36± 6 [10]

� [eV] 495 514 591 541± 89± 22 [10]

� 2.36 2.36 2.37 2.36± 0.04 [11]

Rn 0.20 0.19 0.19 0.189± 0.015 [11]

Rc 0.66 0.66 0.66 0.664± 0.011 [11]

�2/d.o.f 1.12 1.15 0.96

pole positions 1422� 16i 1421� 17i 1424� 26i

[MeV] 1384� 90i 1385� 105i 1381� 81i

Table 1
Results of the systematic �2 analysis using leading order (TW) plus Born terms (TWB) and full NLO
schemes. Shown are the energy shift and width of the 1s state of the kaonic hydrogen (�E and �),
threshold branching ratios (�, Rn and Rc), �2/d.o.f of the fit, and the pole positions of the isospin I = 0
amplitude in the K̄N -⇡⌃ region.

the subtraction constants ai in Eq. (7), especially those in the ⇡⇤ and ⌘⌃ channels,
exceed their expected “natural” values ⇠ 10�2 by more than an order of magnitude [14].
This clearly indicates the necessity of including higher order terms in the interaction
kernel Vij . It also emphasizes the important role of the accurate kaonic hydrogen data in
providing sensitive constraints.

The additional inclusion of direct and crossed meson-baryon Born terms does not
change �E and �2/d.o.f. in any significant way. It nonetheless improves the situation
considerably since the subtraction constants ai now come down to their expected “nat-
ural” sizes.

The best fit (with �2/d.o.f. = 0.96) is achieved when incorporating NLO terms in the
calculations. The inputs used are: the decay constants f⇡ = 92.4 MeV, fK = 110.0 MeV,
f⌘ = 118.8 MeV, and axial vector couplings D = 0.80, F = 0.46 (i.e. gA = D+F = 1.26);
subtraction constants at a renormalization scale µ = 1 GeV (all in units of 10�3): a1 =
a2 = �2.38, a3 = �16.57, a4 = a5 = a6 = 4.35, a7 = �0.01, a8 = 1.90, a9 = a10 =
15.83; and NLO parameters (in units of 10�1 GeV�1): b̄0 = �0.48, b̄D = 0.05, b̄F =
0.40, d1 = 0.86, d2 = �1.06, d3 = 0.92, d4 = 0.64. Within the set of altogether
“natural”-sized constants ai the relative importance of the K⌅ channels involving double-
strangeness exchange is worth mentioning.

As seen in Table 1, the results are in excellent agreement with threshold data. The
same input reproduces the whole set of K�p cross section measurements as shown in
Fig. 2 (Coulomb interaction e↵ects are included in the diagonal K�p ! K�p channel
as in Ref. [6]). A systematic uncertainty analysis has been performed by varying the
parameters obtained from �2 fits within the range permitted by the uncertainty measures
of the kaonic hydrogen experimental data. Since the shift and width of kaonic hydrogen
are rather insensitive to the I = 1 scattering amplitudes, the total cross section of
K�p ! ⇡0⇤ reaction is also used for the uncertainty analysis. We find that all cross
sections are well reproduced with the constraint from the kaonic hydrogen measurement
as shown by the shaded areas in Fig. 2. A detailed description of this analysis will be
given in a longer forthcoming paper [15].

Equipped with the best fit to the observables at K�p threshold and above, an opti-

5

!6

Best-fit results
  interactionK̄N

Branching ratios

SIDDHARTA
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Comparison with SIDDHARTA
  interactionK̄N

TW and TWB are reasonable, while best-fit requires NLO.
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Subthreshold extrapolation
  interactionK̄N

SIDDHARTA is essential for subthreshold extrapolation.

Uncertainty of   amplitude below thresholdK̄N → K̄N(I = 0)

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, 
NPA 954, 41 (2016)
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Figure 5.13: Real (left panel) and imaginary part (right panel) of the I = 0 K̄N and
πΣ amplitudes in the full approach. The best fit is represented by the solid lines while
the bands comprise all fits in the 1σ region. The πΣ and K̄N thresholds are indicated
by the dotted vertical lines.

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA
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Construction of   potentialK̄N

Local   potential is useful forK̄N

  interactionK̄N

- Extraction of the wave function of �Λ(1405)
- Applications to few-body K-nuclei/atoms, correlation fn., …

Strategy
T. Hyodo, W. Weise, PRC 77, 035204 (2008) 

TETSUO HYODO AND WOLFRAM WEISE PHYSICAL REVIEW C 77, 035204 (2008)
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FIG. 10. (Color online) Scattering

amplitudes FK̄N from the local potential
U (r, E) (thick lines) and from the ampli-
tude T eff in the original chiral coupled-
channel approach (thin lines) obtained
by using the HNJH model for the I =
0 channel (left) and the I = 1 channel
(right). Real parts are shown as solid lines
and imaginary parts as dashed lines.

s-wave scattering amplitude is

FK̄N = 1
k(cot δ0 − i)

,

where the phase shift δ0 is determined by the asymptotic wave
function,

u(r)
r

→ A0[cos δ0j0(kr) − sin δ0n0(kr)] for r → ∞,

with spherical Bessel and Neumann functions j0 and n0.
The wave number k =

√
2µE becomes imaginary below

threshold, E < 0.
Given V eff(

√
s) as input, the range parameter b is then

fixed by requiring that the real part of the K̄N amplitude
develops its zero at

√
s ≃ 1420 MeV to satisfy the condition

for the quasibound K̄N state at this point. For the HNJH
model, this condition determines b = 0.47 fm. Note that this
scale is somewhat smaller than the typical range associated
with vector meson exchange, the picture that one has in mind
as underlying the vector current interaction generating the
Weinberg-Tomozawa term.

With b = 0.47 fm fixed, the I = 0 and I = 1 amplitudes
generated by the equivalent local pseudopotential U (r, E)
reproduce the full K̄N coupled-channel amplitudes perfectly
well in the threshold and subthreshold region above

√
s ≃

1420 MeV. However, at energies below the quasibound state,
the local ansatz [Eq. (11)] does not extrapolate correctly
into the far-subthreshold region. One has to keep in mind
that the complex, off-shell effective K̄N interaction is in
general nonlocal and energy dependent to start with. Its
detailed behavior over a broader energy range cannot be
approximated by a simple local potential without paying the
price of extra energy dependence. This is demonstrated in
Fig. 10. In the subthreshold region below

√
s < 1400 MeV,

the amplitudes calculated with the local potential overesti-
mate the ones resulting from the coupled-channel approach
significantly, in both I = 0 and I = 1 channels. One observes
that subthreshold extrapolations using a naive local potential
tend to give much stronger K̄N attraction than what chiral
coupled-channel dynamics actually predicts. Corrections to
the energy dependence of the local potential need to be applied
to repair this deficiency.

C. Improved local potentials and uncertainty analysis

The necessary corrections just mentioned can easily be
implemented by introducing a third-order polynomial in

√
s,

U (r = 0, E) = K0 + K1
√

s + K2(
√

s)2 + K3(
√

s)3,

1300 !
√

s ! 1450 MeV,
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FIG. 11. (Color online) Upper
panels: Strength of the fitted potential
at r = 0 (thick lines) and the strength
without correction [Eq. (11); dotted
lines] with the HNJH model. Lower
panels: Scattering amplitude f from
the local potential (thick lines) and the
amplitude Teff. in the original chiral
unitary approach (thin lines) with the
HNJH model. The real parts are shown
by the solid lines, and the imaginary parts
are depicted by the dotted lines. Left:
I = 0 channel. Right: I = 1 channel.

035204-10

Thin: chiral SU(3)

Thick: �
+ Schrödinger eq.

Vlocal(r, E)

- Equivalence of the scattering amplitude
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FIG. 2. The contour plot of !F of the HNJH potential in
Ref. [55]. The unfilled region corresponds to large deviation, !F > 2.
The precise region is defined as !F < 0.2. The crosses represent the
original pole positions of "(1405).

potential by a polynomial in the energy,

U (r = 0,E) = g(r = 0)N (E)

[
∑

i

Ki

(
E

100 MeV

)i
]

. (8)

We refer to the energy range where the potential is
parametrized as parametrized range, which will be specified
for each potential. We comment on the analytic behavior of
the amplitude calculated from the potential (8). Because the
potential is constructed to reproduce the original amplitude, the
correct analytic behavior is guaranteed within the parametrized
range on the real axis. However, the extrapolation of this
potential to other energy regions should be carefully per-
formed, because some unphysical singularities can, in general,
be developed. This is discussed in detail in the next section.

