Hadronic molecules and long range force in QCD

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Introduction

V

Long range force in QCD?

Two-body potential

$$f(r) \propto rac{1}{r}$$
 : long (infinite) range

$$V(r) \propto \frac{e^{-mr}}{r}$$
 : finite (~1/m) range

Hadron-hadron interaction is considered to be finite range.

- Longest interaction range : π exchange ~ 1 fm
- Absence of the long range force is the basis for the (standard) scattering theory, Lüscher/HAL method, etc.

Emergence of (quasi) long range force

L.S. Geng, J. Lu, M.P. Valderrama, arXiv:1704.06123 [hep-ph] <u>M. Sanchez Sanchez, L.S. Geng, J. Lu, T. Hyodo, M.P. Valderrama,</u> arXiv:1707.038202 [hep-ph]

Contents

Contents

Emergence of long range force

- Yukawa potential
- Exchange potential
- An interpretation

Hadronic molecules by (quasi)long range force

- D***D** molecules ~ X(3872), Z_c(3900)
- A*N molecule ~ KNN <u>T. Uchino, T. Hyodo, M. Oka, Nucl. Phys. A, 868-869, 53 (2011)</u>
- Doubly charmed D_{S0}D molecules <u>M. Sanchez Sanchez, L.S. Geng, J. Lu, T. Hyodo, M.P. Valderrama,</u> <u>arXiv:1707.038202 [hep-ph]</u>

Emergence of long range force

NN potential

Low energy NN **interaction :** π **exchange**

- Static approx. $p^{\mu} = (M_N, p), \quad p'^{\mu} = (M_N, p'), \quad q^{\mu} = p'^{\mu} - p^{\mu} = (0, q)$

- Coupling $g\bar{N}i\gamma_5\pi N \sim g\chi^{\dagger}\sigma \cdot q\chi$ (isospin ignored)

NN* potential

Low energy NN*(JP=1/2-) interaction

- Static approx. $p^{\mu} = (M_N, p), \quad k^{\mu} = (M_{N^*}, k), \quad q^{\mu} = p'^{\mu} p^{\mu} = (0, q)$
- Couplings $g\bar{N}\gamma_5\pi N \sim g\chi^{\dagger}\sigma \cdot q\chi, \quad g^*\bar{N}^*\gamma_5\pi N^* \sim g^*\chi^{\dagger}\sigma \cdot q\chi$

Potential

$$V(\boldsymbol{r}) \sim \text{F.T.}\left\{g\boldsymbol{g}^{*}(\boldsymbol{\sigma}_{1}\cdot\boldsymbol{q})(\boldsymbol{\sigma}_{2}\cdot\boldsymbol{q})\frac{-1}{\boldsymbol{q}^{2}+m_{\pi}^{2}}\right\}$$

- Sign of V(r) depends on the relative sign of g and g^{\star}

Emergence of long range force

NN* potential (exchange)

Another diagram for NN*(JP=1/2-) interaction

Mass difference = energy transfer

 $\Delta = M_{N^*} - M_N$

- Static approx. $p^{\mu} = (M_N, p), \quad p'^{\mu} = (M_{N^*}, p'), \quad q^{\mu} = (\Delta, q)$

- Coupling $\tilde{g} \ \bar{N}^* \pi N + \text{h.c.} \sim \tilde{g} \ \chi^\dagger \mathbf{1} \chi$

Potential (P_o: spin exchange factor) $\mu = \sqrt{m_{\pi}^2 - \Delta^2}$ $V(r) \sim \text{F.T.} \left\{ \tilde{g}^2 \frac{1}{\Delta^2 - q^2 - m_{\pi}^2} \right\} P_{\sigma} = \text{F.T.} \left\{ \tilde{g}^2 \frac{-1}{q^2 + \mu^2} \right\} P_{\sigma} \sim \tilde{g}^2 P_{\sigma} \frac{e^{-\mu r}}{r}$

- Sign of V(r) is fixed and attractive (c.f. σ exchange in NN)
- Effective mass $\mu=0$ —> long range force (Coulomb like)

Unitary limit

What does $\mu = (m_{\pi^2} - \Delta^2)^{1/2} = 0$ ($\Delta = m_{\pi}$) **mean?**

- $\Delta < m_{\pi}$: N* cannot decay to πN —> virtual π exchange

- Δ > m_π : N* decays to πN —> real π exchange
 (N* acquires a width, potential picture is not adequate)
- $\Delta = m_{\pi}$: N* lies on top of the πN threshold

s-wave resonance at threshold : unitary limit of πN system

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

- Scattering length diverges —> universal physics

Emergence of long range force

Zero-energy resonance

Resonance at threshold, "zero-energy resonance"

- Decay width vanishes, potential picture still valid.
- Completely composite and coupling g is fixed <u>T. Hyodo, Phys. Rev. C 90, 055208 (2014)</u>
- Wavefunction of $N^*(\pi N)$ spreads to infinity.

Origin of the long range force?

Toward physical realization

We show that

- long range force emerges if the effective mass $\mu {=} 0,$
- induced by the zero-energy resonance, and
- the interaction is Coulomb like attraction (in some channel).

$$V(r) \sim \frac{e^{-\mu r}}{r}, \quad \mu = \sqrt{m^2 - \Delta^2}$$

Attraction at long distance in hadron-hadron interaction

- can generate a hadronic molecule (loosely bound two-hadron system)?

Realization in physical hadron systems

- No system with exact μ =0 (N*: Δ ~595 MeV / m_{π}~140 MeV)
- Is there any system with small $\mu \ref{eq:product}$

Charmonium-like XYZ **exotics**

XYZ states: exotic candidates above DD threshold

- A. Hosaka, et al., PTEP 062C01 (2016)
- DD^* molecule is proposed for X(3872), Z(3900), etc.

- $\Delta_{HQ} \sim m_{\pi}$: origin of $D\overline{D}^*$ molecule?
- $\Delta_{HQ} \sim 1/m_c$, $m_{\pi^2} \sim m_q$, $\Delta_{\chi} \sim <\bar{q}q>$ are related to QCD symmetries T. Sugiura, T. Hyodo, in progress

Strange dibaryon

 $\Lambda(1405)=\Lambda^*$: $\overline{K}N$ quasibound state near the threshold

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- \overline{K} exchange between \wedge^* and \mathbb{N}

- $\mu \sim 91$ MeV: \overline{K} exchange has longer tail than expected

- attractive in spin singlet channel —> KNN as A*N system <u>T. Uchino, T. Hyodo, M. Oka, Nucl. Phys. A, 868-869, 53 (2011)</u>

Doubly charmed exotic meson

Charm C=2 **meson: manifestly exotic (needs four quarks)**

- No state has been established.

D_{s0}(2317), KD threshold

- Vector exchange is forbidden by OZI rule.
- Attraction —> $D_{s0}D$ molecule with 6 MeV binding
- Same mechanism in $D_{s1}(1+)D^*(1-) \rightarrow 7$ MeV binding

M. Sanchez Sanchez, L.S. Geng, J. Lu, T. Hyodo, M.P. Valderrama, arXiv:1707.038202 [hep-ph]

Summary

We show that the long range force emerges among hadrons when the mass difference Δ matches the mass of exchange particle m.

$$V(r) \sim \frac{e^{-\mu r}}{r}, \quad \mu = \sqrt{m^2 - \Delta^2}$$

There are some physical systems with small μ so that the interaction range is enhanced. This can be an origin of some hadronic molecules.