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KN̅ interaction in chiral SU(3) dynamics

Realistic KN̅ potentials
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K ̅meson and KN̅ interaction
KN̅ interaction in chiral SU(3) dynamics

Two aspects of K(K)̅ meson
- NG boson of chiral SU(3)R ⊗ SU(3)L —> SU(3)V

—> Spontaneous/explicit symmetry breaking

- is coupled with πΣ channel
- generates Λ(1405) below threshold

KN̅ interaction ...
T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is fundamental building block for K-̅nuclei, K ̅in medium, ...
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SIDDHARTA measurement 
KN̅ interaction in chiral SU(3) dynamics

Precise measurement of the kaonic hydrogen X-rays
M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

- Shift and width of atomic state <—> K-p scattering length
U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Quantitative constraint on the KN̅ interaction at fixed energy
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SIDDHARTA Collaboration / Nuclear Physics A 881 (2012) 88–97 95

Fig. 7. Comparison of the present result for the strong-interaction 1s-energy-level shift and width of kaonic hydrogen
with the two experimental results: KEK-PS E228 (1997) [14] and DEAR (2005) [15]. The error bars correspond to
quadratically added statistical and systematic errors. The right panel shows the error in the energy shift as a function of
the width (vertical axis) for each experiment. The dashed lines represent the SIDDHARTA precision calculated assuming
the same statistics but with differing width.

both the background X-ray lines and a continuous background; (a) shows the residuals of the
measured kaonic-hydrogen X-ray spectrum after subtraction of the fitted background, clearly
displaying the kaonic-hydrogen K-series transitions.

As a result, the 1s-level shift ϵ1s and width Γ1s of kaonic hydrogen were determined by
SIDDHARTA to be

ϵ1s = −283 ± 36(stat) ± 6(syst) eV and

Γ1s = 541 ± 89(stat) ± 22(syst) eV,

respectively, where the first error is statistical and the second is systematic. The quoted systematic
error is a quadratic summation of the following contributions: the SDD gain shift, the SDD re-
sponse function, the ADC linearity, the low-energy tail of the kaonic-hydrogen higher transitions,
the energy resolution, and the procedural dependence shown by an independent analysis [31].

4. Conclusion

We have determined the strong-interaction energy-level shift and width of the kaonic-
hydrogen atom 1s state with the best accuracy up to now [31]. The obtained shift and width
are plotted in Fig. 7 along with the other two recent results [14,15]. It should be noted that the
smaller the width, the better the accuracy of determining the energy. The right panel of Fig. 7
shows the errors on the energy shift as a function of the width (vertical axis) for each exper-
iment, together with guide lines representing SIDDHARTA precision calculated assuming the
same statistics but with differing width. In comparison with the DEAR result, the accuracy of
determining the energy in SIDDHARTA is obviously improved.
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Strategy for KN̅ interaction
KN̅ interaction in chiral SU(3) dynamics

Above the KN̅ threshold: direct constraints

- K-p total cross sections (old data)

Below the KN̅ threshold: indirect constraints

- πΣ mass spectra (new data: LEPS, CLAS, HADES,…)

- KN̅ threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

KN̅

πΣ
energy

Λ(1405)
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Construction of the realistic amplitude
KN̅ interaction in chiral SU(3) dynamics

Chiral coupled-channel approach with systematic χ2 fitting

= +

TW model

Chiral perturbation theory

TWB model NLO model

T V TV

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012)

O(p2)O(p)

O(p)

2) Born terms1) TW term 3) NLO terms

7 LECs6 cutoffs



TW TWB NLO Experiment

�E [eV] 373 377 306 283± 36± 6 [10]

� [eV] 495 514 591 541± 89± 22 [10]

� 2.36 2.36 2.37 2.36± 0.04 [11]

Rn 0.20 0.19 0.19 0.189± 0.015 [11]

Rc 0.66 0.66 0.66 0.664± 0.011 [11]

�2/d.o.f 1.12 1.15 0.96

pole positions 1422� 16i 1421� 17i 1424� 26i

[MeV] 1384� 90i 1385� 105i 1381� 81i

Table 1
Results of the systematic �2 analysis using leading order (TW) plus Born terms (TWB) and full NLO
schemes. Shown are the energy shift and width of the 1s state of the kaonic hydrogen (�E and �),
threshold branching ratios (�, Rn and Rc), �2/d.o.f of the fit, and the pole positions of the isospin I = 0
amplitude in the K̄N -⇡⌃ region.

the subtraction constants ai in Eq. (7), especially those in the ⇡⇤ and ⌘⌃ channels,
exceed their expected “natural” values ⇠ 10�2 by more than an order of magnitude [14].
This clearly indicates the necessity of including higher order terms in the interaction
kernel Vij . It also emphasizes the important role of the accurate kaonic hydrogen data in
providing sensitive constraints.

The additional inclusion of direct and crossed meson-baryon Born terms does not
change �E and �2/d.o.f. in any significant way. It nonetheless improves the situation
considerably since the subtraction constants ai now come down to their expected “nat-
ural” sizes.