FIG. 3. The contour plot of !F of Potential I. The unfilled region
corresponds to large deviation, !F > 2. The precise region is defined
as !F < 0.2. The crosses represent the original pole positions of
"(1405).

III. POTENTIAL CONSTRUCTION

In this section, we study how the original amplitude is
reproduced by the K̄N local potential. Examining the previous
method in Ref. [55] in detail, we improve the construction
procedure to reproduce the original amplitude even in the
complex energy plane. Here we mainly employ the amplitude
of the HNJH model [66,67] for the comparison with Ref. [55].
Inclusion of the SIDDHARTA constraint is discussed in the
next section to construct a realistic K̄N potential.

A. Precision of potential in the complex plane

A resonance state is represented by a pole of the scattering
amplitude in the complex energy plane. The pole structure
of the K̄N amplitude is therefore important for the study of
the spatial structure of "(1405). It is considered that the pole
structure of the K̄N system may affect the result of the K̄NN

TABLE II. Properties of the HNJH potential in Ref. [55] and Potential I and Potential II in this work. Shown are the potential range
parameters b, the corrections to the strength of the potentials !V , the polynomial types of the potential strength in energy, the correction ranges
where !V is applied, the parametrized ranges by the polynomials, the average deviations !Freal from the amplitudes of chiral unitary approach
F Ch

K̄N
on the real energy axis, the percentages of the precise region in the complex energy plane, and the pole positions of the amplitudes from

the potentials FK̄N . The pole positions of the original amplitude F Ch
K̄N

are 1428 − 17i MeV and 1400 − 76i MeV.

Ref. [55] Potential I Potential II

b (fm) 0.47 0.46 0.46
!V Real Complex Complex
Polynomial type Third order Third order Tenth order
Correction range 1300–1400 1332–1450 1332–1521
Parametrized range 1300–1450 1332–1450 1332–1521
!Freal 1.4 × 10−1 4.8 × 10−3 4.0 × 10−4

Pcomp 50 68 85
Pole positions (MeV) 1421 − 35i 1427 − 17i 1428 − 17i, 1400 − 77i

015201-4
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Realistic   potentialK̄N

Realistic potentials   are now available.(χ2/d . o . f ∼ 1)

  interactionK̄N

New single-channel potential (Kyoto   potential)K̄N

- Chiral SU(3) at NLO with SIDDHARTA
- Improvement of construction
  : pole positions in 1 MeV precision

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- Wave function: �ψK−p(r), ψK̄0n(r)

Coupled-channels   potentialK̄N-πΣ-πΛ
K. Miyahara. T. Hyodo, W. Weise, PRC98, 025201 (2018)

- Real-valued potential strengths
- Wave function: �ψK−p(r), ψK̄0n(r), ψπ+Σ−(r), ψπ0Σ0(r), ψπ−Σ+(r), ψπ0Λ(r)

STRUCTURE OF !(1405) AND CONSTRUCTION . . . PHYSICAL REVIEW C 93, 015201 (2016)

FIG. 6. The contour plot of "F of SIDDHARTA potential (I =
0). The precise region is defined as "F < 0.2. The crosses represent
the original pole positions of !(1405).

C. Region far from the real axis

While Potential I reproduces the original amplitude near
the real energy axis, the deviation of the amplitude increases
in the region far from the real axis (see Fig. 3) and the π$
pole does not appear. Here we further improve the potential,
paying attention to the region far from the real axis.

In principle, if the original amplitude is completely re-
produced in the whole range on the real energy axis, the
analytic continuation in the complex energy plane is unique.
This suggests that the increase of the parametrized range will
improve the precision of the potential far from the real axis.3

However, there is a limitation of extension of the parametrized
range because of the threshold effect. In the present framework
of the effective single-channel potential with polynomial
parametrization, it is difficult to incorporate the nonanalytic
threshold effect of the other channels. The parametrized range
can only be extended to the nearest thresholds. In this case,
the parametrization of the K̄N potential strength should be
performed between the π$ threshold (1331 MeV) and the η!
threshold (1664 MeV). To keep the precision on the real axis
for the larger parametrized range, we increase the degree of
the polynomial from the third order to the tenth order.

To examine the above strategy, we construct the potentials
varying the parametrized range by 1 MeV. The typical results
of "Freal, Pcomp, and the pole positions of these potentials
are shown in Table III. In all cases, "Freal is reduced by an
order of magnitude from that of Potential I. This is because
we change the parametrization from the third-order to the
tenth-order polynomial. Though the wider fitting range leads
to the slightly larger "Freal, the order of magnitude remains
same. In general, when a high-degree polynomial is used for

3In this section, the correction range is chosen to be the same with
the parametrized range.

FIG. 7. Strength of SIDDHARTA potential (I = 0) U (r,E) at
r = 0. The real part is shown by the solid line, and the imaginary part
is shown by the dotted line.

the parametrization, artificial poles appear between the K̄N
and π$ thresholds. In the present case, this occurs when
the fitting range is smaller than ∼1500 MeV. However, as
the fitting range increases, these unphysical poles move away
from the relevant energy region and only two physical poles
remain. The K̄N pole appears at the original pole position,
1428 − 17i MeV and is stable against the variation of the
parametrized range. However, the position of the π$ pole
depends on the parametrized range. The optimized value of
the upper boundary of the parametrized range is 1521 MeV to
reproduce the original pole position, 1400 − 76i MeV. At the
same time, the maximum value of Pcomp is achieved. We call
the potential with the best parametrized range Potential II. We
show the contour plot of "F with Potential II in Fig. 4. As
shown in Fig. 4, we succeed in extending the precise region
to Imz ∼ −80 MeV, near the π$ pole. As a consequence, we
obtain two poles, both at the correct positions.

It turns out that the largest parametrized range does not
always lead to the best potential. In the present case, this is
because the π$ pole position moves along with the change of
the parametrized range. The best potential is achieved when
the π$ pole comes closest to the original position.

IV. APPLICATION

In the previous section, we established the construction
procedure to reproduce the original amplitude in the complex
energy plane, considering the high precision on the real
energy axis and the wider parametrized range. In this section,
we apply this procedure to chiral unitary approach with
SIDDHARTA constraint [48,49] and construct the realistic
K̄N local potential. This new potential is then used to estimate
the mean distance between K̄ and nucleon, that is, the spatial
structure of !(1405).

A. Realistic K̄ N potential

As we explained in Sec. I, the constraint from the precise
SIDDHARTA data is crucial for the quantitative calculation of

015201-7

deviation
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�  interaction is studied with chiral EFT.

All existing data (scattering + K-hydrogen) are 
reproduced with  .

Realistic local potentials:

K̄N

χ2/d . o . f ∼ 1

Summary:   interaction K̄N
  interactionK̄N

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

K. Miyahara. T. Hyodo, W. Weise, PRC98, 025201 (2018)

effective single   channel potentialK̄N
K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

coupled-channels potential  ̄KN-πΣ-πΛ

basic construction method
T. Hyodo, W. Weise, PRC 77, 035204 (2008) 
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  interactionΩN
  interactionΩN

Lattice QCD

Effective field theory can fill this gap.

- Effective single-channel framework 
  (inelastic/d-wave �  channels are not explicitly included)ΩN

- Not exactly at physical point ( � )mπ ∼ 146 MeV

Note:

- Physical origin (mechanism) of the potential?
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The nucleon(N)-Omega(!) system in the S-wave and spin-2 channel (5S2) is studied from the (2+1)-flavor 
lattice QCD with nearly physical quark masses (mπ ≃ 146 MeV and mK ≃ 525 MeV). The time-
dependent HAL QCD method is employed to convert the lattice QCD data of the two-baryon correlation 
function to the baryon-baryon potential and eventually to the scattering observables. The N!(5S2)

potential, obtained under the assumption that its couplings to the D-wave octet-baryon pairs are 
small, is found to be attractive in all distances and to produce a quasi-bound state near unitarity: In 
this channel, the scattering length, the effective range and the binding energy from QCD alone read 
a0 = 5.30(0.44)(+0.16

− 0.01) fm, reff = 1.26(0.01)(+0.02
− 0.01) fm, B = 1.54(0.30)(+0.04

− 0.10) MeV, respectively. Including 
the extra Coulomb attraction, the binding energy of p!− (5S2) becomes B p!− = 2.46(0.34)(+0.04

− 0.11) MeV. 
Such a spin-2 p!− state could be searched through two-particle correlations in p-p, p-nucleus and 
nucleus-nucleus collisions.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quest for dibaryons is a long-standing experimental and theo-
retical challenge in hadron physics [1,2]. Among various theoret-
ical attempts to study dibaryons, one of the recent highlights is 
the (2+1)-flavor lattice QCD simulations near the physical point 
(mπ ≃ 146 MeV and mK ≃ 525 MeV) by HAL QCD Collaboration. 
(For a recent summary, see Ref. [3].) This enables us to make 
model-independent investigations of the elusive H-dibaryon, origi-
nally proposed by the MIT bag model [4], on the basis of a coupled 
channel analysis of the lattice QCD data [5]. Also, the possible di-
Omega (!!), originally proposed by the Skyrme model [6], has re-
cently been examined in detail from the same lattice QCD data [7].

