Construction of a local $\overline{K}N-\pi\Sigma-\pi\Lambda$ potential and composition of the $\Lambda(1405)$

Kenta Miyahara^a, <u>Tetsuo Hyodo^b</u>, Wolfram Weise^c

^aDepartment of Physics, Kyoto Univ. ^bYukawa Institute for Theoretical Physics, Kyoto Univ. ^cPhysik-Department, Technische Univ. München

Introduction

K meson and **K**N interaction

Two aspects of $K(\overline{K})$ meson

- NG boson of chiral SU(3)_R \otimes SU(3)_L -> SU(3)_V
- Massive by strange quark: m_K ~ 496 MeV

—> Spontaneous/explicit symmetry breaking

KN interaction ...T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

is coupled with π∑ channel
generates ∧(1405) below threshold

molecule three-quark

- is fundamental building block for \overline{K} -nuclei, \overline{K} -atoms, ...

Kaonic nuclei : current status

Recent experiment for KNN (J-PARC E15, 3He(K-, Ap)n)

S. Ajimura, et al., arXiv:1805.12275 [nucl-ex].

 $B = 47 \pm 3^{+3}_{-6} \text{ MeV}, \quad \Gamma = 115 \pm 7^{+10}_{-9} \text{ MeV}$

Theoretical calculation with realistic KN interaction

- Fit to K-p cross sections and branching ratios
- SIDDHARTRA constraint of Kaonic hydrogen

[1] J. Revai, N.V. Shevchenko, Phys. Rev. C 90, 034004 (2014),

[2] S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

	V ¹ [1]	V ² [1]	V ^{Chiral} [1]	[2]
B [MeV]	53.3	47.4	32.2	25-28
Γ _{πΥΝ} [MeV]	64.8	49.8	<mark>4</mark> 8.6	31- <mark>59</mark>

- 2N absorption (Γ_{YN}) is NOT included.

Construction of KN **potential**

Local **KN** potential is useful for

- extraction of the wave function of $\Lambda(1405)$
- application to few-body Kaonic nuclei/atoms

[1] Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012);
[2] K. Miyahara. T. Hyodo, Phys. Rev. C93, 015201 (2016);
[3] K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th].

KN interaction and potential

Fit to experiments: NLO chiral SU(3) dynamics

<u>Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)</u> Accurate description of all existing data ($\chi^2/d.0.f. \sim 1$)

Construction of KN **potential**

Practical procedure for local KN **potential**

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

- Chiral SU(3) : thin lines
- Potential : thick lines
 U(W, r) + Schrödinger eq.

r-dependence

- single gaussian, range ~ 0.4 fm

Potential strength

- complex (absorption to lower energy $\pi\Sigma$ and $\pi\Lambda$)
- energy dependent (chiral + Feshbach projection)

Reasonable on-shell scattering amplitude on real axis

6

Realistic KN **potential**

Problems of 2008 version

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- Amplitude was not constrained by SIDDHARTA
- Pole structure of the amplitude was not reproduced.

Model Ori	Ginal Pole position (M	^(eV)	notont	ia
	$F_{ar{K}N}^{ m Ch}$		$\overline{F_{\bar{K}N}}$ polem	.Ia
ORB [68]	1427 - 17i, 1389 - 64i	1419 - 42i	19 - 42i	
HNJH [66,67]	1428 - 17i, 1400 - 76i	1421 - 35i	21 - 35i	
BNW [57,59]	1434 - 18i, 1388 - 49i	1404 - 46i	04 - 46i	
BMN [58]	1421 - 20i, 1440 - 76i	1416 - 27i	16 — 27 <i>i</i>	

- Deviation away from the real axis

Description in the complex energy plane should be improved,

deviation from

original amplitude

Realistic KN potential

New single-channel potential (Kyoto KN potential)

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- Chiral SU(3) at NLO with SIDDHARTA
- Improvement of construction : pole positions in 1 MeV precision

Realistic potential : $\chi^2/d.o.f. \sim 1$

- applied to \overline{K} few-body systems

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017); T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

Note:

- Energy dependence : 10th order polynomial in E
- $\pi\Sigma$, $\pi\Lambda$ are not explicit. Dynamics in few-body system?

Coupled-channel potential

Coupled-channel KN-πΣ potential

K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th]

- Potential strengths are real.
- E-dependence : 1st/2nd order is sufficient.

KN interaction and potential

Structure of $\wedge(1405)$

Compositeness X: quantitative measure of structure ~ norm

High-mass pole	ΧπΣ	X _K N	Z
Coupled channel	-0.04-0.23i	0.95-0.14i	0.08 <mark>-0.3</mark> 7i
Single-channel	_	1.01-0.07i	_
Residue of pole	-0.19-0.22i	1.14+0.01i	0.05+0.21i

- complex because of the unstable nature of $\Lambda(1405)$
- $X_{\overline{K}N}$ is consistent with each other
- Re $X_{\overline{K}N} \sim 1$, Im $X_{\overline{K}N} << 1 \longrightarrow \overline{K}N$ dominance

Summary

- Realistic precision (x²/d.o.f. ~ 1)
- Explicit treatment of πY channels
- Simpler energy dependence
- Compositeness: KN dominance of high-mass pole of A(1405)

K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th]