Status of $\wedge(1405)$ in chiral dynamics

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

$\wedge(1405)$ in chiral $S U(3)$ dynamics

- Precise experimental constraint
- Determination of pole positions
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 88198 (2012)

Kaonic nuclei

- Local $\bar{K} N$ potential and $\wedge(1405)$ wave function K. Miyahara. T. Hyodo, PRC93, 015201 (2016)
- Density of kaonic nuclei
- $\bar{K} N$ v.s. NN correlations
S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, T. Hyodo, PRC95, 065202 (2017)
\square

\%

$\bar{K} N$ interaction in chiral SU(3) dynamics

$\overline{\mathrm{K}}$ meson and $\overline{\mathrm{K}} \mathrm{N}$ interaction

Two aspects of $K(\bar{K})$ meson

- NG boson of chiral SU(3) $)_{\mathrm{R}} \otimes \operatorname{SU}(3)_{\mathrm{L}} \rightarrow \mathbf{S U (3) _ { V }}$
- Massive by strange quark: $\mathrm{m}_{\mathrm{K}} \sim 496 \mathrm{MeV}$
-> Spontaneous/explicit symmetry breaking

$\bar{K} N$ interaction ...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is coupled with $\pi \Sigma$ channel
- generates $\wedge(1405)$ below threshold

- is fundamental building block for $\overline{\mathrm{K}}$-nuclei, $\overline{\mathrm{K}}$ in medium, ... ${ }_{3}$
$\bar{K} N$ interaction in chiral SU(3) dynamics

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays
M. Bazzi, et al., PLB 704, 113 (2011); NPA 881, 88 (2012)

EM int.

strong int.

EM value

- Shift and width of atomic state $<\rightarrow$ K-p scattering length U.G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Quantitative constraint on the $\bar{K} N$ interaction at fixed energy
$\overline{\mathrm{K} N}$ interaction in chiral SU(3) dynamics

Strategy for $\bar{K} N$ interaction

Above the $\bar{K} N$ threshold: direct constraints

- K-p total cross sections (old data)
- $\overline{\mathrm{K}} N$ threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the $\overline{\mathrm{K}} \mathrm{N}$ threshold: indirect constraints

- $\pi \Sigma$ mass spectra (new data: LEPS, CLAS, HADES,...)

$\bar{K} N$ interaction in chiral SU(3) dynamics

Construction of the realistic amplitude

Chiral coupled-channel approach with systematic χ^{2} fitting
Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 88198 (2012)

1) TW term

$\mathcal{O}(p)$
6 cutoffs

TW model
2) Born terms

TWB model
3) NLO terms

7 LECs

NLO model
$\bar{K} N$ interaction in chiral SU(3) dynamics

Best-fit results

cross sections

Accurate description of all existing data ($\mathrm{X}^{2 / d . o . f . ~} \sim 1$)
$\bar{K} N$ interaction in chiral SU(3) dynamics
Comparison with SIDDHARTA

	TW	TWB	NLO
X $^{2 / d . o . f . ~}$	1.12	1.15	0.957

TW and TWB are reasonable, while best-fit requires NLO.
$\bar{K} N$ interaction in chiral SU(3) dynamics

Subthreshold extrapolation

Uncertainty of $\bar{K} N \rightarrow \overline{\mathrm{~K}} N(I=0)$ amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, NPA 954, 41 (2016)

- c.f. without SIDDHARTA
R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.
$\bar{K} N$ interaction in chiral SU(3) dynamics

Extrapolation to complex energy: two poles

Two poles: superposition of two states

J.A. Oller, U.G. Meissner, PLB 500, 263 (2001);
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, NPA 723, 205 (2003);
T. Hyodo, W. Weise, PRC 77, 035204 (2008)

- Higher energy pole at 1420 MeV , not at 1405 MeV
- Attractions of TW in 1 and 8 ($\bar{K} N$ and $\pi \Sigma$) channels

NLO analysis confirms the two-pole structure.

PDG changes

PDG particle listing of $\wedge(1405)$

M. Tanabashi, et al., PRD 98, 030001 (2018), http://pdg. lbl. gov/

- Our analysis (+ 2 other groups) included
- Pole positions are now tabulated, prior to mass/width.

Construction of KN potential

Local KN potential is useful for

- extraction of the wave function of $\wedge(1405)$
- application to few-body Kaonic nuclei/atoms

Strategy

Fit to experimental data (chiral SU(3) EFT)

equivalent amplitude

Single-channel complex $\bar{K} N$ potential [1] (used in \bar{K}-nuclei calculation)

Coupled-channel real $\bar{K} N-\pi \Sigma-\pi \wedge$ potential [2]

[1] K. Miyahara. T. Hyodo, PRC 93, 015201 (2016);
[2] K. Miyahara, T. Hyodo, W. Weise, PRC 98, 025201 (2018).