Another interesting candidate of the dibaryon is N! (uudsss or 
uddsss) in the 5S2 channel. Since the Pauli exclusion does not op-
erate among valence quarks and the color-magnetic interaction is 
attractive in the channel, it was predicted to be a resonance below 
the N! threshold in the constituent quark model [8,9]. More-

* Corresponding author.
E-mail address: takumi.iritani@riken.jp (T. Iritani).

over, N!(5S2) is expected to have relatively a small width since 
its strong decay into octet baryons such as #$ and %$ , which 
must have orbital D-wave, would be kinematically suppressed. A 
pilot (2+1)-flavor lattice QCD simulations with a heavy pion mass 
(mπ ≃ 875 MeV) [10] suggests a short-range attraction between N
and ! in the 5S2 channel. Subsequently, theoretical studies on the 
N! system [11–15] as well as experimental measurements in rel-
ativistic heavy ion collisions [16] have been reported.

The purpose of this Letter is to study N!(5S2) on the basis 
of realistic (2+1)-flavor lattice QCD simulations near the physical 
point (mπ ≃ 146 MeV and mK ≃ 525 MeV). As in the case of our 
previous pilot study [10], we employ the HAL QCD method [17–19]
which allows us to extract the interaction between N and ! from 
the spacetime dependence of the two-baryon correlation function 
on the lattice.

This paper is organized as follows. In Sec. 2, we introduce the 
HAL QCD method to extract the hadron interaction from lattice 
QCD. In Sec. 3, we summarize the setup of our lattice QCD simula-
tions near the physical point. In Sec. 4, we analyze the N! system 
in 5S2 channel in detail. Sec. 5 is devoted to summary and con-
cluding remarks.

https://doi.org/10.1016/j.physletb.2019.03.050
0370-2693/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 3. (a) The central potential V C(r) of the N!(5S2) system at t/a = 11 (blue up-pointing triangles), 12 (red squares), 13 (green circles) and 14 (black down-pointing 
triangles). (b) The result of the fitting of V C(r) (red circles) at t/a = 11 by using V fit(r) in Eq. (6). The black dotted (orange solid) line denotes the first (second) term in 
Eq. (6), and the blue dashed line is the sum of two terms. (c), (d) and (e) are the cases of t/a = 12, 13 and 14, respectively.

Fig. 4. (Left) The S-wave scattering phase shifts δ0 as a function of the kinetic energy, k2/2m. (Right) k cot δ0/mπ as a function of (k/mπ )2.
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TABLE I. Baryon-baryon channels coupling to N! and their
threshold energies.

Channel Threshold [MeV]

"# 2434
$# 2511
N! 2611
" #(1530) = "#∗ 2649
$(1385) # = $∗# 2703
$ #(1530) = $#∗ 2727
$(1385) #(1530) = $∗#∗ 2918

exclusion principle does not work. The absence of the repulsive
core is advantageous to generate a possible dibaryon state in
the N! system. The N! interaction in the 5S2 channel was
recently obtained in the HAL QCD analyses of the lattice QCD
data, where 2S+1LJ denotes the state with spin S, L wave, and
total angular momentum J of the N! system. Interestingly,
the results of the HAL QCD analyses suggested a strongly
attractive potential in the N!(5S2) channel without repulsive
core which supports a bound state [29–31]. Although there
are lower-energy baryon-baryon coupled channels "# and
$#, it is expected that the decay of the N!(5S2) quasibound
state will be suppressed because couplings to these decay
channels are in D wave (see Table I for baryon-baryon channels
coupling to the N! state). Stimulated by the HAL QCD results,
the N! interaction was studied in the framework of chiral
perturbation theory [32]. A method to probe this dibaryon with
the correlation between N and ! in high-energy heavy-ion
collisions was proposed in Ref. [33] as well.

The aim of our study is to understand the origin of the
strong attraction in the N!(5S2) channel. For this purpose,
we construct a meson exchange model for the N! interaction.
Combining the long-range meson exchange mechanisms with
the short-range interaction represented by the contact term,
we can pin down the physical origin of the attractive N!
interaction. In addition, by taking into account the coupling to
the relevant baryon-baryon inelastic channels, we can further
discuss the absorption processes and the energy dependence
of the N! interaction. These effects were assumed to be
small and are neglected in the HAL QCD analyses of the N!
interaction. Finally, the attractive N! interaction implies the
possible existence of nuclei with an ! baryon. It is practically
useful to construct a local potential equivalent to the full model,
for the application to few-body calculations of ! nuclei.

This paper is organized as follows: First, in Sec. II we for-
mulate the N! interaction including the inelastic contributions

as well as the elastic channels. Next, we show the expression of
the scattering amplitude and determine the model parameters
so as to reproduce the N!(5S2) scattering length calculated
in the HAL QCD analyses in Sec. III. We then discuss the
N!(5S2) interaction in Sec. IV by separately evaluating the
elastic and inelastic contributions to the interaction. We also
calculate properties of the on-shell N! scattering amplitude
and of the N! quasibound state. In Sec. V we construct
an equivalent local potential which reproduces the N!(5S2)
scattering amplitude. Section VI is devoted to the conclusion
of this study.

II. FORMULATION OF THE N! INTERACTION

First of all, we formulate the N! interaction based on the
meson exchanges with effective Lagrangians. This interaction
is then used to obtain the scattering amplitude in Sec. III.

A. Mechanisms

As for the elastic N! channel, the Okubo–Zweig–Iizuka
(OZI) rule restricts mediating mesons to those containing
both (uū + dd̄)/

√
2 and ss̄ components. Owing to this fact,

the longest range interaction should be mediated by the η
exchange [Fig. 1(a)]. In addition to η, there is a contribution
from the exchange of the light scalar-isoscalar meson “σ ,”
which should be, however, treated as the exchange of correlated
two pseudoscalar mesons due to its broad width as shown
in Fig. 1(b). In the vector channel, on the other hand, the
exchange of the light vector mesons is forbidden, because of
their ideal mixing and the OZI rule. The contributions from the
η and correlated two-meson exchanges can be determined by
empirical information as we show below. Further contributions
at short ranges, such as the exchanges of the heavier mesons
and the color magnetic interactions at quark-gluon level, are
treated as a contact term [Fig. 1(c)].

There are several inelastic channels which can couple to
N! as shown in Table I. Among them, we take into account
the two open channels "# and $# which are responsible for
the absorption processes. We also include one closed-channel
"#∗, whose threshold is nearest to the N! threshold. We
consider the transition from N! to these channels through
the K exchange. We expect that, around the N! threshold,
the transitions between the inelastic channels such as "# →
"# contributes to the N! interaction only subdominantly.
Neglecting these contributions, we evaluate the box diagrams
to include the inelastic effects on the N! interaction as shown
in Fig. 1 (box).
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FIG. 1. Feynman diagrams for the N! interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines
indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents "#, $#, and "#(1530).
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TABLE I. Baryon-baryon channels coupling to N! and their
threshold energies.

