Exotic hadrons and emergent long range force in QCD

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Introduction

Classification of hadrons

1/0+ ****

1/0+ **** 1+

Observed hadrons

1/0+ **** 1/0+ **** -0

PDG2018 : http://pdg.lbl.gov/

STRANGE

CHARMED, STRANGE

CT GLEO

LIGHT UNFLAVORED

Only color singlet states are observed.-> Color confinement problemFlavor quantum numbers are described by qqq/qq.Why no qqqqq, qqqqq, ... states (exotic hadrons)?-> Exotic hadron problem, as notrivial as confinement!

$ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	* Σ (3000) * Σ (3170) * *** * *** *	$\begin{array}{ccccc} \Sigma_{b} & 1/2^{+} & ***\\ \Sigma_{b}^{+} & 3/2^{+} & ***\\ \Xi_{b}^{0}, \Xi_{b}^{-} & 1/2^{+} & ***\\ \Xi_{b}^{+}(5935)^{-} & 1/2^{+} & ***\\ \Xi_{b}^{+}(5945)^{0} & 3/2^{+} & ***\\ \Xi_{b}^{+}(5955)^{-} & 3/2^{+} & ***\\ \Omega_{b}^{-} & 1/2^{+} & ***\\ \end{array}$	$\begin{array}{c} a_1(540) & 1 & (1^{-1}) \\ f_0(140) & 0^+(2^{-+}) \\ \pi_2(1645) & 0^+(2^{-+}) \\ \omega_1(1560) & 0^-(1^{}) \\ \omega_2(1670) & 0^-(3^{}) \\ \bullet \pi_2(1670) & 1^-(2^{-+}) \end{array}$	$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	$\begin{array}{c} \bullet_{01}(1^{\prime\prime}) & \circ_{1}^{\prime}(1^{\prime}-) \\ \bullet_{bb}(1^{\prime}P) & \circ^{\dagger}(2^{\prime}+) \\ \bullet_{bb}(2^{\prime}P) & \circ^{\dagger}(2^{\prime}+) \\ \bullet_{bb}(2^{\prime}S) & \circ^{\dagger}(0^{\prime}-) \\ \bullet^{\prime}(2^{\prime}S) & \circ^{\prime}(0^{\prime}-) \\ \bullet^{\prime}(1^{\prime}D) & \circ^{\prime}(2^{\prime}-) \\ \bullet^{\prime}(1^{\prime}D) & \circ^{\prime}(0^{\prime}+) \\ \bullet_{bb}(2^{\prime}P) & \circ^{\dagger}(1^{\prime}+) \\ \bullet_{bb}(2^{\prime}P) & \circ^{\prime}(2^{\prime}+) \\ \bullet^{\prime}(1^{\prime}S) & \circ^{\prime}(2^{\prime}-) \\ \bullet^{\prime}(3^{\prime}S) & \circ^{\prime}(1^{\prime}-) \\ \bullet^{\prime}(3^{\prime}S) & \circ^{\prime}(1^{\prime}-) \\ \bullet^{\prime}(3^{\prime}S) & \circ^{\prime}(1^{\prime}-) \\ \bullet^{\prime}(3^{\prime}S) & \circ^{\prime}(1^{\prime}-) \end{array}$
$\begin{array}{cccc} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & $	~ 150 bar	yons	~ 210 me	sons	$\begin{array}{c} X(10610)^{\pm} \ 1^{+}(1^{+}) \\ X(10610)^{0} \ 1^{+}(1^{+}) \\ X(10650)^{\pm} \ ?^{+}(1^{+}) \\ \bullet \ \Upsilon(10860) \ 0^{-}(1^{-}) \\ \bullet \ \Upsilon(11020) \ 0^{-}(1^{-}) \end{array}$

All ~ 360 hadrons emerge from single QCD Lagrangian.

V

Long range force in QCD?

Two-body potential

$$(r) \propto rac{1}{r}$$
 : long (infinite) range

$$V(r) \propto \frac{e^{-mr}}{r}$$
 : finite (~1/m) range

Hadron-hadron interaction is considered to be finite range.

- Longest interaction range
 - < exchange of lightest particle (π) ~ 1 fm
- Absence of the long range force is the basis for the (standard) scattering theory, Lüscher/HAL method, etc.

