Kaonic deuterium from realistic antikaon-nucleon interaction

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

KN interaction and potential

- Analysis with chiral SU(3) dynamics

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

- Realistic KN potentials

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

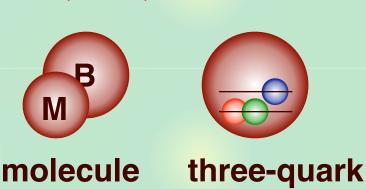
K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th]

Application to kaonic deuterium

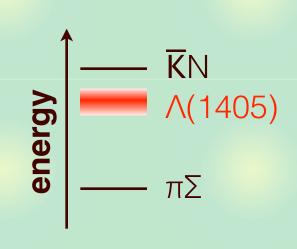
- Prediction of shift and width
- Sensitivity to |=1 component

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

\overline{K} meson and $\overline{K}N$ interaction

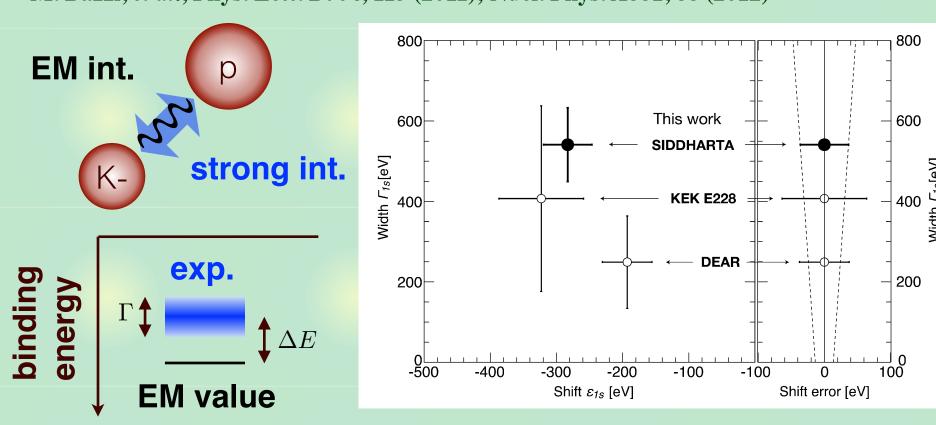

Two aspects of $K(\overline{K})$ meson

- NG boson of chiral SU(3)_R ⊗ SU(3)_L -> SU(3)_V
- Massive by strange quark: mk ~ 496 MeV
 - -> Spontaneous/explicit symmetry breaking


KN interaction ...

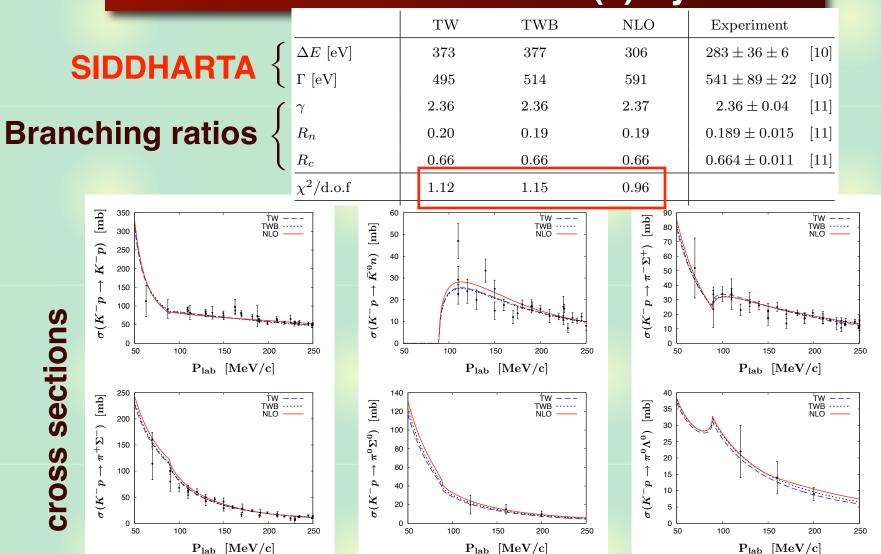
T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is coupled with $\pi\Sigma$ channel
- generates \wedge (1405) below threshold


- is fundamental building block for \overline{K} -nuclei, \overline{K} -atoms, ...