Channel Threshold [MeV]

"# 2434
$# 2511
N! 2611
" #(1530) = "#∗ 2649
$(1385) # = $∗# 2703
$ #(1530) = $#∗ 2727
$(1385) #(1530) = $∗#∗ 2918

exclusion principle does not work. The absence of the repulsive
core is advantageous to generate a possible dibaryon state in
the N! system. The N! interaction in the 5S2 channel was
recently obtained in the HAL QCD analyses of the lattice QCD
data, where 2S+1LJ denotes the state with spin S, L wave, and
total angular momentum J of the N! system. Interestingly,
the results of the HAL QCD analyses suggested a strongly
attractive potential in the N!(5S2) channel without repulsive
core which supports a bound state [29–31]. Although there
are lower-energy baryon-baryon coupled channels "# and
$#, it is expected that the decay of the N!(5S2) quasibound
state will be suppressed because couplings to these decay
channels are in D wave (see Table I for baryon-baryon channels
coupling to the N! state). Stimulated by the HAL QCD results,
the N! interaction was studied in the framework of chiral
perturbation theory [32]. A method to probe this dibaryon with
the correlation between N and ! in high-energy heavy-ion
collisions was proposed in Ref. [33] as well.

The aim of our study is to understand the origin of the
strong attraction in the N!(5S2) channel. For this purpose,
we construct a meson exchange model for the N! interaction.
Combining the long-range meson exchange mechanisms with
the short-range interaction represented by the contact term,
we can pin down the physical origin of the attractive N!
interaction. In addition, by taking into account the coupling to
the relevant baryon-baryon inelastic channels, we can further
discuss the absorption processes and the energy dependence
of the N! interaction. These effects were assumed to be
small and are neglected in the HAL QCD analyses of the N!
interaction. Finally, the attractive N! interaction implies the
possible existence of nuclei with an ! baryon. It is practically
useful to construct a local potential equivalent to the full model,
for the application to few-body calculations of ! nuclei.

This paper is organized as follows: First, in Sec. II we for-
mulate the N! interaction including the inelastic contributions

as well as the elastic channels. Next, we show the expression of
the scattering amplitude and determine the model parameters
so as to reproduce the N!(5S2) scattering length calculated
in the HAL QCD analyses in Sec. III. We then discuss the
N!(5S2) interaction in Sec. IV by separately evaluating the
elastic and inelastic contributions to the interaction. We also
calculate properties of the on-shell N! scattering amplitude
and of the N! quasibound state. In Sec. V we construct
an equivalent local potential which reproduces the N!(5S2)
scattering amplitude. Section VI is devoted to the conclusion
of this study.

II. FORMULATION OF THE N! INTERACTION

First of all, we formulate the N! interaction based on the
meson exchanges with effective Lagrangians. This interaction
is then used to obtain the scattering amplitude in Sec. III.

A. Mechanisms

As for the elastic N! channel, the Okubo–Zweig–Iizuka
(OZI) rule restricts mediating mesons to those containing
both (uū + dd̄)/

√
2 and ss̄ components. Owing to this fact,

the longest range interaction should be mediated by the η
exchange [Fig. 1(a)]. In addition to η, there is a contribution
from the exchange of the light scalar-isoscalar meson “σ ,”
which should be, however, treated as the exchange of correlated
two pseudoscalar mesons due to its broad width as shown
in Fig. 1(b). In the vector channel, on the other hand, the
exchange of the light vector mesons is forbidden, because of
their ideal mixing and the OZI rule. The contributions from the
η and correlated two-meson exchanges can be determined by
empirical information as we show below. Further contributions
at short ranges, such as the exchanges of the heavier mesons
and the color magnetic interactions at quark-gluon level, are
treated as a contact term [Fig. 1(c)].

There are several inelastic channels which can couple to
N! as shown in Table I. Among them, we take into account
the two open channels "# and $# which are responsible for
the absorption processes. We also include one closed-channel
"#∗, whose threshold is nearest to the N! threshold. We
consider the transition from N! to these channels through
the K exchange. We expect that, around the N! threshold,
the transitions between the inelastic channels such as "# →
"# contributes to the N! interaction only subdominantly.
Neglecting these contributions, we evaluate the box diagrams
to include the inelastic effects on the N! interaction as shown
in Fig. 1 (box).
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FIG. 1. Feynman diagrams for the N! interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines
indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents "#, $#, and "#(1530).
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TABLE I. Baryon-baryon channels coupling to N! and their
threshold energies.

Channel Threshold [MeV]

"# 2434
$# 2511
N! 2611
" #(1530) = "#∗ 2649
$(1385) # = $∗# 2703
$ #(1530) = $#∗ 2727
$(1385) #(1530) = $∗#∗ 2918

exclusion principle does not work. The absence of the repulsive
core is advantageous to generate a possible dibaryon state in
the N! system. The N! interaction in the 5S2 channel was
recently obtained in the HAL QCD analyses of the lattice QCD
data, where 2S+1LJ denotes the state with spin S, L wave, and
total angular momentum J of the N! system. Interestingly,
the results of the HAL QCD analyses suggested a strongly
attractive potential in the N!(5S2) channel without repulsive
core which supports a bound state [29–31]. Although there
are lower-energy baryon-baryon coupled channels "# and
$#, it is expected that the decay of the N!(5S2) quasibound
state will be suppressed because couplings to these decay
channels are in D wave (see Table I for baryon-baryon channels
coupling to the N! state). Stimulated by the HAL QCD results,
the N! interaction was studied in the framework of chiral
perturbation theory [32]. A method to probe this dibaryon with
the correlation between N and ! in high-energy heavy-ion
collisions was proposed in Ref. [33] as well.

The aim of our study is to understand the origin of the
strong attraction in the N!(5S2) channel. For this purpose,
we construct a meson exchange model for the N! interaction.
Combining the long-range meson exchange mechanisms with
the short-range interaction represented by the contact term,
we can pin down the physical origin of the attractive N!
interaction. In addition, by taking into account the coupling to
the relevant baryon-baryon inelastic channels, we can further
discuss the absorption processes and the energy dependence
of the N! interaction. These effects were assumed to be
small and are neglected in the HAL QCD analyses of the N!
interaction. Finally, the attractive N! interaction implies the
possible existence of nuclei with an ! baryon. It is practically
useful to construct a local potential equivalent to the full model,
for the application to few-body calculations of ! nuclei.

This paper is organized as follows: First, in Sec. II we for-
mulate the N! interaction including the inelastic contributions

as well as the elastic channels. Next, we show the expression of
the scattering amplitude and determine the model parameters
so as to reproduce the N!(5S2) scattering length calculated
in the HAL QCD analyses in Sec. III. We then discuss the
N!(5S2) interaction in Sec. IV by separately evaluating the
elastic and inelastic contributions to the interaction. We also
calculate properties of the on-shell N! scattering amplitude
and of the N! quasibound state. In Sec. V we construct
an equivalent local potential which reproduces the N!(5S2)
scattering amplitude. Section VI is devoted to the conclusion
of this study.

II. FORMULATION OF THE N! INTERACTION

First of all, we formulate the N! interaction based on the
meson exchanges with effective Lagrangians. This interaction
is then used to obtain the scattering amplitude in Sec. III.

A. Mechanisms

As for the elastic N! channel, the Okubo–Zweig–Iizuka
(OZI) rule restricts mediating mesons to those containing
both (uū + dd̄)/

√
2 and ss̄ components. Owing to this fact,

the longest range interaction should be mediated by the η
exchange [Fig. 1(a)]. In addition to η, there is a contribution
from the exchange of the light scalar-isoscalar meson “σ ,”
which should be, however, treated as the exchange of correlated
two pseudoscalar mesons due to its broad width as shown
in Fig. 1(b). In the vector channel, on the other hand, the
exchange of the light vector mesons is forbidden, because of
their ideal mixing and the OZI rule. The contributions from the
η and correlated two-meson exchanges can be determined by
empirical information as we show below. Further contributions
at short ranges, such as the exchanges of the heavier mesons
and the color magnetic interactions at quark-gluon level, are
treated as a contact term [Fig. 1(c)].

There are several inelastic channels which can couple to
N! as shown in Table I. Among them, we take into account
the two open channels "# and $# which are responsible for
the absorption processes. We also include one closed-channel
"#∗, whose threshold is nearest to the N! threshold. We
consider the transition from N! to these channels through
the K exchange. We expect that, around the N! threshold,
the transitions between the inelastic channels such as "# →
"# contributes to the N! interaction only subdominantly.
Neglecting these contributions, we evaluate the box diagrams
to include the inelastic effects on the N! interaction as shown
in Fig. 1 (box).

η

Ω

NN

Ω
(a)

Ω

NN

Ω
(b)

Ω

NN

Ω
(c)

Ω

N

K K

B(qqs)

B(qss)

N

Ω
(box)

FIG. 1. Feynman diagrams for the N! interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines
indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents "#, $#, and "#(1530).

