KN interaction and Kaonic nuclei

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

KN interaction

- Systematic analysis in chiral SU(3) dynamics

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

- Realistic KN potential

T. Hyodo, W. Weise, PRC77, 035204 (2008)

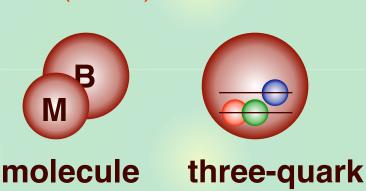
K. Miyahara. T. Hyodo, PRC93, 015201 (2016)

(Selected topics of) Kaonic nuclei

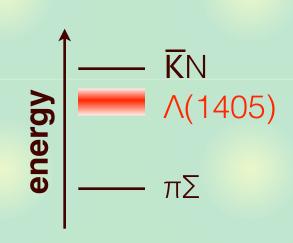
- Few-body systems up to A=6

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, T. Hyodo, Phys. Rev. C 96, 045204 (2017)

K meson and KN interaction

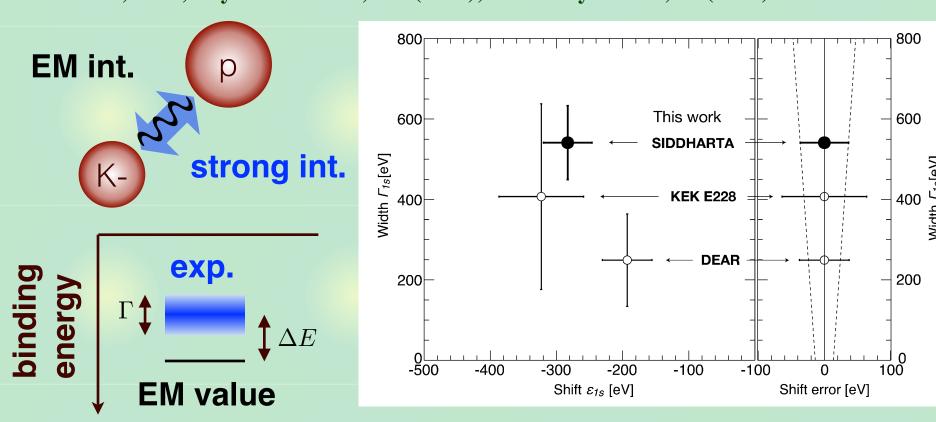

Two aspects of $K(\overline{K})$ meson

- NG boson of chiral SU(3)_R ⊗ SU(3)_L -> SU(3)_V
- Massive by strange quark: mk ~ 496 MeV
 - -> Spontaneous/explicit symmetry breaking


KN interaction ...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is coupled with $\pi\Sigma$ channel
- generates $\Lambda(1405)$ below threshold


- is fundamental building block for \overline{K} -nuclei, \overline{K} in medium, ...,

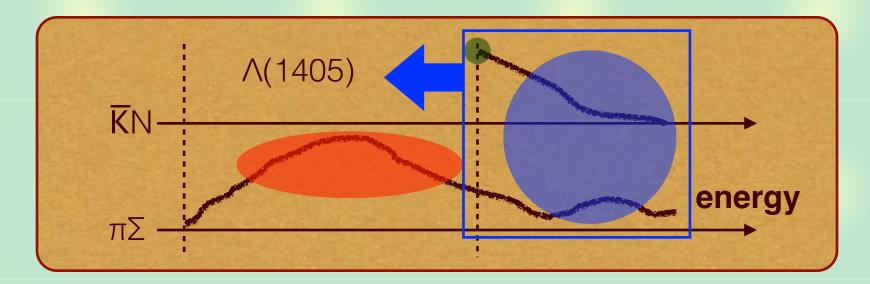
SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

- Shift and width of atomic state <-> K-p scattering length U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

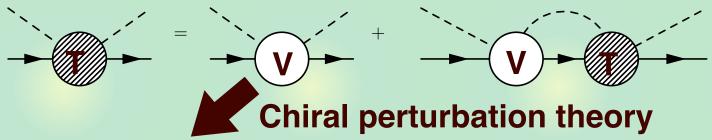
Quantitative constraint on the $\overline{K}N$ interaction at fixed energy $_4$

