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K̅ meson and K̅N interaction
Introduction

Two aspects of K(K̅) meson
- NG boson of chiral SU(3)R ⊗ SU(3)L —> SU(3)V

—> Spontaneous/explicit symmetry breaking

- is coupled with πΣ channel
- generates Λ(1405) below threshold

K̅N interaction ...
T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is fundamental building block for K̅-nuclei, K̅-atoms, ...

πΣ

K̅N

en
er

gy

- Massive by strange quark: mK ~ 496 MeV

B
M

Λ(1405)

molecule three-quark
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Kaonic nuclei : current status
Recent experiment for K̅NN (J-PARC E15, 3He(K-,Λp)n)

Introduction

S. Ajimura, et al., arXiv:1805.12275 [nucl-ex].

B = 47 ± 3+ 3
−6 MeV, Γ = 115 ± 7+ 10

−9 MeV

- Fit to K-p cross sections and branching ratios

[1] J. Revai, N.V. Shevchenko, Phys. Rev. C 90, 034004 (2014),
[2] S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

- SIDDHARTRA constraint of Kaonic hydrogen

Theoretical calculation with realistic K̅N interaction

V1 [1] V2 [1] VChiral [1] [2]
B [MeV] 53.3 47.4 32.2 25-28

ΓπYN [MeV] 64.8 49.8 48.6 31-59
- 2N absorption (ΓYN) is NOT included.
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Construction of K̅N potential
Local K̅N potential is useful for

Introduction

- extraction of the wave function of Λ(1405)
- application to few-body Kaonic nuclei/atoms

Fit to experimental data 
(chiral SU(3) EFT) [1]

Strategy

[1] Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012);
[2] K. Miyahara. T. Hyodo, Phys. Rev. C93, 015201 (2016); 
[3] K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th].

Single-channel complex 
K̅N potential [2] (used in 
K̅NN calculation)

Coupled-channel real 
K̅N-πΣ-πΛ potential [3]

equivalent amplitude
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K̅N interaction and potential

Accurate description of all existing data (χ2/d.o.f. ~ 1)
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Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

TW TWB NLO Experiment

�E [eV] 373 377 306 283± 36± 6 [10]

� [eV] 495 514 591 541± 89± 22 [10]

� 2.36 2.36 2.37 2.36± 0.04 [11]

Rn 0.20 0.19 0.19 0.189± 0.015 [11]

Rc 0.66 0.66 0.66 0.664± 0.011 [11]

�2/d.o.f 1.12 1.15 0.96

pole positions 1422� 16i 1421� 17i 1424� 26i

[MeV] 1384� 90i 1385� 105i 1381� 81i

Table 1
Results of the systematic �2 analysis using leading order (TW) plus Born terms (TWB) and full NLO
schemes. Shown are the energy shift and width of the 1s state of the kaonic hydrogen (�E and �),
threshold branching ratios (�, Rn and Rc), �2/d.o.f of the fit, and the pole positions of the isospin I = 0
amplitude in the K̄N -⇡⌃ region.

the subtraction constants ai in Eq. (7), especially those in the ⇡⇤ and ⌘⌃ channels,
exceed their expected “natural” values ⇠ 10�2 by more than an order of magnitude [14].
This clearly indicates the necessity of including higher order terms in the interaction
kernel Vij . It also emphasizes the important role of the accurate kaonic hydrogen data in
providing sensitive constraints.

The additional inclusion of direct and crossed meson-baryon Born terms does not
change �E and �2/d.o.f. in any significant way. It nonetheless improves the situation
considerably since the subtraction constants ai now come down to their expected “nat-
ural” sizes.