SIDDHARTA measurement

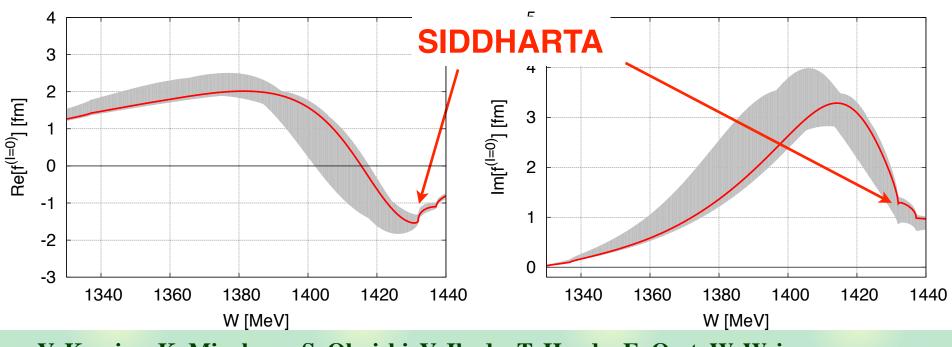
Precise measurement of the kaonic hydrogen X-rays


M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

- Shift and width of atomic state <-> K-p scattering length U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Quantitative constraint on the $\overline{K}N$ interaction at fixed energy $_4$

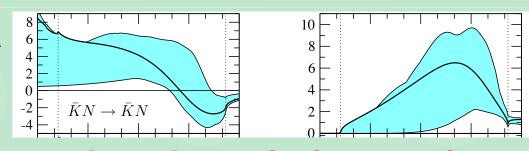
Best-fit results of chiral SU(3) dynamics



Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Accurate description of all existing data ($\chi^2/d.o.f. \sim 1$)

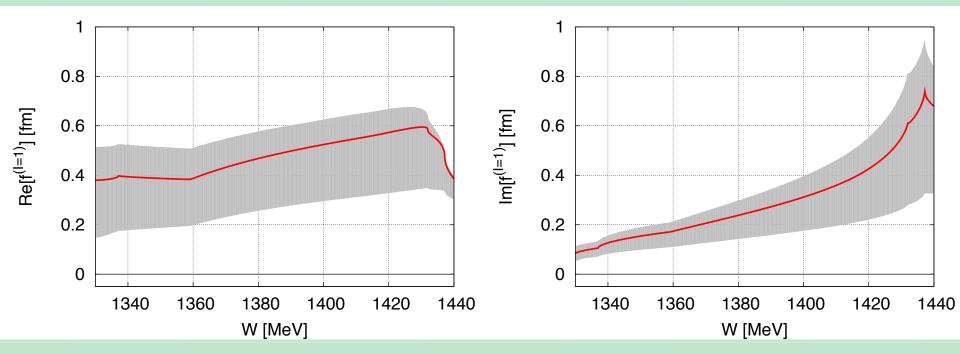
Subthreshold extrapolation


Uncertainty of $\overline{K}N \longrightarrow \overline{K}N$ (I=0) amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A954, 41 (2016)

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)



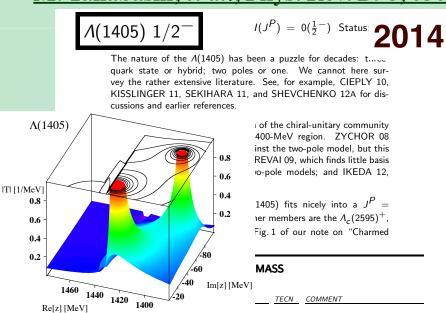
Accurate data is essential to reduce theoretical uncertainty.

Remaining ambiguity

 $\overline{K}N$ interaction has two isospin components (l=0, l=1).

$$a(K^-p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^-n) = a(I=1) + \dots$$

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A954, 41(2016)


Relatively large uncertainty in |=1 sector

- More constraints required (< - kaonic deuterium?)

PDG changes

PDG particle listing of Λ (1405)

M. Tanabashi, et al., Phys. Rev. D98, 030001 (2018), http://pdg.lbl.gov/

105. Pole Structure of the $\Lambda(1405)$ Region

Written November 2015 by Ulf-G. Meißner (Bonn Univ. / FZ Jülich) and Tetsuo Hyodo (YITP, Kyoto Univ.).

