Status of $\Lambda(1405)$ in chiral dynamics

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

\checkmark \land (1405) in chiral SU(3) dynamics

- Precise experimental constraint
- Determination of pole positions

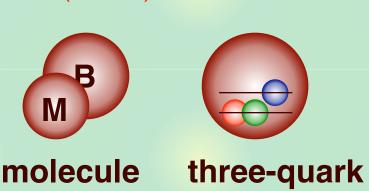
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Kaonic nuclei

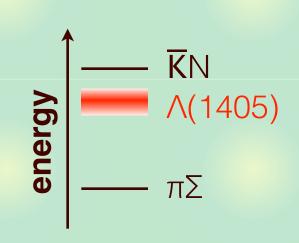
- Local KN potential and ∧(1405) wave function K. Miyahara. T. Hyodo, PRC93, 015201 (2016)
- Density of kaonic nuclei
- KN v.s. NN correlations

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, T. Hyodo, PRC95, 065202 (2017)

\overline{K} meson and $\overline{K}N$ interaction

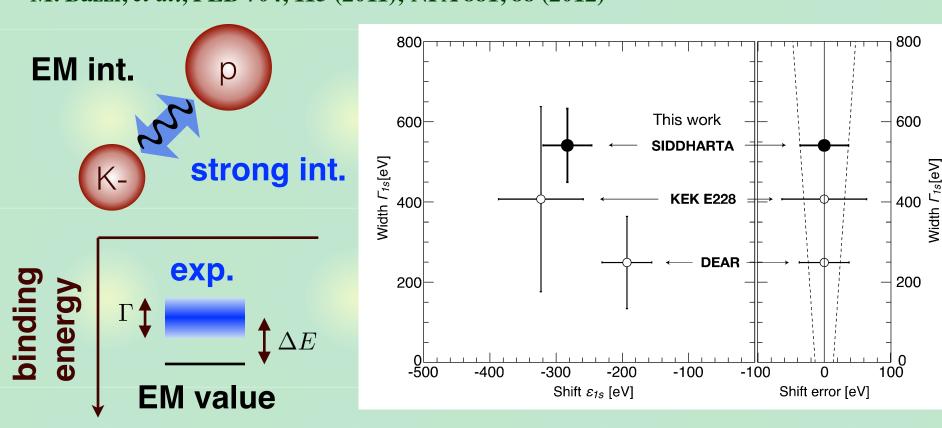

Two aspects of $K(\overline{K})$ meson

- NG boson of chiral SU(3)_R ⊗ SU(3)_L -> SU(3)_V
- Massive by strange quark: mk ~ 496 MeV
 - -> Spontaneous/explicit symmetry breaking


KN interaction ...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is coupled with $\pi\Sigma$ channel
- generates $\Lambda(1405)$ below threshold


- is fundamental building block for \overline{K} -nuclei, \overline{K} in medium, ...,

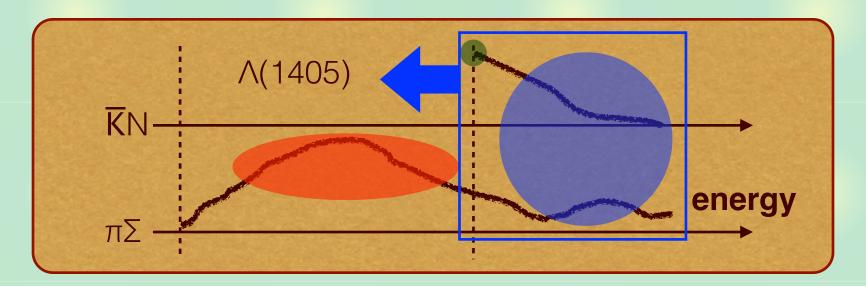
SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., PLB 704, 113 (2011); NPA 881, 88 (2012)

- Shift and width of atomic state <-> K-p scattering length U.G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