015205-2

- determined by empirical information

- determined by lattice QCD (scattering length@ � )mπ ∼ 146 MeV



!14

Mechanism of �  interactionΩN
  interactionΩN

Non-local potential (in momentum space, � )V(p, p)

Diagonal (contact) >> �  and �  >> d-wave �ΣΞ ΛΞ ΩN

d-wave �  channelsΩNTAKAYASU SEKIHARA, YUKI KAMIYA, AND TETSUO HYODO PHYSICAL REVIEW C 98 , 015205 (2018)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.2  0.4  0.6  0.8  1

V D
  [

 G
eV

–2
 ]

p  [ GeV ]

Re. part, E = 2550 MeV
mN + mΩ

2650 MeV
Im. part, E = 2650 MeV

FIG. 5. The D-wave contribution to the N!(5S2) interaction
VD(E; p, p) as a function of momentum p. The energy in the effective
interaction is fixed as E = mN + m!, 2550 MeV, and 2650 MeV.
Because the energy is above the N! threshold, the contribution at
E = 2650 MeV has an imaginary part.

Based on these results, in the following discussions we
neglect the N!(5D2) and N!(3D2) channels.

B. Inelastic contributions

Next we investigate the effects of the inelastic channels to
the N!(5S2) interaction.

The contributions Vbox(j )(E; p′ = p, p) are plotted in
Fig. 6 as functions of the momentum p. Here we show the
sum of the 3D2 and 1D2 contributions in the "# and $#
channels, for simplicity. The energy is fixed at threshold
E = mN + m!, thus the interaction which involves open "#
or $# channel in the intermediate state has an imaginary
part. From the real part of the interaction, we observe that
the "#, $#, and "#∗ channels assist the attraction of the
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FIG. 6. The inelastic contributions to the N!(5S2) interaction
Vbox(j )(E; p, p) as functions of momentum p. The energy in the
effective interaction is fixed as E = mN + m!. In the figure "# and
$# indicates the sum of 3D2 and 1D2 contributions, respectively.

N!(5S2) interaction. Among them, the "# channel gives the
strongest attraction, which is comparable to the correlated
two-meson exchange VB (see Fig. 4). Even with the smaller
energy denominator, the interaction of the intermediate $#
channel is suppressed compared with the "# case by the
smaller KN$ coupling: (D + 3F )/2

√
3 ≈ 0.63 for the

KN" coupling, and
√

3(D −F )/2 ≈ 0.29 for the KN$
coupling. The intermediate "#∗ channel becomes significant
only at higher momentum p ! 0.6 GeV. As for the imaginary
part of the interaction, the intermediate "# term gives larger
contribution than the $# one, which indicates the N!(5S2)
system mainly decays to the "# channel.

We calculate the volume integral (42) from the inelastic con-
tributions, and the results are listed from the seventh to eleventh
rows in Table IV. We can see that the "# channel gives
the strongest attraction and absorption among the inelastic
channels. The sum of the real parts of the volume integrals from
the "#(3D2) and "#(1D2) contributions is similar magnitude
to the volume integral from the correlated two-meson exchange
(−2.22 GeV−1). The imaginary part grows as the energy E
increases because a larger phase space can be utilized for a
higher energy E. We can also understand from Table IV that
the energy dependence of the box interaction is not significant.
Indeed, when we vary the energy from E = mN + m! to
2550 or 2650 MeV, the shift of the volume integral in each
contribution is only "1% of the total amount of the volume
integral listed in the last row of Table IV.

C. On-shell N!(5 S2 ) scattering amplitude

We then calculate the on-shell N!(5S2) scattering ampli-
tude above the N! threshold and extract the scattering length
and effective range.

The N! scattering amplitude fS(k) as a function of the rel-
ative momentum k is obtained by the formula (38). Because the
inverse of the scattering amplitude fS(k)−1 is useful to extract
the scattering length and effective range, we show the result of
the inverse of the scattering amplitude fS(k)−1 in Fig. 7 (solid
and dash-dotted lines). Because the N! interaction is complex
reflecting the absorption into open channels, "# and $#,
fS(k)−1 is complex even at the threshold k = 0 GeV, which
leads to a complex scattering length. The real part of fS(k)−1

is negative at the threshold, which implies the existence of
an N! quasibound state below the threshold, and it increases
almost quadratically. In the same energy region, the imaginary
part of fS(k)−1 almost linearly decreases as a function of k
like −ik. Because the energy dependence of fS(k)−1 at low
energy is dictated by −ik + reffk

2/2 as shown Eq. (39), Fig. 7
indicates the imaginary part of the effective range is small. By
using the formulas (40) and (41), we can calculate the scattering
length a and effective range reff , respectively. In our model we
obtain a = 5.3 − 4.3i fm and reff = 0.74 + 0.04i fm. We find
that the real part of the effective range roughly corresponds to
the length scale of the N! interaction, and the imaginary part
is small, as expected. The magnitude of the scattering length is
evidently larger than the interaction range, indicating that the
N! scattering is close to the unitary limit. With these threshold
parameters, the effective range expansion (39) reproduces the
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Based on these results, in the following discussions we
neglect the N!(5D2) and N!(3D2) channels.

B. Inelastic contributions

Next we investigate the effects of the inelastic channels to
the N!(5S2) interaction.

The contributions Vbox(j )(E; p′ = p, p) are plotted in
Fig. 6 as functions of the momentum p. Here we show the
sum of the 3D2 and 1D2 contributions in the "# and $#
channels, for simplicity. The energy is fixed at threshold
E = mN + m!, thus the interaction which involves open "#
or $# channel in the intermediate state has an imaginary
part. From the real part of the interaction, we observe that
the "#, $#, and "#∗ channels assist the attraction of the
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$# indicates the sum of 3D2 and 1D2 contributions, respectively.

N!(5S2) interaction. Among them, the "# channel gives the
strongest attraction, which is comparable to the correlated
two-meson exchange VB (see Fig. 4). Even with the smaller
energy denominator, the interaction of the intermediate $#
channel is suppressed compared with the "# case by the
smaller KN$ coupling: (D + 3F )/2

√
3 ≈ 0.63 for the

KN" coupling, and
√

3(D −F )/2 ≈ 0.29 for the KN$
coupling. The intermediate "#∗ channel becomes significant
only at higher momentum p ! 0.6 GeV. As for the imaginary
part of the interaction, the intermediate "# term gives larger
contribution than the $# one, which indicates the N!(5S2)
system mainly decays to the "# channel.

We calculate the volume integral (42) from the inelastic con-
tributions, and the results are listed from the seventh to eleventh
rows in Table IV. We can see that the "# channel gives
the strongest attraction and absorption among the inelastic
channels. The sum of the real parts of the volume integrals from
the "#(3D2) and "#(1D2) contributions is similar magnitude
to the volume integral from the correlated two-meson exchange
(−2.22 GeV−1). The imaginary part grows as the energy E
increases because a larger phase space can be utilized for a
higher energy E. We can also understand from Table IV that
the energy dependence of the box interaction is not significant.
Indeed, when we vary the energy from E = mN + m! to
2550 or 2650 MeV, the shift of the volume integral in each
contribution is only "1% of the total amount of the volume
integral listed in the last row of Table IV.

C. On-shell N!(5 S2 ) scattering amplitude

We then calculate the on-shell N!(5S2) scattering ampli-
tude above the N! threshold and extract the scattering length
and effective range.

The N! scattering amplitude fS(k) as a function of the rel-
ative momentum k is obtained by the formula (38). Because the
inverse of the scattering amplitude fS(k)−1 is useful to extract
the scattering length and effective range, we show the result of
the inverse of the scattering amplitude fS(k)−1 in Fig. 7 (solid
and dash-dotted lines). Because the N! interaction is complex
reflecting the absorption into open channels, "# and $#,
fS(k)−1 is complex even at the threshold k = 0 GeV, which
leads to a complex scattering length. The real part of fS(k)−1

is negative at the threshold, which implies the existence of
an N! quasibound state below the threshold, and it increases
almost quadratically. In the same energy region, the imaginary
part of fS(k)−1 almost linearly decreases as a function of k
like −ik. Because the energy dependence of fS(k)−1 at low
energy is dictated by −ik + reffk

2/2 as shown Eq. (39), Fig. 7
indicates the imaginary part of the effective range is small. By
using the formulas (40) and (41), we can calculate the scattering
length a and effective range reff , respectively. In our model we
obtain a = 5.3 − 4.3i fm and reff = 0.74 + 0.04i fm. We find
that the real part of the effective range roughly corresponds to
the length scale of the N! interaction, and the imaginary part
is small, as expected. The magnitude of the scattering length is
evidently larger than the interaction range, indicating that the
N! scattering is close to the unitary limit. With these threshold
parameters, the effective range expansion (39) reproduces the
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TABLE I. Baryon-baryon channels coupling to N! and their
threshold energies.

