Status of $\Lambda(1405)$ in chiral dynamics

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

Contents

 \checkmark \land (1405) in chiral SU(3) dynamics

- Precise experimental constraint
- Determination of pole positions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Kaonic nuclei

- Local $\overline{K}N$ potential and $\Lambda(1405)$ wave function

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

- Density of kaonic nuclei
- KN v.s. NN correlations

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, T. Hyodo, PRC95, 065202 (2017)

K meson and **K**N interaction

Two aspects of $K(\overline{K})$ meson

- NG boson of chiral SU(3)_R \otimes SU(3)_L -> SU(3)_V
- Massive by strange quark: m_K ~ 496 MeV

—> Spontaneous/explicit symmetry breaking

KN interaction ... <u>T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)</u>

is coupled with π∑ channel
generates ∧(1405) below threshold

molecule three-quark

- is fundamental building block for \overline{K} -nuclei, \overline{K} in medium, ...,

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., PLB 704, 113 (2011); NPA 881, 88 (2012)

- Shift and width of atomic state <-> K-p scattering length U.G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Quantitative constraint on the $\overline{K}N$ interaction at fixed energy $_4$

Strategy for KN interaction

Above the KN threshold: direct constraints

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the $\overline{K}N$ **threshold: indirect constraints**

- $\pi\Sigma$ mass spectra (new data: LEPS, CLAS, HADES,...)

Construction of the realistic amplitude

Chiral coupled-channel approach with systematic χ^2 fitting

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Best-fit results

		_	TW	TWB	NLO	Experiment		
		$\Delta E [eV]$	373	377	306	$283 \pm 36 \pm 6$	[10]	
		$\Gamma \ [eV]$	495	514	591	$541 \pm 89 \pm 22$	[10]	
	(γ	2.36	2.36	2.37	2.36 ± 0.04	[11]	
Branching ratios {		R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]	
	J	R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]	
		$\chi^2/{ m d.o.f}$	1.12	1.15	0.96			
ctions	$\begin{bmatrix} \mathbf{a} & 350 \\ 300 \\ \mathbf{a} & 250 \\ \mathbf{a} & 200 \\ \uparrow & 150 \\ \mathbf{b} & 50 \\ \mathbf{b} & 100 \\ \mathbf{b} & \mathbf{b} & \mathbf{b} \\ \mathbf{b} & \mathbf{b}$	$\begin{array}{c} \mathbf{a} \\ $	00 00 00 00 00 00 00 00 00 00 00 00 00	TWB TWB NLO 150 200 250 5 [MeV/c]	$\begin{bmatrix} \mathrm{dm} \\ \mathrm{dm} \end{bmatrix} \begin{pmatrix} + \underline{\chi}^{-\mu} \\ + \underline{\chi}^{-\mu} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	100 150 Plab [MeV	TWB TWB NLO 1	250
cross sec	$\begin{bmatrix} \mathbf{q} \\ \mathbf{q} \\ \mathbf{H} \\ 200 \\ \mathbf{H} \\ \mathbf{k} \\ k$	$[\operatorname{qm}] \left[\operatorname{qm}_{0} \mathcal{L} \to d_{-} \mathcal{Y} \right] \rho$ 250	$ \begin{array}{c} 40\\ 20\\ 00\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	TWB TWB NLO NLO	$\begin{bmatrix} qui \\ qui \end{bmatrix} \begin{pmatrix} 40 \\ 35 \\ 0 \\ \nu_{0} \\ \mu \\ 0 \\ \mu \\ 15 \\ 15 \\ 0 \\ 50 \\ 50 \end{bmatrix}$	100 150 Plab [MeV	TW TWB NLO	250

Accurate description of all existing data (χ^2 /d.o.f. ~ 1)

Comparison with SIDDHARTA

	ТW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957

TW and TWB are reasonable, while best-fit requires NLO.

Subthreshold extrapolation

Uncertainty of $\overline{K}N \longrightarrow \overline{K}N$ (I=0) amplitude below threshold

<u>Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise,</u> <u>NPA 954, 41 (2016)</u>

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

Extrapolation to complex energy: two poles

Two poles: superposition of two states

J.A. Oller, U.G. Meissner, PLB 500, 263 (2001);

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, NPA 723, 205 (2003); T. Hyodo, W. Weise, PRC 77, 035204 (2008)

- Higher energy pole at 1420 MeV, not at 1405 MeV
- Attractions of TW in 1 and 8 ($\overline{K}N$ and $\pi\Sigma$) channels

NLO analysis confirms the two-pole structure.

KN interaction and potential

PDG changes

PDG particle listing of $\Lambda(1405)$

M. Tanabashi, et al., PRD 98, 030001 (2018), http://pdg.lbl.gov/

105. Pole Structure of the $\Lambda(1405)$ Region

Written November 2015 by Ulf-G. Meißner (Bonn Univ. / FZ Jülich) and Tetsuo Hyodo (YITP, Kyoto Univ.).