The best fit (with �2/d.o.f. = 0.96) is achieved when incorporating NLO terms in the
calculations. The inputs used are: the decay constants f⇡ = 92.4 MeV, fK = 110.0 MeV,
f⌘ = 118.8 MeV, and axial vector couplings D = 0.80, F = 0.46 (i.e. gA = D+F = 1.26);
subtraction constants at a renormalization scale µ = 1 GeV (all in units of 10�3): a1 =
a2 = �2.38, a3 = �16.57, a4 = a5 = a6 = 4.35, a7 = �0.01, a8 = 1.90, a9 = a10 =
15.83; and NLO parameters (in units of 10�1 GeV�1): b̄0 = �0.48, b̄D = 0.05, b̄F =
0.40, d1 = 0.86, d2 = �1.06, d3 = 0.92, d4 = 0.64. Within the set of altogether
“natural”-sized constants ai the relative importance of the K⌅ channels involving double-
strangeness exchange is worth mentioning.

As seen in Table 1, the results are in excellent agreement with threshold data. The
same input reproduces the whole set of K�p cross section measurements as shown in
Fig. 2 (Coulomb interaction e↵ects are included in the diagonal K�p ! K�p channel
as in Ref. [6]). A systematic uncertainty analysis has been performed by varying the
parameters obtained from �2 fits within the range permitted by the uncertainty measures
of the kaonic hydrogen experimental data. Since the shift and width of kaonic hydrogen
are rather insensitive to the I = 1 scattering amplitudes, the total cross section of
K�p ! ⇡0⇤ reaction is also used for the uncertainty analysis. We find that all cross
sections are well reproduced with the constraint from the kaonic hydrogen measurement
as shown by the shaded areas in Fig. 2. A detailed description of this analysis will be
given in a longer forthcoming paper [15].

Equipped with the best fit to the observables at K�p threshold and above, an opti-
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Best-fit results
KN̅ interaction in chiral SU(3) dynamics

K-hydrogen and cross sections are consistent (c.f. DEAR).
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Comparison with SIDDHARTA
KN̅ interaction in chiral SU(3) dynamics

TW and TWB are reasonable, while best-fit requires NLO.
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Subthreshold extrapolation
KN̅ interaction in chiral SU(3) dynamics

SIDDHARTA is essential for subthreshold extrapolation.

Uncertainty of KN̅ —> KN̅ (I=0) amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, 
Nucl. Phys. A954, 41 (2016)
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Figure 5.13: Real (left panel) and imaginary part (right panel) of the I = 0 K̄N and
πΣ amplitudes in the full approach. The best fit is represented by the solid lines while
the bands comprise all fits in the 1σ region. The πΣ and K̄N thresholds are indicated
by the dotted vertical lines.

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA
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Extrapolation to complex energy: two poles
KN̅ interaction in chiral SU(3) dynamics

J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001);
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003);
T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

Two poles: superposition of two states

- Higher energy pole at 1420 MeV, not at 1405 MeV

!"##!"$#!""#!"%#
&$#
&"#
&%#
&'##($

#("

#(%

#('
#($

#("

#(%

#('

�!"#$%&

!"#$%&#'"(%

)*#$%&#'"(%

+,+&#-.'"(%

- Attractions of WT in 1 and 8 (KN̅ and πΣ) channels

NLO analysis confirms the two-pole structure.
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PDG changes
KN̅ interaction in chiral SU(3) dynamics

PDG particle listing
C. Patrignani, et al., Chin. Phys. C40, 100001 (2016), http://pdg.lbl.gov/Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

Λ(1405) 1/2− I (JP ) = 0(1
2
−) Status: ∗∗∗∗

In the 1998 Note on the Λ(1405) in PDG 98, R.H. Dalitz discussed
the S-shaped cusp behavior of the intensity at the N-K threshold ob-
served in THOMAS 73 and HEMINGWAY 85. He commented that
this behavior ”is characteristic of S-wave coupling; the other below
threshold hyperon, the Σ (1385), has no such threshold distortion
because its N-K coupling is P-wave. For Λ(1405) this asymmetry is

the sole direct evidence that JP = 1/2−.”

A recent measurement by the CLAS collaboration, MORIYA 14,

definitively established the long-assumed JP = 1/2− spin-parity
assignment of the Λ(1405). The experiment produced the
Λ(1405) spin-polarized in the photoproduction process γp →

K+Λ(1405) and measured the decay of the Λ(1405)(polarized) →

Σ+ (polarized)π−. The observed isotropic decay of Λ(1405) is
consistent with spin J = 1/2. The polarization transfer to the

Σ+(polarized) direction revealed negative parity, and thus estab-

lished JP = 1/2−.