The best fit (with �2/d.o.f. = 0.96) is achieved when incorporating NLO terms in the
calculations. The inputs used are: the decay constants f⇡ = 92.4 MeV, fK = 110.0 MeV,
f⌘ = 118.8 MeV, and axial vector couplings D = 0.80, F = 0.46 (i.e. gA = D+F = 1.26);
subtraction constants at a renormalization scale µ = 1 GeV (all in units of 10�3): a1 =
a2 = �2.38, a3 = �16.57, a4 = a5 = a6 = 4.35, a7 = �0.01, a8 = 1.90, a9 = a10 =
15.83; and NLO parameters (in units of 10�1 GeV�1): b̄0 = �0.48, b̄D = 0.05, b̄F =
0.40, d1 = 0.86, d2 = �1.06, d3 = 0.92, d4 = 0.64. Within the set of altogether
“natural”-sized constants ai the relative importance of the K⌅ channels involving double-
strangeness exchange is worth mentioning.

As seen in Table 1, the results are in excellent agreement with threshold data. The
same input reproduces the whole set of K�p cross section measurements as shown in
Fig. 2 (Coulomb interaction e↵ects are included in the diagonal K�p ! K�p channel
as in Ref. [6]). A systematic uncertainty analysis has been performed by varying the
parameters obtained from �2 fits within the range permitted by the uncertainty measures
of the kaonic hydrogen experimental data. Since the shift and width of kaonic hydrogen
are rather insensitive to the I = 1 scattering amplitudes, the total cross section of
K�p ! ⇡0⇤ reaction is also used for the uncertainty analysis. We find that all cross
sections are well reproduced with the constraint from the kaonic hydrogen measurement
as shown by the shaded areas in Fig. 2. A detailed description of this analysis will be
given in a longer forthcoming paper [15].

Equipped with the best fit to the observables at K�p threshold and above, an opti-

5

Fit to experiments: NLO chiral SU(3) dynamics
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Construction of K̅N potential
Practical procedure for local K̅N potential

Realistic K̅N potentials

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

TETSUO HYODO AND WOLFRAM WEISE PHYSICAL REVIEW C 77, 035204 (2008)
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FIG. 10. (Color online) Scattering

amplitudes FK̄N from the local potential
U (r, E) (thick lines) and from the ampli-
tude T eff in the original chiral coupled-
channel approach (thin lines) obtained
by using the HNJH model for the I =
0 channel (left) and the I = 1 channel
(right). Real parts are shown as solid lines
and imaginary parts as dashed lines.

s-wave scattering amplitude is

FK̄N = 1
k(cot δ0 − i)

,

where the phase shift δ0 is determined by the asymptotic wave
function,

u(r)
r

→ A0[cos δ0j0(kr) − sin δ0n0(kr)] for r → ∞,

with spherical Bessel and Neumann functions j0 and n0.
The wave number k =

√
2µE becomes imaginary below

threshold, E < 0.
Given V eff(

√
s) as input, the range parameter b is then

fixed by requiring that the real part of the K̄N amplitude
develops its zero at

√
s ≃ 1420 MeV to satisfy the condition

for the quasibound K̄N state at this point. For the HNJH
model, this condition determines b = 0.47 fm. Note that this
scale is somewhat smaller than the typical range associated
with vector meson exchange, the picture that one has in mind
as underlying the vector current interaction generating the
Weinberg-Tomozawa term.

With b = 0.47 fm fixed, the I = 0 and I = 1 amplitudes
generated by the equivalent local pseudopotential U (r, E)
reproduce the full K̄N coupled-channel amplitudes perfectly
well in the threshold and subthreshold region above

√
s ≃

1420 MeV. However, at energies below the quasibound state,
the local ansatz [Eq. (11)] does not extrapolate correctly
into the far-subthreshold region. One has to keep in mind
that the complex, off-shell effective K̄N interaction is in
general nonlocal and energy dependent to start with. Its
detailed behavior over a broader energy range cannot be
approximated by a simple local potential without paying the
price of extra energy dependence. This is demonstrated in
Fig. 10. In the subthreshold region below

√
s < 1400 MeV,

the amplitudes calculated with the local potential overesti-
mate the ones resulting from the coupled-channel approach
significantly, in both I = 0 and I = 1 channels. One observes
that subthreshold extrapolations using a naive local potential
tend to give much stronger K̄N attraction than what chiral
coupled-channel dynamics actually predicts. Corrections to
the energy dependence of the local potential need to be applied
to repair this deficiency.