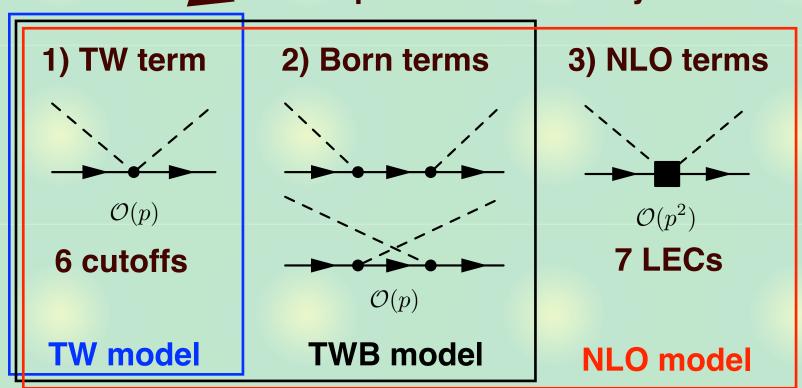

Strategy for KN interaction

Above the KN threshold: direct constraints

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the KN threshold: indirect constraints

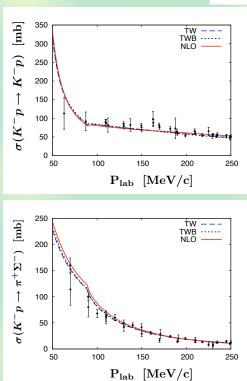

- πΣ mass spectra (new data: LEPS, CLAS, HADES,...)

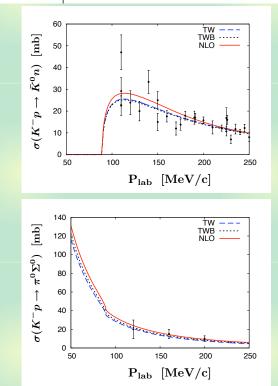


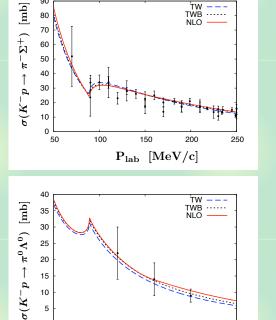
Construction of the realistic amplitude

Chiral coupled-channel approach with systematic χ^2 fitting

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012)


Best-fit results


SIDDHARTA


Branching ratios

cross sections

				1
	TW	TWB	NLO	Experiment
$\Delta E \text{ [eV]}$	373	377	306	$283 \pm 36 \pm 6$ [10]
Γ [eV]	495	514	591	$541 \pm 89 \pm 22$ [10]
γ	2.36	2.36	2.37	2.36 ± 0.04 [11]
R_n	0.20	0.19	0.19	0.189 ± 0.015 [11]
R_c	0.66	0.66	0.66	0.664 ± 0.011 [11]
$\chi^2/\mathrm{d.o.f}$	1.12	1.15	0.96	

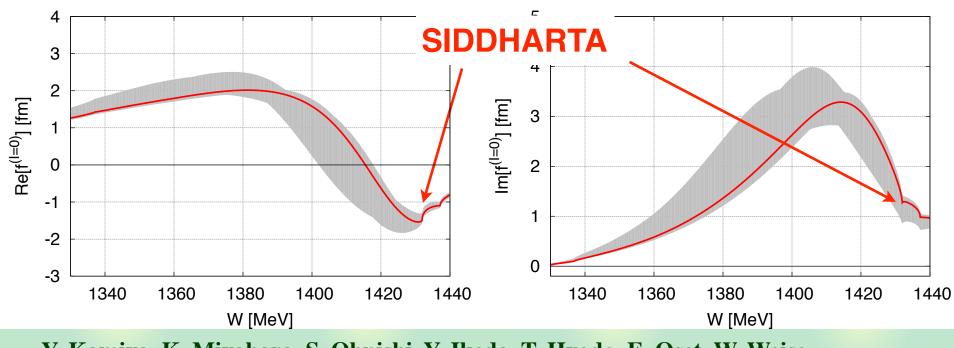
 $P_{\rm lab}~[{\rm MeV/c}]$


K-hydrogen and cross sections are consistent (c.f. DEAR).