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S=-1 and isospin I=0. It is the archetype of what is called a dynamically generated resonance, as pioneered by Dalitz and Tuan [1]. The most powerful and

$\Lambda(1405) \ 1/2^-$

$$I(J^P) = O(\frac{1}{2}^{-})$$
 2018

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the $N-\overline{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\overline{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^P=1/2^-$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^P=1/2^-$ spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \to K^+ \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) $\to \Sigma^+$ (polarized) π^- . The observed isotropic decay of $\Lambda(1405)$ is consistent with spin J=1/2. The polarization transfer to the Σ^+ (polarized) direction revealed negative parity, and thus established $J^P=1/2^-$.

See the related review(s):

Pole Structure of the $\Lambda(1405)$ Region

Λ (1405) REGION POLE POSITIONS

REAL PART VALUE (MeV)	DOCUMENT IE)	TECN	
• • • We do not use the	he following data for averag	es, fits,	limits, etc.	• • •
1429 ⁺ 8 - 7	¹ MAI	15	DPWA	
1325^{+15}_{-15}	² MAI	15	DPWA	
1434 + 2	³ MAI	15	DPWA	
1330 + 4 5	⁴ MAI	15	DPWA	
1421^{+}_{-} $^{3}_{2}$	⁵ GUO	13	DPWA	
1388± 9	⁶ GUO	13	DPWA	
1424 ⁺ 7 -23	⁷ IKEDA	12	DPWA	
1381+18	⁸ IKEDA	12	DPWA	

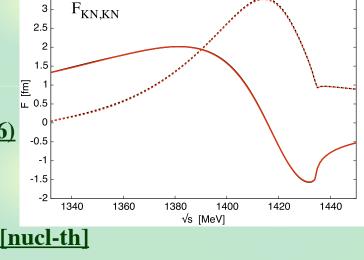
- Our analysis (+ 2 other groups) included
- Pole positions are now tabulated, prior to mass/width.

Construction of KN potential

Accurate scattering amplitude is now available.

- local KN potential in Schrödinger eq.
- -> device to be used in few-body calculations

Construction of equivalent potential

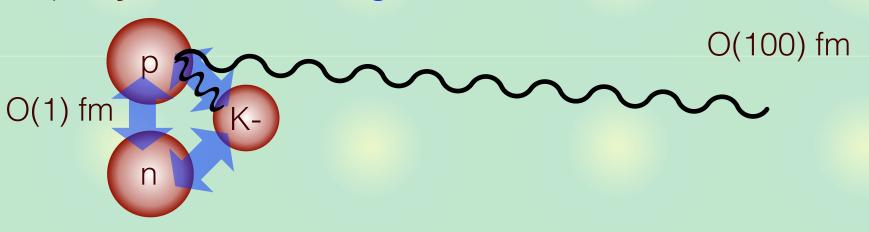

- single-channel KN potential

K. Miyahara. T. Hyodo, Phys. Rev. C93, 015201 (2016)

- coupled-channel KN-πΣ potential

K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th]

- original (black) v.s. potential (red)



These potentials accurately reproduces data (x²/d.o.f. ~ 1)

−> realistic KN potential

Kaonic deuterium: background

K-pn system with strong + Coulomb interaction

- Experiments are planned at J-PARC E57, SIDDHARTA-2

Theoretical requirements:

- Rigorous three-body treatment of strong + Coulomb
- Inclusion of SIDDHARTRA constraint (realistic KN)
- c.f. advanced Faddeev calculations
 - P. Doleschall, J. Revai, N.V. Shevchenko, Phys. Lett. B 744, 105 (2015);
 - J. Revai, Phys. Rev. C 94, 054001 (2016)

Check of kaonic hydrogen

Kaonic hydrogen (K-p) in the present setup?

- Deser-type formula is based on (systematic) expansion.
- $\overline{K}N$ potential is formulated with isospin symmetry.

Two-body calculation with physical masses

$$\begin{pmatrix} \hat{T} + \hat{V}^{\bar{K}N} + \hat{V}^{EM} & \hat{V}^{\bar{K}N} \\ \hat{V}^{\bar{K}N} & \hat{T} + \hat{V}^{\bar{K}N} + \Delta m \end{pmatrix} \begin{pmatrix} |K^{-}p\rangle \\ |\bar{K}^{0}n\rangle \end{pmatrix} = E \begin{pmatrix} |K^{-}p\rangle \\ |\bar{K}^{0}n\rangle \end{pmatrix}$$

Result:

- consistent with SIDDHARTA constraint
- Ressumed Deser-type formula works reasonably for K-p.