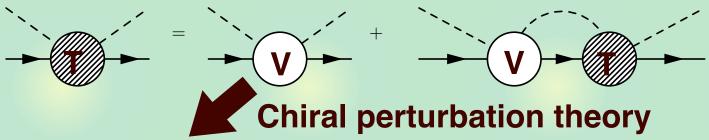
Quantitative constraint on the $\overline{K}N$ interaction at fixed energy $_4$

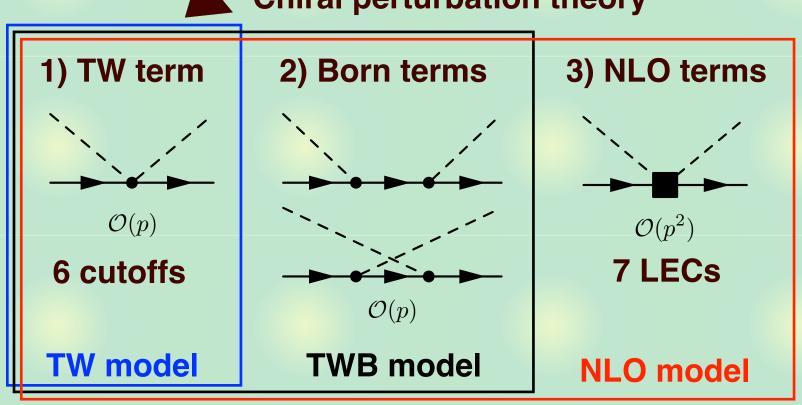

Strategy for KN interaction

Above the KN threshold: direct constraints

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the KN threshold: indirect constraints


- πΣ mass spectra (new data: LEPS, CLAS, HADES,...)

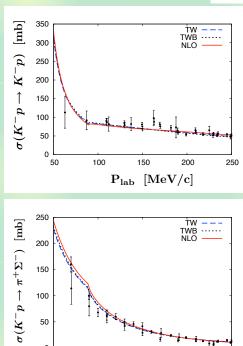


Construction of the realistic amplitude

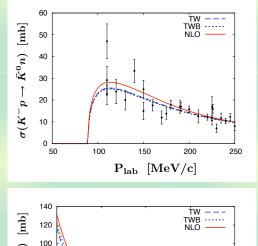
Chiral coupled-channel approach with systematic χ^2 fitting

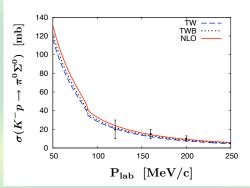
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

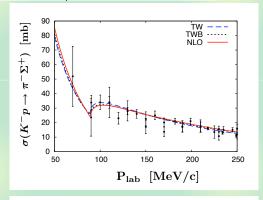
Best-fit results

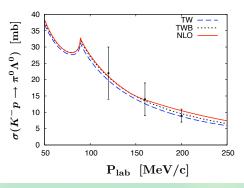

SIDDHARTA

Branching ratios

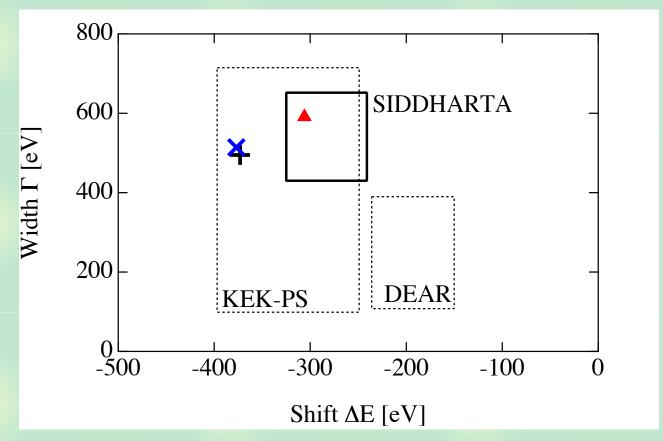

50


cross sections


	TW	TWB	NLO	Experiment	
$\Delta E \text{ [eV]}$	373	377	306	$283 \pm 36 \pm 6$	[10]
Γ [eV]	495	514	591	$541 \pm 89 \pm 22$	[10]
γ	2.36	2.36	2.37	2.36 ± 0.04	[11]
R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]
R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]
$\chi^2/\mathrm{d.o.f}$	1.12	1.15	0.96		
$\chi^2/\text{d.o.f}$	1.12	1.15	0.96		