A REVIEW GOES HERE – Check our WWW List of Reviews

Λ(1405) REGION POLE POSITIONSΛ(1405) REGION POLE POSITIONSΛ(1405) REGION POLE POSITIONSΛ(1405) REGION POLE POSITIONS

REAL PARTREAL PARTREAL PARTREAL PART
VALUE (MeV) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

1429+ 8
− 7

1 MAI 15 DPWA

1325+15
−15

2 MAI 15 DPWA

1434+ 2
− 2

3 MAI 15 DPWA

1330+ 4
− 5

4 MAI 15 DPWA

1421+ 3
− 2

5 GUO 13 DPWA

1388± 9 6 GUO 13 DPWA

1424+ 7
−23

7 IKEDA 12 DPWA

1381+18
− 6

8 IKEDA 12 DPWA

1High-mass pole, solution number 4.
2 Low-mass pole, solution number 4.
3High-mass pole, solution number 2.
4 Low-mass pole, solution number 2.
5High-mass pole, fit II
6 Low-mass pole, fit II.
7High-mass pole
8 Low-mass pole

HTTP://PDG.LBL.GOV Page 1 Created: 5/30/2017 17:20

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

Λ(1405) 1/2− I (JP ) = 0(1
2
−) Status: ∗∗∗∗

The nature of the Λ(1405) has been a puzzle for decades: three-
quark state or hybrid; two poles or one. We cannot here sur-
vey the rather extensive literature. See, for example, CIEPLY 10,
KISSLINGER 11, SEKIHARA 11, and SHEVCHENKO 12A for dis-
cussions and earlier references.

It seems to be the universal opinion of the chiral-unitary community
that there are two poles in the 1400-MeV region. ZYCHOR 08
presents experimental evidence against the two-pole model, but this
is disputed by GENG 07A. See also REVAI 09, which finds little basis
for choosing between one- and two-pole models; and IKEDA 12,
which favors the two-pole model.

A single, ordinary three-quark Λ(1405) fits nicely into a J
P =

1/2− SU(4) 4 multiplet, whose other members are the Λc (2595)+,

Ξc (2790)+, and Ξc (2790)0; see Fig. 1 of our note on “Charmed
Baryons.”

Λ(1405) MASSΛ(1405) MASSΛ(1405) MASSΛ(1405) MASS

PRODUCTION EXPERIMENTSPRODUCTION EXPERIMENTSPRODUCTION EXPERIMENTSPRODUCTION EXPERIMENTS
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

1405.1+ 1.3
− 1.0 OUR AVERAGE1405.1+ 1.3
− 1.0 OUR AVERAGE1405.1+ 1.3
− 1.0 OUR AVERAGE1405.1+ 1.3
− 1.0 OUR AVERAGE

1405 +11
− 9 HASSANVAND 13 SPEC pp → pΛ(1405)K+

1405 + 1.4
− 1.0 ESMAILI 10 RVUE 4He K− → Σ±π∓X at rest

1406.5± 4.0 1 DALITZ 91 M-matrix fit

• • • We do not use the following data for averages, fits, limits, etc. • • •

1391 ± 1 700 1 HEMINGWAY 85 HBC K− p 4.2 GeV/c

∼ 1405 400 2 THOMAS 73 HBC π− p 1.69 GeV/c

1405 120 BARBARO-... 68B DBC K− d 2.1–2.7 GeV/c

1400 ± 5 67 BIRMINGHAM 66 HBC K− p 3.5 GeV/c

1382 ± 8 ENGLER 65 HDBC π− p, π+ d 1.68 GeV/c

1400 ±24 MUSGRAVE 65 HBC pp 3–4 GeV/c

1410 ALEXANDER 62 HBC π− p 2.1 GeV/c

1405 ALSTON 62 HBC K− p 1.2–0.5 GeV/c

1405 ALSTON 61B HBC K− p 1.15 GeV/c

EXTRAPOLATIONS BELOW N K THRESHOLDEXTRAPOLATIONS BELOW N K THRESHOLDEXTRAPOLATIONS BELOW N K THRESHOLDEXTRAPOLATIONS BELOW N K THRESHOLD
VALUE (MeV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

1407.56 or 1407.50 3 KIMURA 00 potential model
1411 4 MARTIN 81 K-matrix fit
1406 5 CHAO 73 DPWA 0–range fit (sol. B)
1421 MARTIN 70 RVUE Constant K-matrix

HTTP://PDG.LBL.GOV Page 1 Created: 8/21/2014 12:54

20172014

- Funny statements are replaced by experimental info.

- Pole positions are now tabulated, prior to mass/width.
- Mini-review on the pole structure is included.

105. Pole structure of the Λ(1405) region 1

105. Pole Structure of the Λ(1405) Region

Written November 2015 by Ulf-G. Meißner (Bonn Univ. / FZ Jülich)
and Tetsuo Hyodo (YITP, Kyoto Univ.).

The Λ(1405) resonance emerges in the meson-baryon scattering amplitude with the
strangeness S = −1 and isospin I = 0. It is the archetype of what is called a dynamically
generated resonance, as pioneered by Dalitz and Tuan [1]. The most powerful and
systematic approach for the low-energy regime of the strong interactions is chiral
perturbation theory (ChPT), see e.g. Ref. 2. A perturbative calculation is, however, not
applicable to this sector because of the existence of the Λ(1405) just below the K̄N
threshold. In this case, ChPT has to be combined with a non-perturbative resummation
technique, just as in the case of the nuclear forces. By solving the Lippmann-Schwinger
equation with the interaction kernel determined by ChPT and using a particular
regularization, in Ref. 3 a successful description of the low-energy K−p scattering data as
well as the mass distribution of the Λ(1405) was achieved (for further developments, see
Ref. 4 and references therein).