C. Improved local potentials and uncertainty analysis

The necessary corrections just mentioned can easily be
implemented by introducing a third-order polynomial in

√
s,

U (r = 0, E) = K0 + K1
√

s + K2(
√

s)2 + K3(
√

s)3,

1300 !
√

s ! 1450 MeV,
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FIG. 11. (Color online) Upper
panels: Strength of the fitted potential
at r = 0 (thick lines) and the strength
without correction [Eq. (11); dotted
lines] with the HNJH model. Lower
panels: Scattering amplitude f from
the local potential (thick lines) and the
amplitude Teff. in the original chiral
unitary approach (thin lines) with the
HNJH model. The real parts are shown
by the solid lines, and the imaginary parts
are depicted by the dotted lines. Left:
I = 0 channel. Right: I = 1 channel.

035204-10

- Chiral SU(3) : thin lines

- Potential : thick lines
+ Schrödinger eq.

Reasonable on-shell scattering amplitude on real axis

Potential strength
- complex (absorption to lower energy πΣ and πΛ)

- single gaussian, range ~ 0.4 fm

- energy dependent (chiral + Feshbach projection)

r-dependence

U(W, r)
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Realistic K̅N potential
Realistic K̅N potentials

Problems of 2008 version

- Amplitude was not constrained by SIDDHARTA
- Pole structure of the amplitude was not reproduced.

KENTA MIYAHARA AND TETSUO HYODO PHYSICAL REVIEW C 93, 015201 (2016)

FIG. 2. The contour plot of !F of the HNJH potential in
Ref. [55]. The unfilled region corresponds to large deviation, !F > 2.
The precise region is defined as !F < 0.2. The crosses represent the
original pole positions of "(1405).

potential by a polynomial in the energy,

U (r = 0,E) = g(r = 0)N (E)

[
∑

i

Ki

(
E

100 MeV

)i
]

. (8)

We refer to the energy range where the potential is
parametrized as parametrized range, which will be specified
for each potential. We comment on the analytic behavior of
the amplitude calculated from the potential (8). Because the
potential is constructed to reproduce the original amplitude, the
correct analytic behavior is guaranteed within the parametrized
range on the real axis. However, the extrapolation of this
potential to other energy regions should be carefully per-
formed, because some unphysical singularities can, in general,
be developed. This is discussed in detail in the next section.

FIG. 3. The contour plot of !F of Potential I. The unfilled region
corresponds to large deviation, !F > 2. The precise region is defined
as !F < 0.2. The crosses represent the original pole positions of
"(1405).

III. POTENTIAL CONSTRUCTION

In this section, we study how the original amplitude is
reproduced by the K̄N local potential. Examining the previous
method in Ref. [55] in detail, we improve the construction
procedure to reproduce the original amplitude even in the
complex energy plane. Here we mainly employ the amplitude
of the HNJH model [66,67] for the comparison with Ref. [55].
Inclusion of the SIDDHARTA constraint is discussed in the
next section to construct a realistic K̄N potential.

A. Precision of potential in the complex plane

A resonance state is represented by a pole of the scattering
amplitude in the complex energy plane. The pole structure
of the K̄N amplitude is therefore important for the study of
the spatial structure of "(1405). It is considered that the pole
structure of the K̄N system may affect the result of the K̄NN

TABLE II. Properties of the HNJH potential in Ref. [55] and Potential I and Potential II in this work. Shown are the potential range
parameters b, the corrections to the strength of the potentials !V , the polynomial types of the potential strength in energy, the correction ranges
where !V is applied, the parametrized ranges by the polynomials, the average deviations !Freal from the amplitudes of chiral unitary approach
F Ch

K̄N
on the real energy axis, the percentages of the precise region in the complex energy plane, and the pole positions of the amplitudes from

the potentials FK̄N . The pole positions of the original amplitude F Ch
K̄N

are 1428 − 17i MeV and 1400 − 76i MeV.

