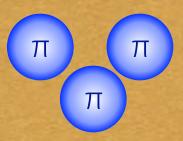
Efimov physics of hadrons

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents


Contents

Introduction

- Universal physics in few-body systems
- Tuning hadron interactions by quark mass

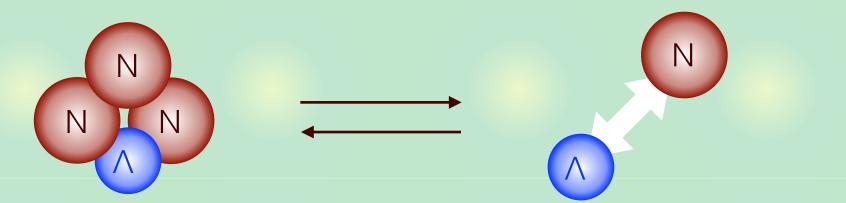
Three-pion systems

<u>T. Hyodo, T. Hatsuda, Y. Nishida,</u> <u>Phys. Rev. C89, 032201(R) (2014)</u>

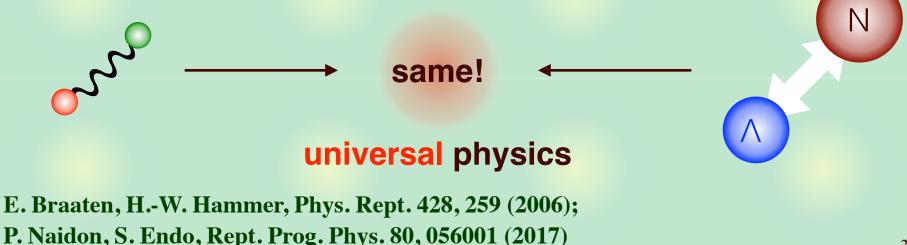
n

n

 D^0


Two neutrons with a flavored meson (K-/D⁰)

U. Raha, Y. Kamiya, S.-I. Ando, T. Hyodo, arXiv:1708.03369 [nucl-th]

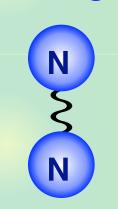


Study of few-body systems

- **Properties of few-body systems <--> two-body interaction**
- c.f. hypernuclei

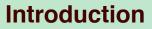
In some cases, different interactions give the same physics.

Two-body universal physics


- **Universal two-body physics: unitary limit**
 - 1) s-wave short range interaction
 - **2)** scattering length : $|a| \gg r_s$: interaction range
 - system is scale invariant
 - a shallow bound state exists if a > 0

$$B_2 = \frac{1}{ma^2} \left[1 + \mathcal{O}\left(\frac{r_s}{a}\right) \right]$$

Examples: nucleons and ⁴He atoms


	N [MeV]	⁴ He [mK]
B ₂	2.22	1.31
1/ma ²	1.41	1.12

strong

⁴He

vdW

Three-body universal physics

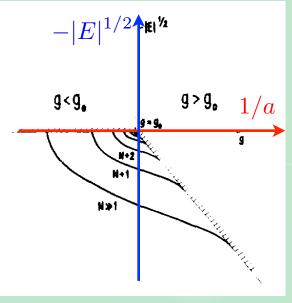
Three-body system in hyperspherical coordinates

 $(\boldsymbol{r}_{12}, \boldsymbol{r}_{3,12}) \leftrightarrow (R, \alpha_3, \hat{\boldsymbol{r}}_{12}, \hat{\boldsymbol{r}}_{3,12})$

hyperradius hyperangular variables Ω (dimensionless)

If $|a| \longrightarrow \infty$, system is scale invariant.