The study of the pole structure was initiated by Ref. 5, which finds two poles of the
scattering amplitude in the complex energy plane between the K̄N and πΣ thresholds.
The spectrum in experiments exhibits one effective resonance shape, while the existence
of two poles results in the reaction-dependent lineshape [6]. The origin of this two-pole
structure is attributed to the two attractive channels of the leading order interaction in
the SU(3) basis (singlet and octet) [6] and in the isospin basis (K̄N and πΣ) [7]. It is
remarkable that the sign and the strength of the leading order interaction is determined
by a low-energy theorem of chiral symmetry, i.e. the so-called Weinberg-Tomozawa term.
The two-pole nature of the Λ(1405) is qualitatively different from the case of the N(1440)
resonance. Two poles of the N(1440) appear on different Riemann sheets of the complex
energy plane separated by the π∆ branch point. These poles reflect a single state, with a
nearby pole and a more distant shadow pole. In contrast, the two poles in the Λ(1405)
region on the same Riemann sheet (where πΣ channels are unphysical and all other
channels physical, correspondingly to the one, connected to the real axis beween the πΣ
and K̄N thresholds) are generated from two attractive forces mentioned above [6,7].

Recently, various new experimental results on the Λ(1405) have become available [4].
Among these, the most striking measurement is the precise determination of the energy
shift and width of kaonic hydrogen by the SIDDHARTA collaboration [8], [9], which
provides a quantitative and stringent constraint on the K−p amplitude at threshold
through the improved Deser formula [10]. Systematic studies with error analyses based
on the next-to-leading order ChPT interaction including the SIDDHARTA constraint
have been performed by various groups [11–15]. All these studies confirm that the new
kaonic hydrogen data are compatible with the scattering data above threshold.

The results of the pole positions of Λ(1405) in the various approaches are summarized
in Table 105.1. We may regard the difference among the calculations as a systematic
error, which stems from the various approximations of the Bethe-Salpeter equation, the
fitting procedure, and also the inclusion of SU(3) breaking effects such as the choice of the
various meson decay constants, and so on. The main component for the Λ(1405) is the
pole 1, whose position converges within a relatively small region near the K̄N threshold.
On the other hand, the position of the pole 2 shows a sizeable scatter. Detailed studies

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update
December 1, 2017 09:37
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Construction of KN̅ potential
Local KN̅ potential is useful for

Realistic KN̅ potentials

- extraction of the wave function of Λ(1405)
- application to few-body Kaonic nuclei/atoms

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)
Single-channel energy-dependent KN̅ potential

TETSUO HYODO AND WOLFRAM WEISE PHYSICAL REVIEW C 77, 035204 (2008)
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FIG. 10. (Color online) Scattering

amplitudes FK̄N from the local potential
U (r, E) (thick lines) and from the ampli-
tude T eff in the original chiral coupled-
channel approach (thin lines) obtained
by using the HNJH model for the I =
0 channel (left) and the I = 1 channel
(right). Real parts are shown as solid lines
and imaginary parts as dashed lines.

s-wave scattering amplitude is

FK̄N = 1
k(cot δ0 − i)

,

where the phase shift δ0 is determined by the asymptotic wave
function,

u(r)
r

→ A0[cos δ0j0(kr) − sin δ0n0(kr)] for r → ∞,

with spherical Bessel and Neumann functions j0 and n0.
The wave number k =

√
2µE becomes imaginary below

threshold, E < 0.
Given V eff(

√
s) as input, the range parameter b is then

fixed by requiring that the real part of the K̄N amplitude
develops its zero at

√
s ≃ 1420 MeV to satisfy the condition

for the quasibound K̄N state at this point. For the HNJH
model, this condition determines b = 0.47 fm. Note that this
scale is somewhat smaller than the typical range associated
with vector meson exchange, the picture that one has in mind
as underlying the vector current interaction generating the
Weinberg-Tomozawa term.

With b = 0.47 fm fixed, the I = 0 and I = 1 amplitudes
generated by the equivalent local pseudopotential U (r, E)
reproduce the full K̄N coupled-channel amplitudes perfectly
well in the threshold and subthreshold region above

√
s ≃

1420 MeV. However, at energies below the quasibound state,
the local ansatz [Eq. (11)] does not extrapolate correctly
into the far-subthreshold region. One has to keep in mind
that the complex, off-shell effective K̄N interaction is in
general nonlocal and energy dependent to start with. Its
detailed behavior over a broader energy range cannot be
approximated by a simple local potential without paying the
price of extra energy dependence. This is demonstrated in
Fig. 10. In the subthreshold region below

√
s < 1400 MeV,

the amplitudes calculated with the local potential overesti-
mate the ones resulting from the coupled-channel approach
significantly, in both I = 0 and I = 1 channels. One observes
that subthreshold extrapolations using a naive local potential
tend to give much stronger K̄N attraction than what chiral
coupled-channel dynamics actually predicts. Corrections to
the energy dependence of the local potential need to be applied
to repair this deficiency.