Ref. [55] Potential I Potential II

b (fm) 0.47 0.46 0.46
!V Real Complex Complex
Polynomial type Third order Third order Tenth order
Correction range 1300–1400 1332–1450 1332–1521
Parametrized range 1300–1450 1332–1450 1332–1521
!Freal 1.4 × 10−1 4.8 × 10−3 4.0 × 10−4

Pcomp 50 68 85
Pole positions (MeV) 1421 − 35i 1427 − 17i 1428 − 17i, 1400 − 77i

015201-4

deviation from 
original amplitude

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

STRUCTURE OF !(1405) AND CONSTRUCTION . . . PHYSICAL REVIEW C 93, 015201 (2016)

FIG. 1. Scattering amplitudes from the local potentials FK̄N (thick lines) and the amplitudes directly from chiral unitary approach F Ch
K̄N

(thin lines) with models ORB [68], HNJH [66,67], BNW [56,57], and BMN [58]. The real (imaginary) parts are shown by the solid (dotted)
lines.

where E, EN , and ωK are, respectively, the nonrelativistic
energy, the energy of the nucleon, and the energy of the
antikaon,

E =
√

s −MN −mK,

EN = s −m2
K + M2

N

2
√

s
,

ωK = s −M2
N + m2

K

2
√

s
,

with the mass of the antikaon mK . The spatial distribution
of the potential is governed by g(r), which is normalized
as

∫
d rg(r) = 1. The flux factor N (E) is determined by the

matching with the original amplitude at the K̄N threshold

TABLE I. Pole positions of the original scattering amplitudes
from chiral unitary approach F Ch

K̄N
and the amplitudes from the local

potentials FK̄N . All poles are found in the π$ unphysical and K̄N

physical Riemann sheet. The pole at 1440 − 76i in the BMN model
is above the K̄N threshold and hence is not in the most adjacent sheet
to the real axis.

Model Pole position (MeV)

F Ch
K̄N

FK̄N

ORB [68] 1427 − 17i, 1389 − 64i 1419 − 42i

HNJH [66,67] 1428 − 17i, 1400 − 76i 1421 − 35i

BNW [57,59] 1434 − 18i, 1388 − 49i 1404 − 46i

BMN [58] 1421 − 20i, 1440 − 76i 1416 − 27i

in the Born approximation [55]. In this work, we choose a
Gaussian for g(r),

g(r) = 1
π3/2b3

e−r2/b2
,

where the parameter b determines the range of the potential.
Using the local potential, we can calculate the wave function
from the Schrödinger equation,

− 1
2µ

d2u(r)
dr2

+U (r,E)u(r) = Eu(r), (6)

where µ = MNmK/(MN + mK ) is the reduced mass and u(r)
is the s-wave part of the two-body radial wave function. From
the behavior of the wave function at r → ∞, the scattering
amplitude FK̄N can be obtained. In Ref. [55], the parameter b
was determined to match the amplitude FK̄N with the original
amplitude in the !(1405) resonance region. In this work,
we determine the parameter b by the matching of the full
amplitude at the K̄N threshold. This prescription is along the
same line with the determination of the flux factor N (E).

The potential (4) well reproduces the original amplitude
near the K̄N threshold, while the deviation increases in
the energy region far below the threshold. To enlarge the
applicability of the potential, we add the correction %V (E)
to the strength of the potential,

U (r,E) = g(r)N (E)
[
V eff

11 (E + MN + mK ) + %V (E)
]
. (7)

For the analytic continuation of the amplitude in the complex
energy plane, it is useful to parametrize the strength of the

015201-3

potentialoriginal

Description in the complex energy plane should be improved.