 $V(R,\Omega) \propto rac{1}{R^2}$

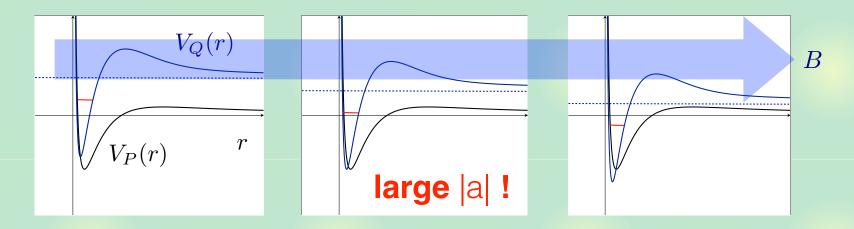

Efimov effect: attractive 1/R²

V. Efimov, Phys. Lett. B 33, 563 (1970)

 $B_3^n/B_3^{n+1} \approx 22.7^2$

- infinitely many bound states
- discrete scale invariance: RG limit cycle

P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999)


 $r_{3,12}$

 r_{12}

Tuning two-body interactions

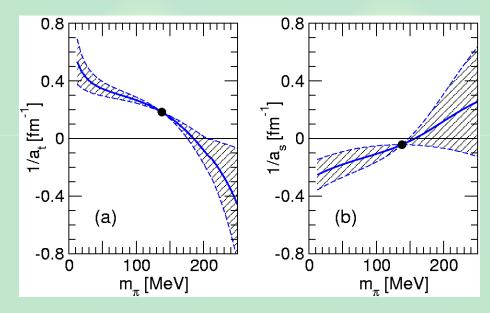
Large |a| is achieved by tuning two-body interaction

- Atomic physics: Feshbach resonance

In hadron physics, interactions are basically fixed.

- quark mass term in QCD: external scalar field

$$\mathcal{L}_{\rm QCD} = \mathcal{L}_{\rm QCD}^{(0)} - m\bar{q}q$$


- variation of quark mass -> tuning hadron interaction?

Tuning two-hadron interactions

Nuclear force @ unphysical quark masses

- Nuclear forces can reach unitary limit by m_{ud} (m_{π}) f

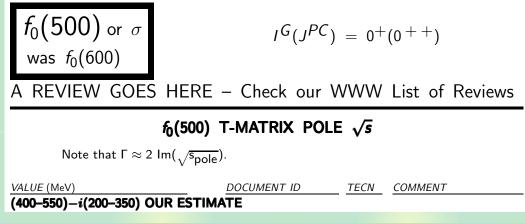
E. Braaten, H.-W. Hammer, Phys. Rev. Lett. 91, 102002 (2003)

- predictable by chiral EFT for small mud
- calculable by lattice QCD for large mud

c.f.) N. Barnea, L. Contessi, D. Gazit, F. Pederiva, U. van Kolck, Phys. Rev. Lett. 114, 052501 (2015)

Two-pion interaction

ππ scattering length <-- chiral low energy theorem

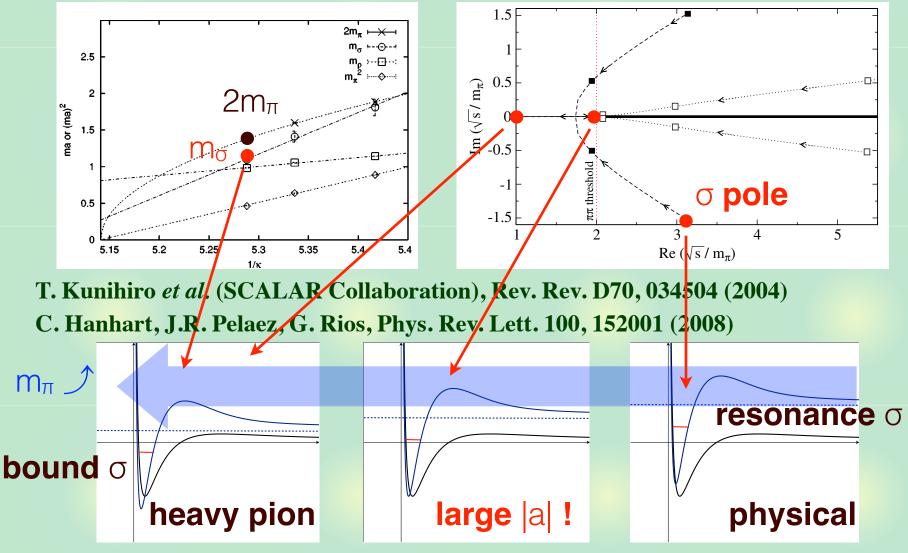

S. Weinberg, Phys. Rev. Lett. 17, 616-621 (1966)

$$a^{I=0} \propto -\frac{7}{4} \frac{m_{\pi}}{f_{\pi}^2}, \quad a^{I=2} \propto \frac{1}{2} \frac{m_{\pi}}{f_{\pi}^2}$$