Mass	E dependence	$\Delta E \text{ (eV)}$	Γ (eV)
Physical	Self-consistent	283	607
Isospin	Self-consistent	163	574
Physical	$E_{\bar{K}N} = 0$	283	607
Expt. [31,32]		$283 \pm 36 \pm 6$	$541 \pm 89 \pm 22$

	$\Delta E \text{ (eV)}$	Γ (eV)
Full Schrödinger equation	283	607
Improved Deser formula (18)	293	596
Resummed formula (19)	284	605

Formulation

Three-body calculation of K-d with physical masses

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)

$$\begin{pmatrix} \hat{H}_{K^-pn} & \hat{V}_{12}^{\bar{K}N} + \hat{V}_{13}^{\bar{K}N} \\ \hat{V}_{12}^{\bar{K}N} + \hat{V}_{13}^{\bar{K}N} & \hat{H}_{\bar{K}^0nn} \end{pmatrix} \begin{pmatrix} |K^-pn\rangle \\ |\bar{K}^0nn\rangle \end{pmatrix} = E \begin{pmatrix} |K^-pn\rangle \\ |\bar{K}^0nn\rangle \end{pmatrix}$$

$$\hat{H}_{K^-pn} = \sum_{i=1}^{3} \hat{T}_i - \hat{T}_{cm} + \hat{V}_{23}^{NN} + \sum_{i=2}^{3} (\hat{V}_{1i}^{\bar{K}N} + \hat{V}_{1i}^{EM})$$
 Coulomb

$$\hat{H}_{ar{K}^0nn} = \sum_{i=1}^3 \hat{T}_i - \hat{T}_{\mathrm{cm}} + \hat{V}_{23}^{NN} + \sum_{i=2}^3 \hat{V}_{1i}^{ar{K}N} + \underline{\Delta M}$$
 threshold difference

- (single-channel) realistic KN potential

K. Miyahara. T. Hyodo, Phys. Rev. C93, 015201 (2016)

Few-body technique

- stochastic variational method + correlated gaussian basis

Y. Suzuki, K. Varga, Lect. Notes Phys. M54, (1998)

Kaonic deuterium: shift and width

Results of the three-body calculation

- energy convergence
- <- large number of basis</pre>

N	Re[E] (MeV)
1677	-2.211689436
2194	-2.211722964
2377	-2.211732072
2511	-2.211735493
2621	-2.211737242
2721	-2.211737609
2806	-2.211737677
2879	-2.211737682
	*

Shift-width of the 1S state:

$$\Delta E - i\Gamma/2 = (670 - i508) \text{ eV}$$

- No shift in 2P state is shown by explicit calculation.
- Deser-type formula does not work accurately for K-d

c.f.) J. Revai, Phys. Rev. C 94, 054001 (2016)

	$\Delta E \text{ (eV)}$	Γ (eV)
Full Schrödinger equation	670	1016
Improved Deser formula (18)	910	989
Resummed formula (19)	818	1188

l=1 dependence

Study sensitivity to |=1 interaction

- introduce parameter β to control the potential strength

Re
$$\hat{V}^{\bar{K}N(I=1)}(r) \to \beta [\text{Re } \hat{V}^{\bar{K}N(I=1)}(r)]$$

Vary β within SIDDHARTA uncertainty of K-p

- allowed region: $-0.17 < \beta < 1.08$ (negative β may contradict with scattering data)

β	K	- p	K	$\overline{}$
	ΔE	Γ	$\overline{\Delta E}$	Γ
1.08	287	648	676	1020
1.00	283	607	670	1016
-0.17	310	430	506	980

- deviation of △E of K-d ~ 170 eV
- Planned precision: 60 eV (30 eV) at J-PARC (SIDDHARTA-2)

Measurement of K-d will provide strong constraint on l=1

Summary: ∧(1405)

Realistic KN potentials (χ^2 /d.o.f. ~ 1) based on NLO chiral SU(3) dynamics are now available, thanks to precise kaonic hydrogen data.

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

K. Miyahara, T. Hyodo, W. Weise, arXiv:1804.08269 [nucl-th]

We study kaonic dueterium as

- Prediction of shift and width

$$\Delta E - i\Gamma/2 = (670 - i508) \text{ eV}$$

- sensitive to |=1 component

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)