- Deviation away from the real axis
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FIG. 2. The contour plot of !F of the HNJH potential in
Ref. [55]. The unfilled region corresponds to large deviation, !F > 2.
The precise region is defined as !F < 0.2. The crosses represent the
original pole positions of "(1405).

potential by a polynomial in the energy,

U (r = 0,E) = g(r = 0)N (E)

[
∑

i

Ki

(
E

100 MeV

)i
]

. (8)

We refer to the energy range where the potential is
parametrized as parametrized range, which will be specified
for each potential. We comment on the analytic behavior of
the amplitude calculated from the potential (8). Because the
potential is constructed to reproduce the original amplitude, the
correct analytic behavior is guaranteed within the parametrized
range on the real axis. However, the extrapolation of this
potential to other energy regions should be carefully per-
formed, because some unphysical singularities can, in general,
be developed. This is discussed in detail in the next section.

FIG. 3. The contour plot of !F of Potential I. The unfilled region
corresponds to large deviation, !F > 2. The precise region is defined
as !F < 0.2. The crosses represent the original pole positions of
"(1405).

III. POTENTIAL CONSTRUCTION

In this section, we study how the original amplitude is
reproduced by the K̄N local potential. Examining the previous
method in Ref. [55] in detail, we improve the construction
procedure to reproduce the original amplitude even in the
complex energy plane. Here we mainly employ the amplitude
of the HNJH model [66,67] for the comparison with Ref. [55].
Inclusion of the SIDDHARTA constraint is discussed in the
next section to construct a realistic K̄N potential.

A. Precision of potential in the complex plane

A resonance state is represented by a pole of the scattering
amplitude in the complex energy plane. The pole structure
of the K̄N amplitude is therefore important for the study of
the spatial structure of "(1405). It is considered that the pole
structure of the K̄N system may affect the result of the K̄NN

TABLE II. Properties of the HNJH potential in Ref. [55] and Potential I and Potential II in this work. Shown are the potential range
parameters b, the corrections to the strength of the potentials !V , the polynomial types of the potential strength in energy, the correction ranges
where !V is applied, the parametrized ranges by the polynomials, the average deviations !Freal from the amplitudes of chiral unitary approach
F Ch

K̄N
on the real energy axis, the percentages of the precise region in the complex energy plane, and the pole positions of the amplitudes from

the potentials FK̄N . The pole positions of the original amplitude F Ch
K̄N

are 1428 − 17i MeV and 1400 − 76i MeV.

Ref. [55] Potential I Potential II

b (fm) 0.47 0.46 0.46
!V Real Complex Complex
Polynomial type Third order Third order Tenth order
Correction range 1300–1400 1332–1450 1332–1521
Parametrized range 1300–1450 1332–1450 1332–1521
!Freal 1.4 × 10−1 4.8 × 10−3 4.0 × 10−4

Pcomp 50 68 85
Pole positions (MeV) 1421 − 35i 1427 − 17i 1428 − 17i, 1400 − 77i

015201-4
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Realistic K̅N potential

Realistic potential : χ2/d.o.f. ~ 1

Realistic K̅N potentials

New single-channel potential (Kyoto K̅N potential)
STRUCTURE OF !(1405) AND CONSTRUCTION . . . PHYSICAL REVIEW C 93, 015201 (2016)

FIG. 6. The contour plot of "F of SIDDHARTA potential (I =
0). The precise region is defined as "F < 0.2. The crosses represent
the original pole positions of !(1405).

C. Region far from the real axis

While Potential I reproduces the original amplitude near
the real energy axis, the deviation of the amplitude increases
in the region far from the real axis (see Fig. 3) and the π$
pole does not appear. Here we further improve the potential,
paying attention to the region far from the real axis.

In principle, if the original amplitude is completely re-
produced in the whole range on the real energy axis, the
analytic continuation in the complex energy plane is unique.
This suggests that the increase of the parametrized range will
improve the precision of the potential far from the real axis.3

However, there is a limitation of extension of the parametrized
range because of the threshold effect. In the present framework
of the effective single-channel potential with polynomial
parametrization, it is difficult to incorporate the nonanalytic
threshold effect of the other channels. The parametrized range
can only be extended to the nearest thresholds. In this case,
the parametrization of the K̄N potential strength should be
performed between the π$ threshold (1331 MeV) and the η!
threshold (1664 MeV). To keep the precision on the real axis
for the larger parametrized range, we increase the degree of
the polynomial from the third order to the tenth order.