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S = -1 and isospin I = 0. It is the archetype of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan [1]. The most powerful and

A(1405) 1/2⁻

$I(J^P) = 0(\frac{1}{2}^{-}) \ \text{S} \ 2018$

11

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalitz unscussed the S-shaped cusp behavior of the intensity at the $N-\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior " is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\overline{K}$ coupling is *P*-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P = 1/2^-$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P=1/2^-$ spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma \rho \rightarrow K^+ \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) $\rightarrow \Sigma^+$ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin J=1/2. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P=1/2^-$.

See the related review(s):

Pole Structure of the $\Lambda(1405)$ Region

	Λ(1405) REGION POLE POSITIONS				
REAL PART VALUE (MeV)	DOCUMENT IE)	<u>TECN</u>		
• • • We do not u	se the following data for averag	es, fits	, limits, etc. • •		
1429^{+}_{-} $^{8}_{7}$	¹ MAI	15	DPWA		
1325^{+15}_{-15}	² MAI	15	DPWA		
1434^+2	³ MAI	15	DPWA		
1330^{+}_{-} $\frac{4}{5}$	⁴ MAI	15	DPWA		
$1421 + 3 \\ - 2$	⁵ GUO	13	DPWA		
1388± 9	⁶ GUO	13	DPWA		
1424^{+}_{-23}	⁷ IKEDA	12	DPWA		
1381 + 18	⁸ IKEDA	12	DPWA		

Our analysis (+ 2 other groups) included Pole positions are now tabulated, prior to mass/width.

Construction of KN **potential**

Local **KN** potential is useful for

- extraction of the wave function of $\Lambda(1405)$
- application to few-body Kaonic nuclei/atoms

[1] K. Miyahara. T. Hyodo, PRC 93, 015201 (2016); [2] K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018).

Realistic KN potentials

Structure of $\wedge(1405)$

$\overline{K}N$ wave function at $\Lambda(1405)$ pole

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

- substantial distribution at r > 1 fm
- root mean squared radius $\sqrt{\langle r^2 \rangle} = 1.44 \text{ fm}$

The size of $\Lambda(1405)$ is much larger than ordinary hadrons.

13

Kaonic nuclei : current status

Recent experiment for KNN (J-PARC E15, 3He(K-, Ap)n)

S. Ajimura, et al., arXiv:1805.12275 [nucl-ex].

 $B = 47 \pm 3^{+3}_{-6} \text{ MeV}, \quad \Gamma = 115 \pm 7^{+10}_{-9} \text{ MeV}$

Theoretical calculation with realistic KN interaction

- Fit to K-p cross sections and branching ratios
- SIDDHARTRA constraint of Kaonic hydrogen

[1] J. Revai, N.V. Shevchenko, PRC 90, 034004 (2014),

[2] S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

	V ¹ [1]	V ² [1]	V ^{Chiral} [1]	[2]
B [MeV]	53.3	47.4	32.2	25-28
Γ _{πΥΝ} [MeV]	64.8	49.8	<mark>4</mark> 8.6	31- <mark>59</mark>

- 2N absorption (Γ_{YN}) is NOT included.

Kaonic nuclei

Rigorous few-body approach to \overline{K} nuclear systems

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

- Stochastic variational method with correlated gaussians

 $\hat{V} = \hat{V}^{\bar{K}N}$ (Kyoto $\bar{K}N$) + \hat{V}^{NN} (AV4') (single channel)

Results for A = 2, 3, 4, 6

	KNN	K NNN	KNNNN	KNNNNN
B [MeV]	25-28	45-50	68-76	70-81
Γ[MeV]	31-59	26-70	28-74	24-76

- quasi-bound state below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy $_{15}$

High density?

Nucleon density distribution in four-nucleon system

- central density increases (not substantially <- NN core)
- B = 68-76 MeV (Kyoto $\overline{K}N$)
- B = 85-87 MeV (AY)

Central density is not always proportional to B < - tail of w.f₁₆

Interplay between NN and KN correlations 1

Two-nucleon system

NN correlation $< \overline{K}N$ correlation (also in A=6)

Interplay between NN and KN correlations 2

Four-nucleon system with $J^{\pi}=0^{-}$, I=1/2, $I_3=+1/2$

$$\bar{K}NNNN \rangle = C_1 \left(\begin{array}{c} \mathbf{p} \\ \mathbf{p} \\ \mathbf{p} \\ \mathbf{p} \\ \mathbf{n} \end{array} \right) + C_2 \left(\begin{array}{c} \mathbf{p} \\ \mathbf{p} \\ \mathbf{p} \\ \mathbf{n} \\ \mathbf{n} \end{array} \right)$$

- **K**N correlation

I=0 pair in K-p (3 pairs) or \overline{K}^0 n (2 pairs) : C₁ > C₂

- NN correlation

ppnn forms α : $C_1 < C_2$

- Numerical result

 $|C_1|^2 = 0.08, |C_2|^2 = 0.92$

NN correlation > $\overline{K}N$ correlation

Summary

Summary: ∧(1405)