- $m_{\pi} \sim (m_{ud})^{1/2} \sim explicit breaking of chiral symmetry$

Physical $\pi\pi$ (I=0) is unbound but has a resonance " σ "

(resonance: unstable eigenstate above threshold)



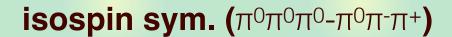
Low energy theorem is valid only for small m_{ud} How about large m_{ud}? —> lattice QCD

Three-pion systems

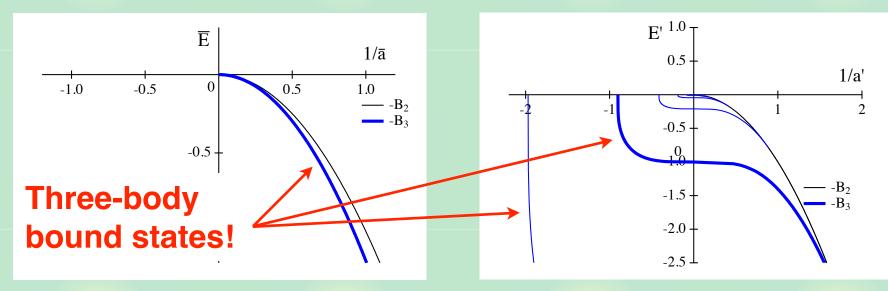
Increasing ud quark mass

Lattice QCD/chiral EFT can tune the nn interaction

 $\pi\pi$ scattering can reach unitary limit by increasing mud


Three-pion systems

Universal physics of three pions


Universal physics of $\pi\pi\pi\pi$ with large $\pi\pi(I=0)$ scattering length

T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014)

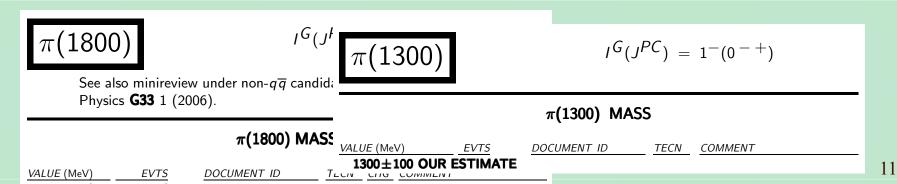
- Let I=0 $\pi\pi$ scattering length large by changing m_q

isospin breaking (π⁰π⁰π⁰)

- Universal physics of pions @ unphysical mud
- Coupled-channel effect reduces the attraction.

Implication for real world

Universality -> a πππ **bound state @ heavy** mud


- Heavy mud is continuously connected to physical point.
- Existence of a pole (eigenstate) is stable against the continuous change of parameters (such as mud).

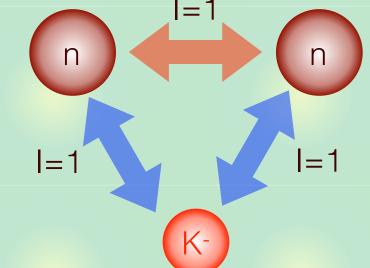
Y. Kamiya, T. Hyodo, arXiv:1711.04558 [hep-ph]

$$\frac{1}{2\pi} \oint_C dz \frac{d \arg \mathcal{F}(z)}{dz} = (\# \text{ of zeros}) - (\# \text{ of poles})$$

-> πππ state may exist as a resonance at physical point.

Possible candidates ~ I=1, J=0 state : excited state of π ?