C. Improved local potentials and uncertainty analysis

The necessary corrections just mentioned can easily be
implemented by introducing a third-order polynomial in

√
s,

U (r = 0, E) = K0 + K1
√

s + K2(
√

s)2 + K3(
√

s)3,
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FIG. 11. (Color online) Upper
panels: Strength of the fitted potential
at r = 0 (thick lines) and the strength
without correction [Eq. (11); dotted
lines] with the HNJH model. Lower
panels: Scattering amplitude f from
the local potential (thick lines) and the
amplitude Teff. in the original chiral
unitary approach (thin lines) with the
HNJH model. The real parts are shown
by the solid lines, and the imaginary parts
are depicted by the dotted lines. Left:
I = 0 channel. Right: I = 1 channel.
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U(W, r)

T (W ) = V (W ) + V (W )G(W )T (W )

- Chiral dynamics (thin)

- Potential (thick)
+ Schrödinger eq.

- Reasonable on-shell scattering amplitude on real axis
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FIG. 2. The contour plot of !F of the HNJH potential in
Ref. [55]. The unfilled region corresponds to large deviation, !F > 2.
The precise region is defined as !F < 0.2. The crosses represent the
original pole positions of "(1405).

potential by a polynomial in the energy,

U (r = 0,E) = g(r = 0)N (E)

[
∑

i

Ki

(
E

100 MeV

)i
]

. (8)

We refer to the energy range where the potential is
parametrized as parametrized range, which will be specified
for each potential. We comment on the analytic behavior of
the amplitude calculated from the potential (8). Because the
potential is constructed to reproduce the original amplitude, the
correct analytic behavior is guaranteed within the parametrized
range on the real axis. However, the extrapolation of this
potential to other energy regions should be carefully per-
formed, because some unphysical singularities can, in general,
be developed. This is discussed in detail in the next section.

FIG. 3. The contour plot of !F of Potential I. The unfilled region
corresponds to large deviation, !F > 2. The precise region is defined
as !F < 0.2. The crosses represent the original pole positions of
"(1405).

III. POTENTIAL CONSTRUCTION

In this section, we study how the original amplitude is
reproduced by the K̄N local potential. Examining the previous
method in Ref. [55] in detail, we improve the construction
procedure to reproduce the original amplitude even in the
complex energy plane. Here we mainly employ the amplitude
of the HNJH model [66,67] for the comparison with Ref. [55].
Inclusion of the SIDDHARTA constraint is discussed in the
next section to construct a realistic K̄N potential.

A. Precision of potential in the complex plane

A resonance state is represented by a pole of the scattering
amplitude in the complex energy plane. The pole structure
of the K̄N amplitude is therefore important for the study of
the spatial structure of "(1405). It is considered that the pole
structure of the K̄N system may affect the result of the K̄NN

TABLE II. Properties of the HNJH potential in Ref. [55] and Potential I and Potential II in this work. Shown are the potential range
parameters b, the corrections to the strength of the potentials !V , the polynomial types of the potential strength in energy, the correction ranges
where !V is applied, the parametrized ranges by the polynomials, the average deviations !Freal from the amplitudes of chiral unitary approach
F Ch

K̄N
on the real energy axis, the percentages of the precise region in the complex energy plane, and the pole positions of the amplitudes from

the potentials FK̄N . The pole positions of the original amplitude F Ch
K̄N

are 1428 − 17i MeV and 1400 − 76i MeV.

Ref. [55] Potential I Potential II

b (fm) 0.47 0.46 0.46
!V Real Complex Complex
Polynomial type Third order Third order Tenth order
Correction range 1300–1400 1332–1450 1332–1521
Parametrized range 1300–1450 1332–1450 1332–1521
!Freal 1.4 × 10−1 4.8 × 10−3 4.0 × 10−4

Pcomp 50 68 85
Pole positions (MeV) 1421 − 35i 1427 − 17i 1428 − 17i, 1400 − 77i

015201-4
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Realistic KN̅ potential

It reproduces data with χ2/d.o.f. ~ 1: realistic potential

Realistic KN̅ potentials

Issues to be improved:

- Amplitude was not constrained by SIDDHARTA
- Pole structure of the amplitude was not reproduced.

STRUCTURE OF !(1405) AND CONSTRUCTION . . . PHYSICAL REVIEW C 93, 015201 (2016)

FIG. 6. The contour plot of "F of SIDDHARTA potential (I =
0). The precise region is defined as "F < 0.2. The crosses represent
the original pole positions of !(1405).

C. Region far from the real axis

While Potential I reproduces the original amplitude near
the real energy axis, the deviation of the amplitude increases
in the region far from the real axis (see Fig. 3) and the π$
pole does not appear. Here we further improve the potential,
paying attention to the region far from the real axis.