Channel Threshold [MeV]

"# 2434
$# 2511
N! 2611
" #(1530) = "#∗ 2649
$(1385) # = $∗# 2703
$ #(1530) = $#∗ 2727
$(1385) #(1530) = $∗#∗ 2918

exclusion principle does not work. The absence of the repulsive
core is advantageous to generate a possible dibaryon state in
the N! system. The N! interaction in the 5S2 channel was
recently obtained in the HAL QCD analyses of the lattice QCD
data, where 2S+1LJ denotes the state with spin S, L wave, and
total angular momentum J of the N! system. Interestingly,
the results of the HAL QCD analyses suggested a strongly
attractive potential in the N!(5S2) channel without repulsive
core which supports a bound state [29–31]. Although there
are lower-energy baryon-baryon coupled channels "# and
$#, it is expected that the decay of the N!(5S2) quasibound
state will be suppressed because couplings to these decay
channels are in D wave (see Table I for baryon-baryon channels
coupling to the N! state). Stimulated by the HAL QCD results,
the N! interaction was studied in the framework of chiral
perturbation theory [32]. A method to probe this dibaryon with
the correlation between N and ! in high-energy heavy-ion
collisions was proposed in Ref. [33] as well.

The aim of our study is to understand the origin of the
strong attraction in the N!(5S2) channel. For this purpose,
we construct a meson exchange model for the N! interaction.
Combining the long-range meson exchange mechanisms with
the short-range interaction represented by the contact term,
we can pin down the physical origin of the attractive N!
interaction. In addition, by taking into account the coupling to
the relevant baryon-baryon inelastic channels, we can further
discuss the absorption processes and the energy dependence
of the N! interaction. These effects were assumed to be
small and are neglected in the HAL QCD analyses of the N!
interaction. Finally, the attractive N! interaction implies the
possible existence of nuclei with an ! baryon. It is practically
useful to construct a local potential equivalent to the full model,
for the application to few-body calculations of ! nuclei.

This paper is organized as follows: First, in Sec. II we for-
mulate the N! interaction including the inelastic contributions

as well as the elastic channels. Next, we show the expression of
the scattering amplitude and determine the model parameters
so as to reproduce the N!(5S2) scattering length calculated
in the HAL QCD analyses in Sec. III. We then discuss the
N!(5S2) interaction in Sec. IV by separately evaluating the
elastic and inelastic contributions to the interaction. We also
calculate properties of the on-shell N! scattering amplitude
and of the N! quasibound state. In Sec. V we construct
an equivalent local potential which reproduces the N!(5S2)
scattering amplitude. Section VI is devoted to the conclusion
of this study.

II. FORMULATION OF THE N! INTERACTION

First of all, we formulate the N! interaction based on the
meson exchanges with effective Lagrangians. This interaction
is then used to obtain the scattering amplitude in Sec. III.

A. Mechanisms

As for the elastic N! channel, the Okubo–Zweig–Iizuka
(OZI) rule restricts mediating mesons to those containing
both (uū + dd̄)/

√
2 and ss̄ components. Owing to this fact,

the longest range interaction should be mediated by the η
exchange [Fig. 1(a)]. In addition to η, there is a contribution
from the exchange of the light scalar-isoscalar meson “σ ,”
which should be, however, treated as the exchange of correlated
two pseudoscalar mesons due to its broad width as shown
in Fig. 1(b). In the vector channel, on the other hand, the
exchange of the light vector mesons is forbidden, because of
their ideal mixing and the OZI rule. The contributions from the
η and correlated two-meson exchanges can be determined by
empirical information as we show below. Further contributions
at short ranges, such as the exchanges of the heavier mesons
and the color magnetic interactions at quark-gluon level, are
treated as a contact term [Fig. 1(c)].

There are several inelastic channels which can couple to
N! as shown in Table I. Among them, we take into account
the two open channels "# and $# which are responsible for
the absorption processes. We also include one closed-channel
"#∗, whose threshold is nearest to the N! threshold. We
consider the transition from N! to these channels through
the K exchange. We expect that, around the N! threshold,
the transitions between the inelastic channels such as "# →
"# contributes to the N! interaction only subdominantly.
Neglecting these contributions, we evaluate the box diagrams
to include the inelastic effects on the N! interaction as shown
in Fig. 1 (box).

η

Ω

NN

Ω
(a)

Ω

NN

Ω
(b)

Ω

NN

Ω
(c)

Ω

N

K K

B(qqs)

B(qss)

N

Ω
(box)

FIG. 1. Feynman diagrams for the N! interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines
indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents "#, $#, and "#(1530).
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FIG. 4. The elastic contributions to the N!(5S2) interactions
VA(p, p), VB(p, p), VC(p, p) as functions of momentum p.

use the physical hadron masses in the isospin-symmetric limit
summarized in Appendix A.

A. Elastic contributions

First we investigate properties of the N!(5S2) interaction
in the elastic N! channel, i.e., the terms VA(p′, p), VB(p′, p),
VC(p′, p) in Eq. (31). We note that the terms VA, VB, VC has no
dependence on the energy E. The contributions VA(p′ = p, p),
VB(p′ = p, p), VC(p′ = p, p) are plotted in Fig. 4 as functions
of the momentum p. As one can see from the figure, the
contact term VC is strongly attractive and gives a dominant
contribution. Other two terms, VA and VB, give moderate
attraction on top of the contact term. This finding of the weak
η and “σ” exchanges is consistent with the calculation based
on a quark model in Ref. [28]. The η exchange interaction
VA is weak because the ηNN coupling constant is small. The
correlated two-meson exchange interaction VB is also weak.
This is in contrast to the NN case, in which the broad “σ
meson” plays an important role to generate NN attraction in
the intermediate range region. The weakness of the correlated
two-meson exchange in the N! system is because the broad “σ
meson” cannot couple to the ! via the ππ state [see Eq. (E11)].
Another resonance in the scalar-isoscalar channel, f0(980), has
been considered to be a KK̄ molecular state [44– 46] and hence
it can couple both to N and !. However, this contribution turns
out to be also small, presumably because the heavier meson ex-
change acts only in the short-range (high-momentum) region.

To estimate the strength of the attraction, we calculate the
volume integral of the interaction in the momentum space:

∫ ∞

0
dp V (p, p). (42)

The numerical results of the volume integrals of VA, VB, VC
are listed in the second, third, and fourth rows in Table IV,
respectively. We can see that the contact term (C) is about
ten times more attractive than the η or correlated two-meson
exchange. In other words, the lattice QCD scattering length
[30] requires such attractive component represented by the

TABLE IV. Volume integral (42) of the N! interaction from
each contribution in units of GeV−1. The energy is fixed as E =
2550 MeV, mN + m! = 2611.4 MeV, and 2650 MeV. Contributions
from inelastic channels are evaluated as the box terms.

Contribution 2550 MeV mN + m! 2650 MeV

A −1.11 −1.11 −1.11
B −2.22 −2.22 −2.22
C −13.21 −13.21 −13.21
N!(5D2) −0.08 −0.10 −0.12 −0.01i

N!(3D2) −0.03 −0.03 −0.04 −0.00i

%&(3D2) −1.41 −0.55i −1.32 −0.94i −1.19 −1.13i

%&(1D2) −0.92 −0.37i −0.86 −0.62i −0.78 −0.75i

'&(3D2) −0.24 −0.02i −0.28 −0.09i −0.28 −0.15i

'&(1D2) −0.16 −0.01i −0.18 −0.06i −0.18 −0.10i

%&∗(5S2) −0.53 −0.67 −0.97 −0.05i

Total −19.89 −0.95i −19.97 −1.72i −20.08 −2.18i

contact term, in addition to the conventional meson exchanges
at long distance.