Two neutrons and one flavored meson


Flavored meson: K- (su, strangeness), D⁰ (cu, charm)

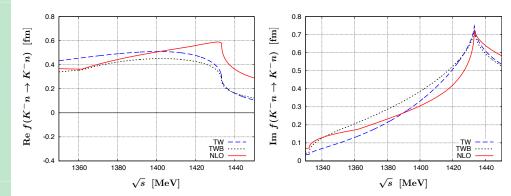
K-nn/D⁰nn **system with** J=0, I=3/2, I_3 =-3/2

- different from J=0, I=1/2 (so-called K-pp-Konp)
- all interactions: isospin I=1 (no $\wedge(1405)$)

- no coupled channels
- no Coulomb interaction
- $|a_{nn}| \sim 20 \text{ fm} \gg r_s \sim O(1) \text{ fm}$

Two-body meson-neutron scattering length?

Meson-neutron interaction


K-n system: KN scattering data

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881, 98 (2012)

- data fitted as χ^2 /d.o.f. ~ 1

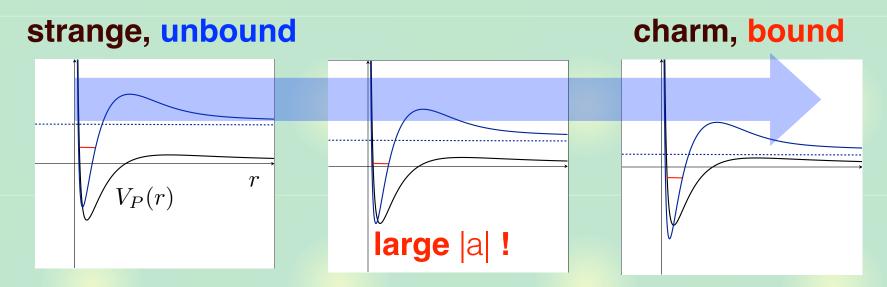
 $a_{0,K^-n} = -0.57^{+0.21}_{-0.04} - i0.72^{+0.41}_{-0.26} \text{ fm}$ decay

—> Strangeness sector is unbound

Don system: identify $\Sigma_c(2800)$ as a JP=1/2- state

$$\sum_{c} (2800)$$

$$I(J^{P}) = 1(?^{?}) \quad \text{Status:} \quad * * *$$
Seen in the $\Lambda_{c}^{+} \pi^{+}$, $\Lambda_{c}^{+} \pi^{0}$, and $\Lambda_{c}^{+} \pi^{-}$ mass spectra.
$$\Sigma_{c} (2800) \text{ MASSES}$$


- Don threshold ~ 2804 MeV
- -> Charm sector has a shallow quasi-bound state

Idealization

Zero coupling limit (ZCL)

- coupling to decay channels are switched off
- $a_{K-n} < 0$ (attractive), $a_{D0n} > 0$ (repulsive, with bound state)

Varying m_s —> m_c

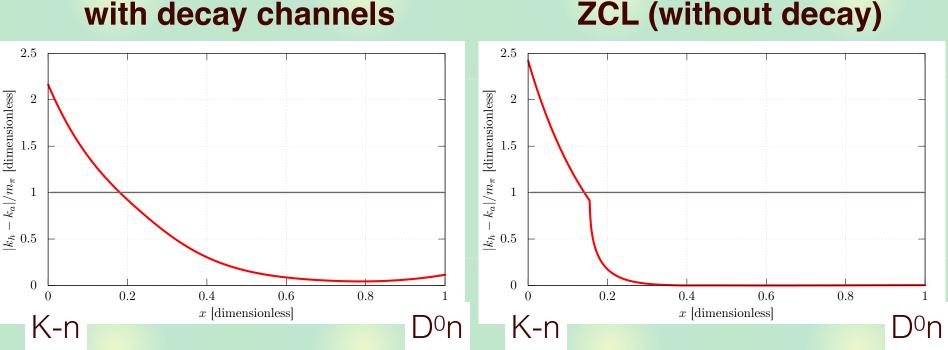
Unitary limit: tuning $m_{\mbox{s/c}}$ in ZCL

