Nature of the D_0^* **meson in** $D\pi$ **scattering with chiral symmetry**

Tetsuo Hyodo

Tokyo Metropolitan Univ.

Introduction

Some history

In 2001, summer...

- first discussion on research
- chiral symmetry
- meson-baryon system
- SU(3) flavor symmetry
- resummation, pole
- $\rightarrow \Lambda(1405)$, pentaquark Θ^+ , ...
- One more thing...
 - heavy quark?
- -> study of heavy-light meson

<u>T. Sugiura, T. Hyodo, Phys. Rev. C99, 065201 (2019)</u>

Effective Lagrangian

Heavy-light mesons $\sim c\bar{u}/c\bar{d}$

- chiral symmetry: parity partner

 $D(0^-) \leftrightarrow D_0^*(0^+)$

- heavy-quark symmetry: spin partner $D(0^-) \leftrightarrow D^*(1^-), \quad D_0^*(0^+) \leftrightarrow D_1(1^+)$

Effective Lagrangian (linear representation)

M.A. Nowak, M. Rho, I. Zahhed, Phys. Rev. D48, 4370 (1993); W.A. Bardeen, C.T. Hill, Phys. Rev. D49, 409 (1994); D. Suenaga, S. Yasui, M. Harada, Phys. Rev. C96, 015204 (2017).

$$\mathscr{L} = -\operatorname{Tr} \left[H_L(iv \cdot \partial)\overline{H}_L\right] - \operatorname{Tr} \left[H_R(iv \cdot \partial)\overline{H}_R\right] + \cdots$$

$$\uparrow$$

$$\uparrow$$

$$Iinear combination of $D, D^*, D_0^*, D_1$$$

	Chiral unitary method	
Γ	Chird perturbation	
	Unitarity (hanne)	
_	(neary) querre, baryon	

Decay width of D_0^*

Constraint from chiral symmetry

$$\mathscr{L} = \frac{\Delta_m}{2f_{\pi}} [2D\sigma D^{\dagger} - 2D_0^* \sigma D_0^{*\dagger} - 2iD_0^* \pi D^{\dagger} + 2iD\pi D_0^{*\dagger}] + \cdots$$

- chiral condensate $\langle \sigma \rangle = f_{\pi}$: mass splitting of *D* and D_0^*

Pure chiral partner D_0^* is not consistent with data.

$D\pi$ scattering

What is missing?

- D_0^* is a resonance.
- Search for pole!
- **Description of** $D\pi$ **scattering**

T = V + VGT

 $= V + VGV + VGVGV + \cdots$

- nonperturbative resummation
- D_0^* can appear as a pole in scattering amplitude T

effective Lagrangian

Low-energy theorem

Tree-level amplitude

- low-energy expans

$$V^{1/2} = \frac{3}{4} \frac{M_{D_0^*}^2 - M_D^2}{\bar{\sigma}^2} \left[-1 - \frac{2}{M_D^2} \right]$$

- chiral symmetry: 0
- Weinberg-Tomozawa th

Chiral Symmetry in Hadron Physics Methods and ideas of chiral symmetry ハドロン物理におけるカイラル対称性--基本的な考え方と方法 ののの、のエエ ののの、ののエ、エエのの

原子核三者若手夏の学校2002保坂 淳(阪大、RCNP)

Low-energy theorem $< -\frac{\gamma}{2}$ Inclusion of all possible diagrams

Scattering amplitude in the complex energy plane

- pole at $\sqrt{s} = 2318 - i135$ MeV : mass and width

PDG $2318 \pm 29 - i(134 \pm 20)$ MeV can be reproduced.

Results

Nature of D_0^*

- What is the nature of D_0^* ?
 - 1) pure chiral partner
 - perturbative calculation with linear sigma model
 - too large decay width: $\Gamma_{\rm th} \sim 1000 \text{ MeV} \gg \Gamma_{\rm exp} \sim 250 \text{ MeV}$
 - 2) pure dynamically generated molecule
 - pole with nonlinear sigma model (no bare D_0^*)
 - M. Altenbuchinger, L.S. Geng, W. Weise, Phys. Rev. D89, 014026 (2014)
 - too small mass: $M_{\rm th} \sim 2100 \text{ MeV} < M_{\rm exp} \sim 2320 \text{ MeV}$
 - **3) chiral partner dressed by the** $D\pi$ cloud
 - PDG value is reproduced: OK

Summary

T. Sugiura, T. Hyodo, Phys. Rev. C99, 065201 (2019)

Follow advices from the supervisor.