In addition to the S wave, we examine the D-wave N!
contribution as well because the η exchange term VA can mix
the S- and D-wave states owing to the tensor-force coupling,
which is essential in the NN system through the π exchange.
We note that there are two D-wave states with different spins
in the JP = 2+ state, N!(5D2) and N!(3D2), to which we
assign the channels j = 7 and 8, respectively. We calculate
the D-wave contribution to the S wave in the N! system
through the box diagrams with the intermediate state being
the N!(5D2) and N!(3D2) channels:

VD(E; p′, p) =
8∑

j=7

∫ ∞

0

dp′′

2π2
p′′ 2 V1j (p′, p′′)Vj1(p′′, p)

E −EN!(p′′) + i0
.

(43)

For the interaction Vj1 (j = 7 and 8) in the numerator of the
integrand, we consider only the N! channel, VA + VB + VC,
projected to the S and D waves in the initial and final states,

respectively. We note that the effective interaction VD depends
on the energy owing to the reduction of the D-wave channels.

The D-wave contribution to the S-wave interaction
VD(E; p, p) is plotted in Fig. 5 as a function of the momentum
p. We fix the energy in the effective interaction as E =
mN + m! = 2611.4 MeV, 2550 MeV, and 2650 MeV. Note
that the box term provides an imaginary part of the interaction
above the threshold (E = 2650 MeV). Comparing the result in
Fig. 5 with those in Fig. 4, we find that the D-wave contribution
(∼−0.4 GeV−2 at p = 0 GeV) is very tiny with respect to
the S-wave contact term (∼−22 GeV−2 at p = 0 GeV) and
hence the D-wave contribution in the S-wave interaction is
negligible. We can understand this behavior by the weak ηNN
coupling compared with the πNN coupling. We also find
that the energy dependence of the D-wave contribution in the
S-wave interaction is not significant.

To quantify the smallness of the D-wave contribution, we
calculate the volume integral (42) of VD as listed in the fifth and
sixth rows in Table IV. The volume integral from the D-wave
contribution is only ∼1% of the contact-term contribution.
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TABLE I. Baryon-baryon channels coupling to N! and their
threshold energies.

Channel Threshold [MeV]

"# 2434
$# 2511
N! 2611
" #(1530) = "#∗ 2649
$(1385) # = $∗# 2703
$ #(1530) = $#∗ 2727
$(1385) #(1530) = $∗#∗ 2918

exclusion principle does not work. The absence of the repulsive
core is advantageous to generate a possible dibaryon state in
the N! system. The N! interaction in the 5S2 channel was
recently obtained in the HAL QCD analyses of the lattice QCD
data, where 2S+1LJ denotes the state with spin S, L wave, and
total angular momentum J of the N! system. Interestingly,
the results of the HAL QCD analyses suggested a strongly
attractive potential in the N!(5S2) channel without repulsive
core which supports a bound state [29–31]. Although there
are lower-energy baryon-baryon coupled channels "# and
$#, it is expected that the decay of the N!(5S2) quasibound
state will be suppressed because couplings to these decay
channels are in D wave (see Table I for baryon-baryon channels
coupling to the N! state). Stimulated by the HAL QCD results,
the N! interaction was studied in the framework of chiral
perturbation theory [32]. A method to probe this dibaryon with
the correlation between N and ! in high-energy heavy-ion
collisions was proposed in Ref. [33] as well.

The aim of our study is to understand the origin of the
strong attraction in the N!(5S2) channel. For this purpose,
we construct a meson exchange model for the N! interaction.
Combining the long-range meson exchange mechanisms with
the short-range interaction represented by the contact term,
we can pin down the physical origin of the attractive N!
interaction. In addition, by taking into account the coupling to
the relevant baryon-baryon inelastic channels, we can further
discuss the absorption processes and the energy dependence
of the N! interaction. These effects were assumed to be
small and are neglected in the HAL QCD analyses of the N!
interaction. Finally, the attractive N! interaction implies the
possible existence of nuclei with an ! baryon. It is practically
useful to construct a local potential equivalent to the full model,
for the application to few-body calculations of ! nuclei.

This paper is organized as follows: First, in Sec. II we for-
mulate the N! interaction including the inelastic contributions

as well as the elastic channels. Next, we show the expression of
the scattering amplitude and determine the model parameters
so as to reproduce the N!(5S2) scattering length calculated
in the HAL QCD analyses in Sec. III. We then discuss the
N!(5S2) interaction in Sec. IV by separately evaluating the
elastic and inelastic contributions to the interaction. We also
calculate properties of the on-shell N! scattering amplitude
and of the N! quasibound state. In Sec. V we construct
an equivalent local potential which reproduces the N!(5S2)
scattering amplitude. Section VI is devoted to the conclusion
of this study.

II. FORMULATION OF THE N! INTERACTION

First of all, we formulate the N! interaction based on the
meson exchanges with effective Lagrangians. This interaction
is then used to obtain the scattering amplitude in Sec. III.

A. Mechanisms

As for the elastic N! channel, the Okubo–Zweig–Iizuka
(OZI) rule restricts mediating mesons to those containing
both (uū + dd̄)/

√
2 and ss̄ components. Owing to this fact,

the longest range interaction should be mediated by the η
exchange [Fig. 1(a)]. In addition to η, there is a contribution
from the exchange of the light scalar-isoscalar meson “σ ,”
which should be, however, treated as the exchange of correlated
two pseudoscalar mesons due to its broad width as shown
in Fig. 1(b). In the vector channel, on the other hand, the
exchange of the light vector mesons is forbidden, because of
their ideal mixing and the OZI rule. The contributions from the
η and correlated two-meson exchanges can be determined by
empirical information as we show below. Further contributions
at short ranges, such as the exchanges of the heavier mesons
and the color magnetic interactions at quark-gluon level, are
treated as a contact term [Fig. 1(c)].

There are several inelastic channels which can couple to
N! as shown in Table I. Among them, we take into account
the two open channels "# and $# which are responsible for
the absorption processes. We also include one closed-channel
"#∗, whose threshold is nearest to the N! threshold. We
consider the transition from N! to these channels through
the K exchange. We expect that, around the N! threshold,
the transitions between the inelastic channels such as "# →
"# contributes to the N! interaction only subdominantly.
Neglecting these contributions, we evaluate the box diagrams
to include the inelastic effects on the N! interaction as shown
in Fig. 1 (box).
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FIG. 1. Feynman diagrams for the N! interaction. The dashed lines represent the pseudoscalar mesons, while the solid and double lines
indicate baryons. Shaded circle denotes the correlation of two mesons, and B(qqs)B(qss) represents "#, $#, and "#(1530).
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TABLE V. Parameters Cn for an equivalent local N! interaction. Other quantities in Eq. (56) are fixed as " = 1 GeV and mn = n ×
(100 MeV).

n A B C box "#(3D2 + 1D2) box $#(3D2 + 1D2) box "#∗ Total

1 0.02 0.06 0.07 − 0.04 + 0.00i − 0.01 + 0.00i 0.04 0.14 + 0.00i

2 − 2.37 − 6.21 − 6.48 4.67 − 0.19i 0.93 + 0.05i − 4.30 − 13.76 − 0.14i

3 57.03 160.19 131.39 − 121.94 + 5.34i − 24.01 − 1.24i 104.15 306.81 + 4.10i

4 − 556.75 − 1680.33 − 1021.60 1304.16 − 59.70i 251.48 + 12.83i − 1026.45 − 2729.49 − 46.87i

5 2699.73 8765.95 3548.93 − 6980.93 + 287.70i − 1313.42 − 62.87i 5024.22 11744.48 + 224.83i

6 − 7052.95 − 24755.80 − 5159.25 20223.50 − 534.01i 3719.98 + 167.01i − 13263.90 − 26288.42 − 367.01i

7 10055.50 38369.80 667.40 − 31881.20 + 69.44i − 5772.02 − 262.54i 19118.60 30558.08 − 193.09i

8 − 7304.99 − 30596.40 5175.64 25509.10 + 685.14i 4577.55 + 227.55i − 14091.70 − 16730.80 + 912.69i

9 2096.47 9776.40 − 3446.89 − 8069.25 − 460.13i − 1442.98 − 81.38i 4138.10 3051.85 − 541.51i

We show in Fig. 9 the equivalent local N!(5S2) potential in
coordinate space Vlocal(r) together with the contribution from
the contact term VC. From the figure, we confirm that the strong
attraction in the N!(5S2) interaction originates from the con-
tact term VC while other contributions give moderate attraction.
The interaction range in Fig. 9 is consistent with the effective
range ∼ 0.7 fm obtained from the scattering amplitude fS .

