$\wedge(1405)$ as a Feshbach resonance

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

Introduction

- Clustering in hadron physics / resonances

Two-pole structure

- Interpretation

Summary

Current status of $\wedge(1405)$
- Analysis of $\bar{K} N$ scattering

Excitation of hadrons

Excitation mechanisms

Standard (quark model)

Exotic excitation

multiquark

hadronic molecule

Exotic structure : excitation inherent in QCD (qव̄ pair creation), different from standard (shell-like) excitation

- Verification? -> compositeness (poster by Kamiya)
- Are they stable particles?

Unstable states via strong interaction

Many hadron states

PDG2018 : http://pdg.lbl.gov/

- stable/unstable via strong interaction
- Excited states are mostly unstable. \rightarrow resonances

Current status of $\wedge(1405)$

$\Lambda(1405)$ and $\bar{K} N$ scattering

$\wedge(1405)$ does not fit in standard picture $\rightarrow>$ exotic candidate
N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978)

Resonance in coupled-channel scattering

- coupling to MB states

Detailed analysis of $\bar{K} N-\pi \Sigma$ scattering is necessary.

Current status of $\wedge(1405)$

KN scattering by NLO chiral SU(3) dynamics

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 88198 (2012)

Accurate description of all existing data ($\mathrm{x}^{2 / d . o . f . ~} \sim 1$)

Current status of $\wedge(1405)$

Subthreshold extrapolation

Uncertainty of $\bar{K} N \rightarrow \overline{\mathrm{~K} N}(\mathrm{I}=0)$ amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, NPA 954, 41 (2016)

- c.f. without SIDDHARTA
R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

Update in PDG

$\wedge(1405)$ in Particle Data Group (PDG)

M. Tanabashi, et al., PRD 98, 030001 (2018), http://pdg. lbl.gov/

105. Pole Structure of the $\boldsymbol{\Lambda}(1405)$ Region

Written November 2015 by Ulf-G. Meißner (Bonn Univ. / FZ Jülich) and Tetsuo Hyodo (YITP, Kyoto Univ.).

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness $S=-1$ and isospin $I=0$. It is the archetype of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan [1]. The most powerful and

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalit< uscusseu the S-shaped cusp behavior of the intensity at the $N-\bar{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\bar{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^{P}=1 / 2^{-}$."
A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^{P}=1 / 2^{-}$spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow$ $K^{+} \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) \rightarrow $\Sigma^{+}($polarized $) \pi^{-}$. The observed isotropic decay of $\Lambda(1405)$ is consistent with spin $J=1 / 2$. The polarization transfer to the Σ^{+}(polarized) direction revealed negative parity, and thus established $J^{P}=1 / 2^{-}$
See the related review(s):
Pole Structure of the $\Lambda(1405)$ Region
$\Lambda(1405)$ REGION POLE POSITIONS
REAL PART
\qquad

- - We do not use the following data for averages, fits, limits, etc. - . .

$1429+8$	1 MAI	15	DPWA
$1325{ }_{-15}^{+15}$	2 MAI	15	DPWA
$1434{ }_{-}^{+} 2$	${ }^{3} \mathrm{MAI}$	15	DPWA
1330 ± 4	${ }^{4} \mathrm{MAI}$	15	DPWA
$1421-3$	${ }^{5}$ GUO	13	DPWA
$1388+9$	6 Guo	13	DPWA
$1424{ }_{-23}^{+7}$	7 IKEDA	12	DPWA
$1381+18$	8 IKEDA	12	DPWA

- Two-pole structure is confirmed.

Two-pole structure

Two-pole structure

Pole position = complex eigenvalue of Hamiltonian

J.R. Taylor, Scattering theory (Wiley, New York, 1972);
T. Hyodo, Intensive lecture at Tohoku Univ. (2018)

- two poles $\rightarrow \wedge(1405)$ is a superposition of two states

Origin in SU(3) basis and implication in spectrum
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, NPA 723, 205 (2003)

- attraction in 1 and 8 channels of $\operatorname{SU}(3)$ basis
- different channel coupling \rightarrow different $\pi \Sigma$ spectum

Two-pole structure

Origin in physical basis

Attraction exists both in $K N$ and $\pi \Sigma$ channels

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

- strong attraction in $\bar{K} N$: bound state
- attraction in $\pi \Sigma$: resonance
T. Hyodo, Intensive lecture at SNP school (2017)

Two-pole structure

Spectrum and pole

(standard) Feshbach resonance

resonance

Im E
Two-pole structure of $\wedge(1405)$
$\wedge(1405)$

Two-pole structure

Corresponding cold atom system?

${ }^{6} \mathrm{Li}$ atom : large background scattering length
I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

- theoretical study on large abg
B. Marcelis, et al., Phys. Rev. A 70, 012701 (2004)

FIG. 2. Magnetic field dependence of the scattering length between the two lowest magnetic substates of ${ }^{6} \mathrm{Li}$ with a Feshbach resonance at $B_{0}=834 \mathrm{G}$ and a zero crossing at $B_{0}+\Delta B$ $=534 \mathrm{G}$. The background scattering length $a_{\mathrm{bg}}=-1405 a_{B} \mathrm{~s}$ exceptionally large in this case (a_{B} the Bohr radius).

- vanishing of scattering length near the unitary limit
$1405!$

CDD zero near pole \rightarrow non-composite nature
Y. Kamiya, T. Hyodo, Phys. Rev. D97, 054019 (2018)

Summary

On clustering in hadrons

- exotic ($\overline{\mathrm{q}} \mathrm{q}$) excitation: QCD inherent
- hadrons are mostly unstable

Two-pole structure of $\wedge(1405)$

- verified by recent analysis
- Feshbach resonance in resonating continuum
\because
\because
 $\wedge(1405)$