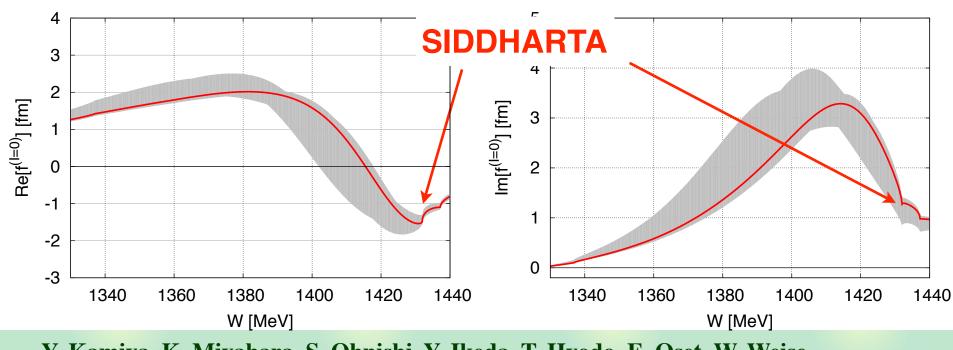
 $P_{\rm lab}~[{\rm MeV/c}]$



Accurate description of all existing data ($\chi^2/d.o.f. \sim 1$)

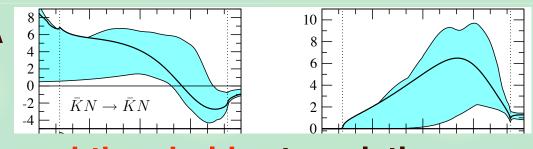
KN interaction in chiral SU(3) dynamics

Comparison with SIDDHARTA


	TW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957

TW and TWB are reasonable, while best-fit requires NLO.

Subthreshold extrapolation


Uncertainty of $\overline{KN} \rightarrow \overline{KN}$ (I=0) amplitude below threshold

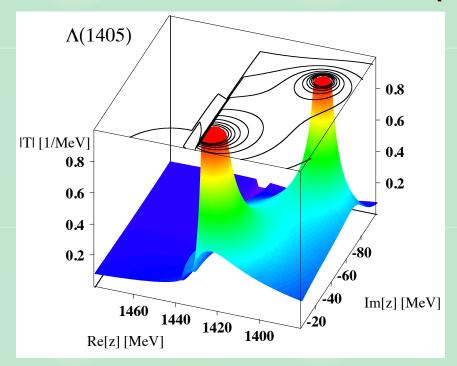
Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, NPA 954, 41 (2016)

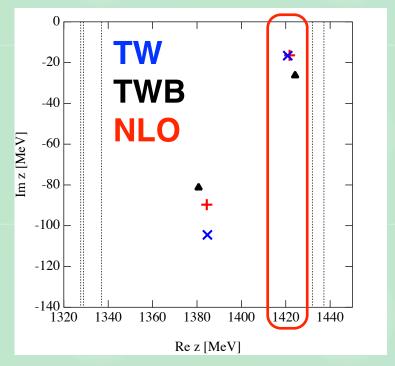
- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

Extrapolation to complex energy: two poles


Two poles: superposition of two states


J.A. Oller, U.G. Meissner, PLB 500, 263 (2001);

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, NPA 723, 205 (2003);

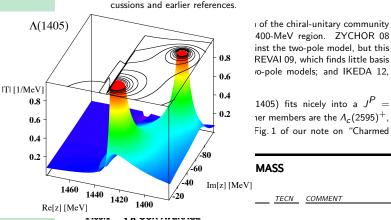
T. Hyodo, W. Weise, PRC 77, 035204 (2008)

- Higher energy pole at 1420 MeV, not at 1405 MeV
- Attractions of TW in 1 and 8 ($\overline{K}N$ and $\pi\Sigma$) channels

NLO analysis confirms the two-pole structure.