Realistic $\overline{\mathrm{K} N}$ potentials

Structure of $\wedge(1405)$

$\bar{K} N$ wave function at $\wedge(1405)$ pole
K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

- substantial distribution at $r>1 \mathbf{f m}$
- root mean squared radius $\sqrt{\left\langle r^{2}\right\rangle}=1.44 \mathrm{fm}$

The size of $\wedge(1405)$ is much larger than ordinary hadrons.

Kaonic nuclei : current status

Recent experiment for KNN (J-PARC E15, $\left.{ }^{3} \mathrm{He}(\mathrm{K}-, \wedge \mathrm{p}) \mathrm{n}\right)$
S. Ajimura, et al., arXiv:1805.12275 [nucl-ex].

$$
B=47 \pm 3_{-6}^{+3} \mathrm{MeV}, \quad \Gamma=115 \pm 7_{-9}^{+10} \mathrm{MeV}
$$

Theoretical calculation with realistic $\bar{K} N$ interaction

- Fit to K-p cross sections and branching ratios
- SIDDHARTRA constraint of Kaonic hydrogen
[1] J. Revai, N.V. Shevchenko, PRC 90, 034004 (2014),
[2] S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

	$\mathrm{V}^{1}[1]$	$\mathrm{V}^{2}[1]$	VChiral [1]	$[2]$
$\mathrm{B}[\mathrm{MeV}]$	53.3	47.4	32.2	$25-28$
$\Gamma_{\pi \mathrm{YN}}[\mathrm{MeV}]$	64.8	49.8	48.6	$31-59$

- 2 N absorption (Γ_{YN}) is NOT included.

Applications

Kaonic nuclei

Rigorous few-body approach to K nuclear systems
S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

- Stochastic variational method with correlated gaussians

$$
\hat{V}=\hat{V}^{\bar{K} N}(\text { Kyoto } \bar{K} N)+\hat{V}^{N N}(\text { AV4') } \quad \text { (single channel) }
$$

Results for $\mathbf{A = 2 , 3 , 4 , 6}$

	$\bar{K} N N$	$\bar{K} N N N$	$\bar{K} N N N N$	$\bar{K} N N N N N N$
$B[M e V]$	$25-28$	$45-50$	$68-76$	$70-81$
$\Gamma[\mathrm{MeV}]$	$31-59$	$26-70$	$28-74$	$24-76$

- quasi-bound state below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy

Applications

High density?

Nucleon density distribution in four-nucleon system

- central density increases (not substantially <- NN core)
- $\mathrm{B}=68-76 \mathrm{MeV}$ (Kyoto $\overline{\mathrm{K}} N$)
- B = 85-87 MeV (AY)

Central density is not always proportional to $B<-$ tail of w.f. \mathbf{f}_{16}

Applications

Interplay between NN and KN correlations 1

Two-nucleon system

${ }^{1} S_{0}\left(l_{N N}=1\right)$

unbound

(quasi-)bound
$\bar{K} N(I=0): \bar{K} N(I=1)=3: 1$
${ }^{3} S_{1}\left(I_{N N}=0\right)$
 bound (d)

unbound
$\bar{K} N(I=0): \bar{K} N(I=1)=1: 3$

Applications

Interplay between NN and KN correlations 2

Four-nucleon system with $J^{\pi}=0,1=1 / 2, l_{3}=+1 / 2$

- $\overline{\mathrm{K}} N$ correlation

I $=0$ pair in K-p (3 pairs) or $\overline{\mathrm{K}} \mathrm{n}$ (2 pairs) : $\mathrm{C}_{1}>\mathrm{C}_{2}$

- NN correlation
ppnn forms a: $\mathrm{C}_{1}<\mathrm{C}_{2}$
- Numerical result

$$
\left|C_{1}\right|^{2}=0.08,\left|C_{2}\right|^{2}=0.92
$$

NN correlation $>\bar{K} N$ correlation

Summary: $\wedge(1405)$

SIDDHARTA measurement of kaonic hydrogen reduces the ambiguity of $\overline{\mathrm{K}} \mathrm{N}$ amplitude.

Pole positions of $\wedge(1405)$ are determined by
fitting all existing data with $x^{2} /$ d.o.f. ~ 1.

$$
z_{1}=\left(1424_{-23}^{+7}-i 26_{-14}^{+3}\right) \mathrm{MeV}, \quad z_{2}=\left(1381_{-6}^{+18}-i 81_{-8}^{+19}\right) \mathrm{MeV}
$$

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 88198 (2012)

Realistic $\bar{K} N$ potential is constructed.

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

Structure of few-body kaonic nuclei reflects the interplay between NN and $\overline{\mathrm{K}} \mathrm{N}$ correlations.
S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, T. Hyodo, PRC95, 065202 (2017)