VI. CONCLUSION

In this study we have investigated the N!(5S2) interaction
based on a baryon-baryon interaction model with meson
exchanges. The long-range part has been composed of the
conventional mechanisms: exchanges of η and “σ ,” i.e., cor-
related two mesons in the scalar-isoscalar channel. The short-
range part has been represented by the contact interaction. In
addition, we have taken into account inelastic channels "#,
$#, and "#(1530) which couple to the N!(5S2) system via
K exchange. The inclusion of the open channels, "# and $#,
is important to describe the absorption effects in the physical
N! system. The unknown strength of the contact interaction
was determined by fitting the scattering length of the HAL
QCD result at the nearly physical quark masses.
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FIG. 9. Equivalent local N! potential in coordinate space
Vlocal(r). The contribution from the contact term VC is also shown
for comparison. The inset represents an enlarged figure.

The constructed N!(5S2) interaction was used to calculate
the observable quantities at the physical point, including the
absorption effects. For the N!(5S2) scattering, we have ob-
tained the scattering length a = 5.3 − 4.3i fm and the effective
range reff = 0.74 + 0.04i fm. The larger magnitude of the
scattering length than the effective range indicates that the N!
interaction is close to the unitary limit, and the positive real part
indicates the existence of a shallow quasibound state below the
threshold. Indeed, in searching for the pole of the scattering
amplitude, we have found that the N!(5S2) quasibound state
is generated with its eigenenergy 2611.3 − 0.7i MeV, which
corresponds to the binding energy 0.1 MeV and the width
1.5 MeV. When the imaginary part of the interaction is
switched off, we obtain a bound state at 2611.0 MeV. Thus,
the imaginary part primarily induces the decay width, and
slightly reduces the binding energy. The main decay mode is
"#, owing to the larger KN" coupling than KN$ coupling.
For the p!− bound state, the attractive Coulomb interaction
further adds a shift of ∼ +1 MeV both to the binding energy
and decay width. The spatial size of the N! bound state will
largely exceed the typical size of baryons.

We have discussed how the different mechanisms contribute
to the N! interaction. It turns out that the attraction dominantly
originates from the contact term. Other contributions, the η
exchange, correlated two-meson exchange, and box terms with
inelastic channels in the intermediate states, give moderate
attraction. Because we have considered all conventional mech-
anisms at the hadronic level, the discussion at the quark-gluon
level would be necessary to clarify the origin of the N!
attraction. Although the elimination of the inelastic channels
induces the energy dependence of the single-channel N!
interaction, the energy dependence has been found to be less
than 1% in the energy region 50 MeV above and below
the threshold. We have found that the contribution from the
D-wave N! states to the N!(5S2) interaction is negligible as
well. These results justify constructing a single-channel N!
potential in S wave in the HAL QCD analysis [30,31].

We have constructed an equivalent local N!(5S2) potential,
which will be useful to applications to few-body systems, such
as possible ! nuclei generated by the attractive N! interaction.
To avoid the S-wave decays which would bring a large decay
width, it is essential to align the spins of ! and nucleons
to the same direction so that the N! system couples to the
"# and $# decay modes only in D wave. In this sense,
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Fig. 5. Potential for ΩN scattering. The 5S2 partial wave is
shown. Filled squares are results from the HAL QCD Collabo-
ration [24]. The lines are from a study within meson-exchange
taken from ref. [26]. The dotted line is the long-ranged piece
(η plus correlated ππ-ηη-KK̄ exchange), the dashed line (ct)
is a (short-range) contact term, and the solid line is the total
potential.

included to parameterize the short-range physics, whose
range is determined by the form factor and, specifically,
by the chosen cutoff mass of Λ = 1GeV. Its contribution
is indicated by the dashed line in fig. 5 whereas the total
potential is given by the solid line. Evidently, the so-called
long-range and short-range components give rise to rather
similar contributions in the region of r ≈ 0.7–1.5 fm. But
this can be understood if one recalls that the ranges are
set by roughly two times the K or η mass for the meson-
meson correlations and by the cutoff mass for the contact
term, which are both in the order of 1GeV. Much more
conspicuous is the difference to the potential extracted
from the lattice simulations. The latter is clearly longer
ranged and there is also more strength located at large
distances.

This peculiar feature is incorporated in the parame-
terization of the ΩN potential in ref. [24] by including
a term with the range 2mπ, called (Yukawa)2. As moti-
vation for that a possible OZI violating vertex is quoted
that should allow two pions to couple to the Ω. However,
in our opinion to speak only of OZI violation in this con-
text might be somewhat misleading. First and foremost
it is a violation of isospin symmetry which is required for
coupling a pion (or two) to the Ω. Indeed, the mixing of
η and π0 provides such a contribution but, of course, it
is expected to be rather small. For example, utilizing the
electromagnetic mass matrix,

⟨π0|δm2|η⟩ =
[
m2

π0 − m2
π+ + m2

K+ − m2
K0

]
/
√

3,

as a measure for the mixing strength (see ref. [36]) one
obtains

fΩΩπ = − ⟨π0|δm2|η⟩
m2

η − m2
π0

fΩΩη ≈ 0.0106 fΩΩη. (3)

Results for the ΩΩ potential in the 1S0 partial wave
are presented in fig. 6. Since the coupling constants of

Fig. 6. Potential for ΩΩ scattering. The 1S0 partial wave is
shown. The dashed line is the contribution from η exchange
with coupling strength inferred from LQCD [32], the dash-
dotted line is from an effective f0(980) exchange based on
the spectral function for ΛΛ̄ → KK̄. The solid line is their
sum with the band representing the uncertainty in the effec-
tive ΩΩf0 coupling strength, see text. The dotted line is the
potential from η exchange with coupling strength taken from
the quark model. Circles are results from the HAL QCD Col-
laboration [25].

pseudoscalar mesons to decuplet baryons is not con-
strained empirically, we consider two cases: a) The cou-
pling constant from lattice simulations [32] which indi-
cate that f∆∆π ≈ fNNπ/20 for the normalization of
the spin and isospin operators used by us [27]. b) The
coupling strength that results from the non-relativistic
quark model (or from large Nc arguments) which im-
plies f∆∆π = fNNπ/5. The value for the ΩΩη coupling,
relevant here, is obtained from the standard SU(3) rela-
tions [27], see table 1, under the assumption that η ≈ η8.

The ΩΩ potential that results from η exchange with
the coupling constant from LQCD is presented in fig. 6 by
the dashed line. The potential from the effective f0(980)
exchange (dash-dotted line) is the one with the strength
deduced from the correlated KK̄ exchange in the ΛΛ sys-
tem, cf. sect. 2. Adding the two contributions and assum-
ing that the actual f0 coupling in the ΩΩ case could be
larger by a factor of up to (9/2)2, as discussed in sect. 2,
leads to the band confined by the two solid lines. Thus,
considering the sizable uncertainty in the effective f0 cou-
pling constant, the strength of the potential from LQCD
at r ≈ 1 fm can be roughly reproduced. However, it is
obvious that the r-dependence deduced from the lattice
simulation and the one which follows from η + f0(980)
exchange are quite different. The potential for η exchange
with the coupling constant from the quark model is shown
by the dotted line. Adding here f0 exchange would lead
to an overestimation of the LQCD result, with again a
mismatch as far as the r-dependence is concerned.

Finally, in fig. 7 we display the potentials from the
HAL QCD Collaboration for ΞN (1S0, I = 0) [23], ΩN

- fit nonlocal potential with �Cn

Vlocal(r) = F . T .
9

∑
n=1

Cn

q2 + m2
n ( Λ2

Λ2 + q2 )
2
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�  interaction is studied.

Strong short-range attraction is needed on top 
of meson exchanges.

�  and �  channels give small imaginary part 
(absorption) of the potential.

�  quasi-bound state (with Coulomb)

ΩN(J = 2)

ΣΞ ΛΞ

Ω−p

Summary:   interaction ΩN
  interactionΩN

T. Sekihara, Y. Kamiya, T. Hyodo, PRC98, 015205 (2018)

B ∼ 1 MeV, Γ ∼ 2 MeV

long range: known meson exchanges
short range: contact term <— lattice QCD