In principle, if the original amplitude is completely re-
produced in the whole range on the real energy axis, the
analytic continuation in the complex energy plane is unique.
This suggests that the increase of the parametrized range will
improve the precision of the potential far from the real axis.3

However, there is a limitation of extension of the parametrized
range because of the threshold effect. In the present framework
of the effective single-channel potential with polynomial
parametrization, it is difficult to incorporate the nonanalytic
threshold effect of the other channels. The parametrized range
can only be extended to the nearest thresholds. In this case,
the parametrization of the K̄N potential strength should be
performed between the π$ threshold (1331 MeV) and the η!
threshold (1664 MeV). To keep the precision on the real axis
for the larger parametrized range, we increase the degree of
the polynomial from the third order to the tenth order.

To examine the above strategy, we construct the potentials
varying the parametrized range by 1 MeV. The typical results
of "Freal, Pcomp, and the pole positions of these potentials
are shown in Table III. In all cases, "Freal is reduced by an
order of magnitude from that of Potential I. This is because
we change the parametrization from the third-order to the
tenth-order polynomial. Though the wider fitting range leads
to the slightly larger "Freal, the order of magnitude remains
same. In general, when a high-degree polynomial is used for

3In this section, the correction range is chosen to be the same with
the parametrized range.

FIG. 7. Strength of SIDDHARTA potential (I = 0) U (r,E) at
r = 0. The real part is shown by the solid line, and the imaginary part
is shown by the dotted line.

the parametrization, artificial poles appear between the K̄N
and π$ thresholds. In the present case, this occurs when
the fitting range is smaller than ∼1500 MeV. However, as
the fitting range increases, these unphysical poles move away
from the relevant energy region and only two physical poles
remain. The K̄N pole appears at the original pole position,
1428 − 17i MeV and is stable against the variation of the
parametrized range. However, the position of the π$ pole
depends on the parametrized range. The optimized value of
the upper boundary of the parametrized range is 1521 MeV to
reproduce the original pole position, 1400 − 76i MeV. At the
same time, the maximum value of Pcomp is achieved. We call
the potential with the best parametrized range Potential II. We
show the contour plot of "F with Potential II in Fig. 4. As
shown in Fig. 4, we succeed in extending the precise region
to Imz ∼ −80 MeV, near the π$ pole. As a consequence, we
obtain two poles, both at the correct positions.

It turns out that the largest parametrized range does not
always lead to the best potential. In the present case, this is
because the π$ pole position moves along with the change of
the parametrized range. The best potential is achieved when
the π$ pole comes closest to the original position.

IV. APPLICATION

In the previous section, we established the construction
procedure to reproduce the original amplitude in the complex
energy plane, considering the high precision on the real
energy axis and the wider parametrized range. In this section,
we apply this procedure to chiral unitary approach with
SIDDHARTA constraint [48,49] and construct the realistic
K̄N local potential. This new potential is then used to estimate
the mean distance between K̄ and nucleon, that is, the spatial
structure of !(1405).

A. Realistic K̄ N potential

As we explained in Sec. I, the constraint from the precise
SIDDHARTA data is crucial for the quantitative calculation of

015201-7

deviation from 
original amplitude

New potential (Kyoto KN̅ potential)
- Chiral SU(3) at NLO with SIDDHARTA
- Pole positions are reproduced 
   with 1 MeV precision

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)
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FIG. 1. Scattering amplitudes from the local potentials FK̄N (thick lines) and the amplitudes directly from chiral unitary approach F Ch
K̄N

(thin lines) with models ORB [68], HNJH [66,67], BNW [56,57], and BMN [58]. The real (imaginary) parts are shown by the solid (dotted)
lines.

where E, EN , and ωK are, respectively, the nonrelativistic
energy, the energy of the nucleon, and the energy of the
antikaon,

E =
√

s − MN − mK,

EN = s − m2
K + M2

N

2
√

s
,

ωK = s − M2
N + m2

K

2
√

s
,

with the mass of the antikaon mK . The spatial distribution
of the potential is governed by g(r), which is normalized
as

∫
d rg(r) = 1. The flux factor N (E) is determined by the

matching with the original amplitude at the K̄N threshold

TABLE I. Pole positions of the original scattering amplitudes
from chiral unitary approach F Ch

K̄N
and the amplitudes from the local

potentials FK̄N . All poles are found in the π$ unphysical and K̄N

physical Riemann sheet. The pole at 1440 − 76i in the BMN model
is above the K̄N threshold and hence is not in the most adjacent sheet
to the real axis.

Model Pole position (MeV)

F Ch
K̄N

FK̄N

ORB [68] 1427 − 17i, 1389 − 64i 1419 − 42i

HNJH [66,67] 1428 − 17i, 1400 − 76i 1421 − 35i

BNW [57,59] 1434 − 18i, 1388 − 49i 1404 − 46i

BMN [58] 1421 − 20i, 1440 − 76i 1416 − 27i

in the Born approximation [55]. In this work, we choose a
Gaussian for g(r),

g(r) = 1
π3/2b3

e−r2/b2
,

where the parameter b determines the range of the potential.
Using the local potential, we can calculate the wave function
from the Schrödinger equation,

− 1
2µ

d2u(r)
dr2

+U (r,E)u(r) = Eu(r), (6)

where µ = MNmK/(MN + mK ) is the reduced mass and u(r)
is the s-wave part of the two-body radial wave function. From
the behavior of the wave function at r → ∞, the scattering
amplitude FK̄N can be obtained. In Ref. [55], the parameter b
was determined to match the amplitude FK̄N with the original
amplitude in the !(1405) resonance region. In this work,
we determine the parameter b by the matching of the full
amplitude at the K̄N threshold. This prescription is along the
same line with the determination of the flux factor N (E).