There can be (quasi) long range force beyond 1 fm.

M. Sanchez Sanchez, L.S. Geng, J. Lu, T. Hyodo, M.P. Valderrama, arXiv:1707.038202 [hep-ph]

NN potential

Low energy NN **interaction :** π **exchange**

- Static approx. $p^{\mu} = (M_N, p), \quad p'^{\mu} = (M_N, p'), \quad q^{\mu} = p'^{\mu} p^{\mu} = (0, q)$
- Coupling $g\bar{N}i\gamma_5\pi N \sim g\chi^{\dagger}\sigma \cdot q\chi$ (isospin ignored)

NN* potential (exchange)

 $N^*(k)$

N(p)

Mass difference = energy transfer

 $N^*(k')$

N(p')

 $\pi(q)$

 $\Delta = M_{N^*} - M_N$

- Static approx. $p^{\mu} = (M_N, p), \quad p'^{\mu} = (M_{N^*}, p'), \quad q^{\mu} = (\Delta, q)$
- Coupling $\tilde{g} \ \bar{N}^* \pi N + \text{h.c.} \sim \tilde{g} \ \chi^\dagger \mathbf{1} \chi$

Potential (P_o: spin exchange factor) $\mu = \sqrt{m_{\pi}^2 - \Delta^2}$ $V(r) \sim \text{F.T.} \left\{ \tilde{g}^2 \frac{1}{\Delta^2 - q^2 - m_{\pi}^2} \right\} P_{\sigma} = \text{F.T.} \left\{ \tilde{g}^2 \frac{-1}{q^2 + \mu^2} \right\} P_{\sigma} \sim \tilde{g}^2 P_{\sigma} \frac{e^{-\mu r}}{r}$

- Sign of V(r) is fixed and attractive (c.f. σ exchange in NN)
- Effective mass $\mu=0$ —> long range force (Coulomb like)

Unitary limit and zero-energy resonance

What does $\mu = (m_{\pi^2} - \Delta^2)^{1/2} = 0 <=> \Delta = m_{\pi}$ mean?

- $\Delta = m_{\pi}$: N* lies on top of the πN threshold

s-wave resonance at threshold : unitary limit of πN system

- Scattering length diverges —> universal physics

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

- completely composite : w.f. of N*spreads to infinity.

T. Hyodo, Phys. Rev. C 90, 055208 (2014)

Origin of the long range force

Origin of the long range force

Realization in physical hadron systems

- No system with exact μ =0 (N*: Δ ~595 MeV / m_{π}~140 MeV)
- Is there any system with small μ ? (c.f. $\overline{K}NN \sim \Lambda^*N$)

T. Uchino, T. Hyodo, M. Oka, Nucl. Phys. A, 868-869, 53 (2011)

Doubly charmed exotic meson molecule

Doubly charmed exotic meson

We consider $D_{s0}(c\bar{s}, 0^+)D(c\bar{q}, 0^-)$ system via K exchange

- Charm C=2: manifestly exotic (ccqs)

- K exchange gives quasi-long range (μ ~200 MeV) attraction

Can the attraction generate a bound state?

Doubly charmed exotic meson molecule

Prediction of binding energy

- Effective Lagrangian for $D_{s0}DK$ (and HQ partner) coupling $\mathcal{L} = \frac{h}{2} \operatorname{Tr}[\bar{H}_a S_b A_{ab} \gamma_5] + C.C.$
 - coupling constant h : $D_0 \rightarrow D\pi$ decay + SU(3) symmetry
 - Short range cutoff R_c < hadron size

- $R_c \sim 0.5$ fm —> ~ 6 MeV binding

Summary

Long range force among hadrons emerges when the mass difference \triangle matches with the mass of the exchange particle m.

$$V(r) \sim \frac{e^{-\mu r}}{r}, \quad \mu = \sqrt{m^2 - \Delta^2}$$

K exchange in $D_{s0}(0^+)D(0^-)$ system: $\mu \sim 200$ MeV -> prediction of exotic charmed tetraquark

M. Sanchez Sanchez, L.S. Geng, J. Lu, T. Hyodo, M.P. Valderrama, arXiv:1707.038202 [hep-ph]