KN interaction and potential

PDG changes


PDG particle listing of Λ (1405)

M. Tanabashi, et al., PRD 98, 030001 (2018), http://pdg.lbl.gov/

 $\Lambda(1405) 1/2^{-}$

$$I(J^P) = 0(\frac{1}{2}^-)$$
 Status: **2014**

The nature of the $\Lambda(1405)$ has been a puzzle for decades: t.... quark state or hybrid; two poles or one. We cannot here survey the rather extensive literature. See, for example, CIEPLY 10, KISSLINGER 11. SEKIHARA 11. and SHEVCHENKO 12A for discussions and earlier references.

105. Pole Structure of the $\Lambda(1405)$ Region

Written November 2015 by Ulf-G. Meißner (Bonn Univ. / FZ Jülich) and Tetsuo Hyodo (YITP, Kyoto Univ.).

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S=-1 and isospin I=0. It is the archetype of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan [1]. The most powerful and

 $\Lambda(1405) 1/2$

$$I(J^P) = O(\frac{1}{2}^{-})$$
 \$ 2018

In the 1998 Note on the Λ(1405) in PDG 98, R.H. Dalit∠ uiscusseu the S-shaped cusp behavior of the intensity at the $N-\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\overline{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P = 1/2^-$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P = 1/2^-$ spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow$ $K^+\Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) \rightarrow Σ^+ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin J=1/2. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P = 1/2^-$.

See the related review(s):

REAL PART

Pole Structure of the $\Lambda(1405)$ Region

A(1405) REGION POLE POSITIONS

VALUE (MeV)	DOCUMENT IL)	TECN	
• • • We do not use the following	g data for averag	ges, fits,	limits, etc	. • • •
1429 ⁺ 8 7	$^{1}\mathrm{MAI}$	15	DPWA	
1325^{+15}_{-15}	² MAI	15	DPWA	
1434 + 2	³ MAI	15	DPWA	
1330 + 4 5	⁴ MAI	15	DPWA	
1421 + 3	⁵ GUO	13	DPWA	
1388± 9	⁶ GUO	13	DPWA	
$1424^{+}_{-23}^{7}$	⁷ IKEDA	12	DPWA	
1381 ⁺¹⁸	⁸ IKEDA	12	DPWA	

- Our analysis (+ 2 other groups) included
- Pole positions are now tabulated, prior to mass/width.

Construction of KN potential

Local KN potential is useful for

- extraction of the wave function of $\Lambda(1405)$
- application to few-body Kaonic nuclei/atoms

Strategy

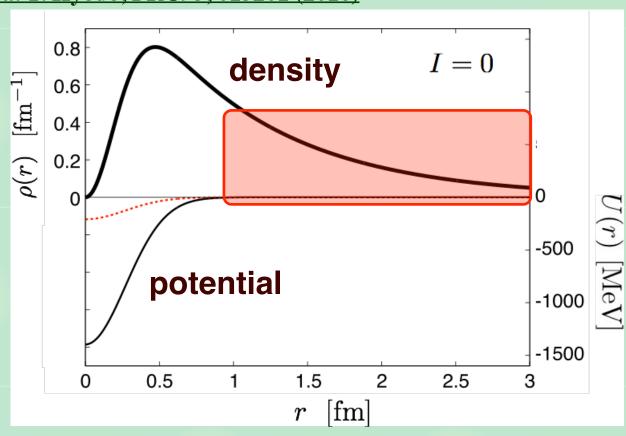
Fit to experimental data (chiral SU(3) EFT)

equivalent amplitude

Single-channel complex KN potential [1] (used in K-nuclei calculation)

Coupled-channel real $\overline{K}N-\pi\Sigma-\pi\Lambda$ potential [2]

[1] K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);


[2] K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018).