The potential (4) well reproduces the original amplitude
near the K̄N threshold, while the deviation increases in
the energy region far below the threshold. To enlarge the
applicability of the potential, we add the correction %V (E)
to the strength of the potential,

U (r,E) = g(r)N (E)
[
V eff

11 (E + MN + mK ) + %V (E)
]
. (7)

For the analytic continuation of the amplitude in the complex
energy plane, it is useful to parametrize the strength of the

015201-3

potentialoriginal
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Structure of Λ(1405)

The size of Λ(1405) is much larger than ordinary hadrons.

Realistic KN̅ potentials

- substantial distribution at r > 1 fm

KN̅ wave function at Λ(1405) pole

potential 

density 

p
hr2i = 1.44 fm- root mean squared radius
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Coupled-channel potential
Realistic KN̅ potentials

Coupled-channel KN̅-πΣ potential
K. Miyahara, T. Hyodo, W. Weise, in preparation

- Simpler parametrization of E-dependence is possible.
- Pole positions are well reproduced.
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Kaonic nuclei
Rigorous few-body approach to K ̅nuclear systems

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, PRC95, 065202 (2017).

Applications

- Stochastic variational method with correlated gaussians

- quasi-bound state below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy

Results

KN̅N KN̅NN KN̅NNN KN̅NNNNN
B [MeV] 25-28 45-50 68-76 70-81
Γ [MeV] 31-59 26-70 28-74 24-76

ˆV =

ˆV K̄N
(Kyoto

¯KN) +

ˆV NN
(AV4

0
)

(single channel)
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High density?
Nucleon density distribution in four-nucleon system

Applications

- central density increases (not substantially <— NN core)

Central density is not always proportional to B <— tail of w.f.

 0
 0.1
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 0.7
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(a)Type I
II

AY
4HeK+̅α

α

- B = 68-76 MeV (Kyoto KN̅)
- B = 85-87 MeV (AY)
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Interplay between NN and KN̅ correlations 1
Two-nucleon system

Applications

NN correlation < KN̅ correlation (also in A=6)

N N

1S0 (INN=1) 3S1 (INN=0) 

N N

K ̅

N N

N N

K ̅

bound (d) unbound 

KN̅(I=0):KN̅(I=1) = 3:1 KN̅(I=0):KN̅(I=1) = 1:3
(quasi-)bound unbound

Λ(1405)
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Interplay between NN and KN̅ correlations 2
Four-nucleon system with Jπ=0-, I=1/2, I3=+1/2

Applications

NN correlation > KN̅ correlation

- KN̅ correlation

- NN correlation
ppnn forms α : C1 < C2

I=0 pair in K-p (3 pairs) or K0̅n (2 pairs) : C1 > C2

- Numerical result
|C1|2 = 0.08,  |C2|2 = 0.92

p p

n n

p p

p n
| K̄NNNN i = C1

0

BBBB@

1

CCCCA
+ C2

0

BBBB@

1

CCCCAK0̅K-
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Kaonic deuterium: background
K-pn system with strong + Coulomb interaction

Applications

p

n

 - Experiments are planned at J-PARC E57, SIDDHARTA-2 

Previous studies 

- Recent (advanced) Faddeev calculation: 

- Rigorous treatment of strong+Coulomb is not easy 
   -> two-body K-d treatment, EFT (expansion), etc.

J. Revai, Phys. Rev. C 94, 054001 (2016)

 - Complementary to K-p for KN̅ isospin decomposition

K-
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Kaonic deuterium: results
Rigorous three-body calculation with isospin breaking

Applications

ˆV =

ˆV K̄N
(Kyoto

¯KN) +

ˆV NN
(Minnesota) +

ˆV EM

�E � i�/2 = (670� i508) eV

- No shift in 2P state is shown by explicit calculation.

- Shift-width of the 1S state:
Results

Varying I=1 potential within SIDDHARTA uncertainty of K-p

- Precision 30-60 eV for ΔE gives a strong constraint on I=1

HOSHINO, OHNISHI, HORIUCHI, HYODO, AND WEISE PHYSICAL REVIEW C 96, 045204 (2017)

TABLE IV. Energy spectrum of kaonic deuterium. Three- and two-body calculations with Coulomb
interaction only (omitting the strong K̄N interaction) are listed in the first three rows. Energy levels
resulting from the three-body calculation are measured relative to the calculated K−d threshold. For the
K−d two-body calculations, the deuteron mass Md = 1875.613 MeV has been used [49].