To examine the above strategy, we construct the potentials
varying the parametrized range by 1 MeV. The typical results
of "Freal, Pcomp, and the pole positions of these potentials
are shown in Table III. In all cases, "Freal is reduced by an
order of magnitude from that of Potential I. This is because
we change the parametrization from the third-order to the
tenth-order polynomial. Though the wider fitting range leads
to the slightly larger "Freal, the order of magnitude remains
same. In general, when a high-degree polynomial is used for

3In this section, the correction range is chosen to be the same with
the parametrized range.

FIG. 7. Strength of SIDDHARTA potential (I = 0) U (r,E) at
r = 0. The real part is shown by the solid line, and the imaginary part
is shown by the dotted line.

the parametrization, artificial poles appear between the K̄N
and π$ thresholds. In the present case, this occurs when
the fitting range is smaller than ∼1500 MeV. However, as
the fitting range increases, these unphysical poles move away
from the relevant energy region and only two physical poles
remain. The K̄N pole appears at the original pole position,
1428 − 17i MeV and is stable against the variation of the
parametrized range. However, the position of the π$ pole
depends on the parametrized range. The optimized value of
the upper boundary of the parametrized range is 1521 MeV to
reproduce the original pole position, 1400 − 76i MeV. At the
same time, the maximum value of Pcomp is achieved. We call
the potential with the best parametrized range Potential II. We
show the contour plot of "F with Potential II in Fig. 4. As
shown in Fig. 4, we succeed in extending the precise region
to Imz ∼ −80 MeV, near the π$ pole. As a consequence, we
obtain two poles, both at the correct positions.

It turns out that the largest parametrized range does not
always lead to the best potential. In the present case, this is
because the π$ pole position moves along with the change of
the parametrized range. The best potential is achieved when
the π$ pole comes closest to the original position.

IV. APPLICATION

In the previous section, we established the construction
procedure to reproduce the original amplitude in the complex
energy plane, considering the high precision on the real
energy axis and the wider parametrized range. In this section,
we apply this procedure to chiral unitary approach with
SIDDHARTA constraint [48,49] and construct the realistic
K̄N local potential. This new potential is then used to estimate
the mean distance between K̄ and nucleon, that is, the spatial
structure of !(1405).

A. Realistic K̄ N potential

As we explained in Sec. I, the constraint from the precise
SIDDHARTA data is crucial for the quantitative calculation of

015201-7

- Chiral SU(3) at NLO with SIDDHARTA

- Improvement of construction
  : pole positions in 1 MeV precision

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- applied to K̅ few-body systems
S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017);
T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

- Energy dependence : 10th order polynomial in E
Note:

- πΣ, πΛ are not explicit. Dynamics in few-body system?
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Coupled-channel potential
Realistic K̅N potentials

Coupled-channel K̅N-πΣ potential
K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th]

- E-dependence : 1st/2nd order is sufficient.
- Potential strengths are real.
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Structure of Λ(1405)
Compositeness X: quantitative measure of structure ~ norm

K̅N interaction and potential

- XK̅N is consistent with each other
- Re XK̅N ~1, Im XK̅N  << 1 —> K̅N dominance

Σ
π

N
K̅

XπΣ XK̄N Z
+ anything else

- complex because of the unstable nature of Λ(1405)

High-mass pole XπΣ XK̅N Z
Coupled channel -0.04-0.23i 0.95-0.14i 0.08-0.37i
Single-channel - 1.01-0.07i -
Residue of pole -0.19-0.22i 1.14+0.01i 0.05+0.21i
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Coupled-channel K̅N-πΣ-πΛ potentials based on 
NLO chiral SU(3) dynamics.

Summary
Summary

- Realistic precision (χ2/d.o.f. ~ 1) 

- Compositeness: 
  K̅N dominance of 
  high-mass pole of
  Λ(1405)

K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th]

- Simpler energy dependence
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- Explicit treatment of πY channels