Realistic $\overline{K}N$ potentials

Structure of $\wedge(1405)$

$\overline{K}N$ wave function at $\Lambda(1405)$ pole

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

- substantial distribution at r > 1 fm
- root mean squared radius $\sqrt{\langle r^2 \rangle} = 1.44~\mathrm{fm}$

The size of $\wedge(1405)$ is much larger than ordinary hadrons.

Kaonic nuclei : current status

Recent experiment for KNN (J-PARC E15, 3He(K-, Ap)n)

S. Ajimura, et al., arXiv:1805.12275 [nucl-ex].

$$B = 47 \pm 3^{+3}_{-6} \text{ MeV}, \quad \Gamma = 115 \pm 7^{+10}_{-9} \text{ MeV}$$

Theoretical calculation with realistic KN interaction

- Fit to K-p cross sections and branching ratios
- SIDDHARTRA constraint of Kaonic hydrogen

[1] J. Revai, N.V. Shevchenko, PRC 90, 034004 (2014),

[2] S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

	V ¹ [1]	V ² [1]	VChiral [1]	[2]
B [MeV]	53.3	47.4	32.2	25-28
Γ _{πΥΝ} [MeV]	64.8	49.8	48.6	31-59

- 2N absorption (Γ_{YN}) is NOT included.

Kaonic nuclei

Rigorous few-body approach to K nuclear systems

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

- Stochastic variational method with correlated gaussians

$$\hat{V} = \hat{V}^{\bar{K}N}(\text{Kyoto } \bar{K}N) + \hat{V}^{NN}(\text{AV4}')$$
 (single channel)

Results for A = 2, 3, 4, 6

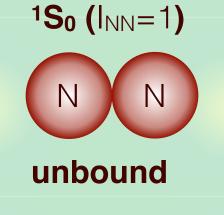

	KNN	KNNN	KNNNN	KNNNNNN
B [MeV]	25-28	45-50	68-76	70-81
Γ[MeV]	31-59	26-70	28-74	24-76

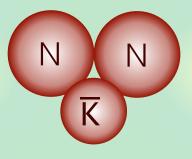
- quasi-bound state below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy

15

High density?

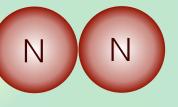
Nucleon density distribution in four-nucleon system

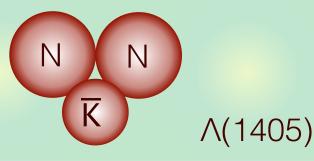



- central density increases (not substantially <- NN core)
- B = 68-76 MeV (Kyoto $\overline{K}N$)
- B = 85-87 MeV (AY)

Central density is not always proportional to B <− tail of w.f₁₆

Interplay between NN and $\overline{K}N$ correlations 1


Two-nucleon system



(quasi-)bound $\overline{K}N(I=0):\overline{K}N(I=1)=3:1$

bound (d)

unbound

 $\overline{K}N(I=0):\overline{K}N(I=1) = 1:3$

Interplay between NN and KN correlations 2

Four-nucleon system with $J^{\pi}=0^{-}$, I=1/2, $I_3=+1/2$

- KN correlation

$$I=0$$
 pair in K-p (3 pairs) or \overline{K}^0 n (2 pairs) : $C_1 > C_2$

- NN correlation

ppnn forms a :
$$C_1 < C_2$$

- Numerical result

$$|C_1|^2 = 0.08$$
, $|C_2|^2 = 0.92$

NN correlation > $\overline{K}N$ correlation

Summary: ∧(1405)

SIDDHARTA measurement of kaonic hydrogen reduces the ambiguity of $\overline{K}N$ amplitude.

Pole positions of $\Lambda(1405)$ are determined by fitting all existing data with $\chi^2/d.o.f. \sim 1$.

$$z_1 = (1424^{+7}_{-23} - i26^{+3}_{-14}) \text{ MeV}, \quad z_2 = (1381^{+18}_{-6} - i81^{+19}_{-8}) \text{ MeV}$$

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Realistic KN potential is constructed.

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

Structure of few-body kaonic nuclei reflects the interplay between NN and KN correlations.

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, T. Hyodo, PRC95, 065202 (2017)