E1S(keV) E2P (keV) E2S(keV)

Coulomb −10.398 −2.602 −2.600
Uniform charge (2-body) −10.401 −2.602 −2.601
Point charge (2-body) −10.406 −2.602 −2.602
Coulomb + K̄N −9.736 − i 0.508 −2.602 − i 0.000 −2.517 − i 0.067

Brookhaven with K− stopped on liquid deuterium in the BNL
bubble chamber [59] demonstrated that these processes are
strongly suppressed as compared to the leading single-nucleon
channels, K̄N → πY . The ratio of two-nucleon absorption
reactions to the single-nucleon processes was found to be as
small as (1.2 ± 0.1)% [59]. Taking this value for orientation,
the kaonic deuterium 1S width would increase through
two-nucleon absorption by only about 10 eV, a correction
that can be safely neglected within an uncertainty range of
approximately 10 % assigned to the calculated width of about
a keV. The smallness of the two-body absorptive width can
be understood as follows. Kinematical conditions for the
K̄NN → YN process require a large momentum transfer of
order 1 GeV/c to be provided by the initial deuteron wave
function at short distances. The probability for this to take
place in a weakly bound, dilute system like the deuteron is
small. Similar considerations hold, for example, in the analysis
of the 3He(K−,"p)n reaction [30]. Background simulations
performed for this experiment pointed out that two-nucleon
absorption is strongly suppressed in the vicinity of the K−pp
threshold, whereas three-nucleon reactions dominate.

B. Constraining the I = 1 component of K̄ N interaction

To quantify the sensitivity of the kaonic deuterium level
shift with respect to the I = 1 component of the K̄N
interaction, we vary its strength within the uncertainties of
the SIDDHARTA kaonic hydrogen measurement [31,32]. This
uncertainty range can be simulated by simply multiplying a
constant, β, to the real part of the I = 1 component of the
K̄N potential. Within the SIDDHARTA constraint [31,32], the
control parameter β can range from −0.17 to 1.08. Evidently
this constraint is quite weak: Even β = 0, i.e., a vanishing
real part of the I = 1 K̄N potential, would still be acceptable.
Theoretical considerations based on chiral SU(3) dynamics
would exclude such a possibility, but it cannot be ruled out by
just looking at the SIDDHARTA data.

Table V lists the results of the two- and three-body
calculations performed with limiting values of β compared
to the standard case, β = 1. It is interesting to observe that the
sensitivity with respect to the I = 1 K̄N interaction strength
shows different patterns for $E and % in kaonic hydrogen as
compared to kaonic deuterium. In the K−p system, a variation
of β within its upper and lower limits changes $E by less than
10%, whereas % changes by more than 30%. On the other hand,
the same variation of β in the K−pn system induces a change
$E by 170 eV while % remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would already
improve the determination of the I = 1 K̄N interaction
considerably over the kaonic hydrogen result. The 30–60 eV
precision to be expected in the planned experiments [37,38]
falls well within that range.

C. Improved Deser formulas for kaonic deuterium

The improved Deser formula [43,60], derived from nonrel-
ativistic effective field theory (EFT), is frequently used in the
investigation of strong-interaction effects in hadronic atoms.
The 1S level shift $E and width % of a kaonic atom can be
estimated by the relation [43,60]

$E − i%

2
= −2µ2α3a[1 − 2µα(ln α − 1)a], (18)

where µ is the kaon-nucleus reduced mass, α is the fine struc-
ture constant, and a is the K−-nucleus scattering length. The
logarithmically enhanced correction term can be resummed to
all orders [61], providing a “double-improved” Deser formula:

$E − i%

2
= − 2µ2α3a

1 + 2µα(ln α − 1)a
. (19)

In this section, we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19). But let
us first examine the shift and width of kaonic hydrogen in this
context. The K−p scattering length obtained by solving the
two-body Schrödinger equation with the Kyoto K̄N potential
is shown in Table II. Using Eqs. (18) and (19), one finds the
results shown in Table VI. It is evident that the improved Deser
formula works reasonably well for kaonic hydrogen and the
resummed version indeed improves the accuracy further.

TABLE V. Level shifts and decay widths (in eV) of
kaonic hydrogen and deuterium computed with different I =
1 strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is ($E,%) = (283 ± 36 ± 6,
541 ± 89 ± 22) eV [31,32].

β K−p K−d

$E % $E %

1.08 287 648 676 1020
1.00 283 607 670 1016
−0.17 310 430 506 980

045204-6

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)
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KN̅ scattering is quantitatively described        
by NLO chiral coupled-channel approach.

Realistic KN̅ potential (χ2/d.o.f. ~ 1) is available. 

Few-body kaonic nuclei exist as quasi-bound 
states. Structure is determined by the interplay 
between NN and KN̅ correlations.

Shift-width of kaonic deuterium is found to be

Summary: Λ(1405) 
Summary

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, T. Hyodo, PRC95, 065202 (2017)

K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

T. Hoshino, S. Ohnishi, W. Horiuchi, T. Hyodo, W. Weise, PRC96, 045204 (2017)
�E � i�/2 = (670� i508) eV