Model extrapolation

Contact interaction model with extrapolation parameter ×

U. Raha, Y. Kamiya, S.-I. Ando, T. Hyodo, arXiv:1708.03369 [nucl-th]

- x=0 : K-n, x=1 : D⁰n


with decay channelsZCL (without decay)1 $Re a_0$ 0.50.60.50.60.50.60.510.5

- -0.4-2.5-0.6-0.8-30.20.20.80.40.60.80 0.4x [dimensionless] x [dimensionless] K-n D⁰n D⁰n K-n
 - In ZCL, unitary limit at $m_K = 1337$ MeV (x~0.6)
 - With decay channel, remnant is not very clear.

Two-body universality

Check of universality: |k_h-k_a|/m_π

- full eigenmomentum: $k_h = \sqrt{2\mu E_h}$
- universality prediction: $k_a = \frac{i}{a} \left[1 + \mathcal{O}\left(\frac{r_s}{a}\right) \right], \quad r_s \sim 1/m_{\pi}$

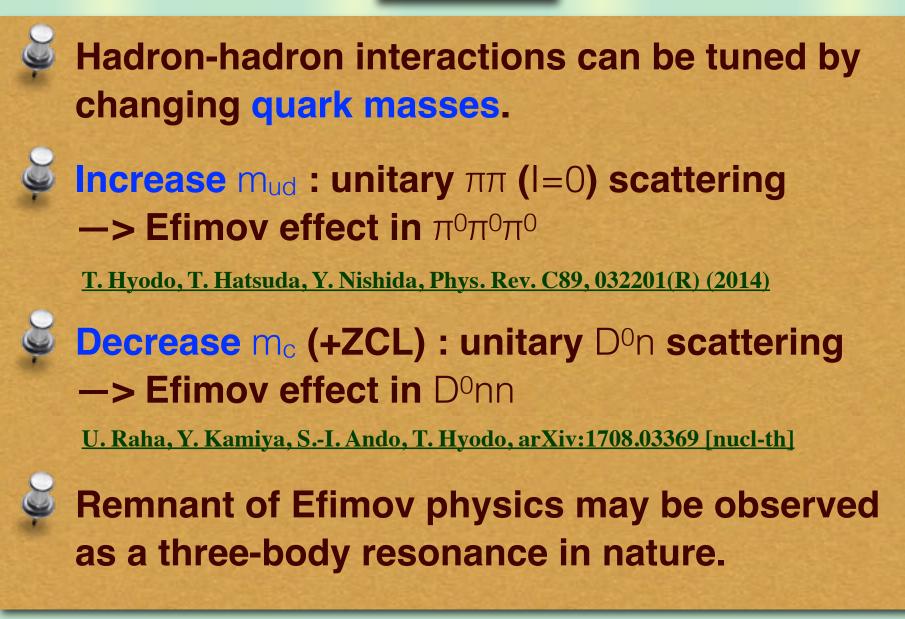
Universality governs the system near Don even with decay

ZCL (without decay)

Three-body system

Three-body equations for K-nn/Donn system

Asymptotic behavior of K-nn/D^onn system at unitary limit:


-
$$a_{s(nn)} \longrightarrow \infty$$
 and $a_{d(nK)} \longrightarrow \infty$
 $1 = C_1 \frac{2\pi}{s} \frac{\sin[s \arcsin(a/2)]}{\cos(\pi s/2)} + C_2 \frac{4\pi^2}{s^2} \frac{\sin^2[s \arccos(\sqrt{4b-1})]}{\cos^2(\pi s/2)} \implies s_0 = 1.01156$

- $a_{s(nn)}$ fixed and $a_{d(nK)} \longrightarrow \infty$ $1 = C_1 \frac{2\pi}{s} \frac{\sin[s \arcsin(a/2)]}{\cos(\pi s/2)} \implies s_0 = 0.327675$
- RG limit cycle in the asymptotic expressions: Efimov effect

Implication for real world:

-> Donn state may exist as a resonance at physical point.

Summary