250

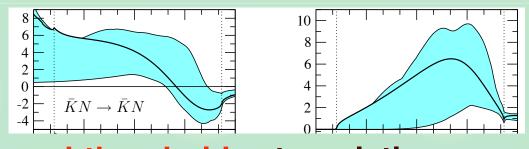
Systematic analysis in chiral SU(3) dynamics

Comparison with SIDDHARTA


	TW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957

TW and TWB are reasonable, while best-fit requires NLO.

Subthreshold extrapolation


Uncertainty of $\overline{K}N \rightarrow \overline{K}N$ (I=0) amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A954, 41 (2016)

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA is essential for subthreshold extrapolation.

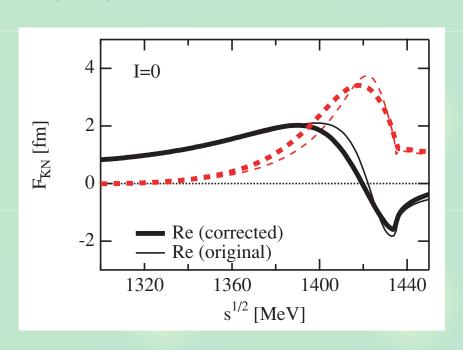
Realistic KN potential

Construction of KN potential

Local KN potential is useful for

- extraction of the wave function of $\Lambda(1405)$
- application to few-body Kaonic nuclei

Single-channel energy-dependent KN potential


T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

- Chiral dynamics (thin)

$$T(W) = V(W) + V(W)G(W)T(W)$$

- Potential (thick)

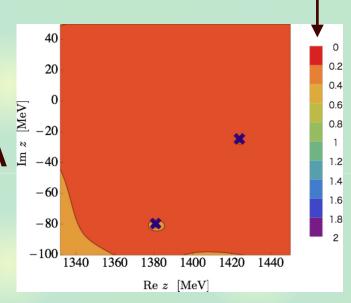
$$U(W,r)$$
 + Schrödinger eq.

- Reasonable on-shell scattering amplitude on real axis

Realistic KN potential

Issues to be improved:

- Amplitude was not constrained by SIDDHARTA
- Pole structure of the amplitude was not reproduced.


Model Oric	$\frac{\text{Pole position (M}}{F_{ar{K}N}^{ ext{Ch}}}$	(eV)	otential
Orig	$F_{ar{K}N}^{ ext{Ch}}$	$F_{ar{K}N}$	Otermai
ORB [68]	1427 - 17i, $1389 - 64i$	1419 - 42i	
HNJH [66,67]	1428 - 17i, $1400 - 76i$	1421 - 35i	
BNW [57,59]	1434 - 18i, $1388 - 49i$	1404 - 46i	
BMN [58]	1421 - 20i, $1440 - 76i$	1416 - 27i	

deviation from original amplitude

Construction of realistic potential

K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- Chiral SU(3) at NLO with SIDDHARTA
- Equivalent amplitude in the complex energy plane

Kyoto \overline{KN} potential reproduces data $\chi^2/dof \sim 1$: realistic

(Selected topics of) Kaonic nuclei

Kaonic nuclei

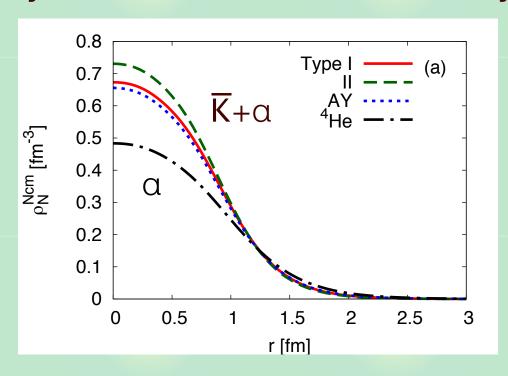
Few-body K nuclear systems

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, Phys. Rev. C 96, 045204 (2017).

- Stochastic variational method with correlated gaussians
- KN: Kyoto KN potential, NN: AV4' (hard core)

Few-body K nuclear systems

	KNN	KNNN	KNNNN	KNNNNNN
B [MeV]	25-28	45-50	68-76	70-81
Γ[MeV]	31-59	26-70	28-74	24-76

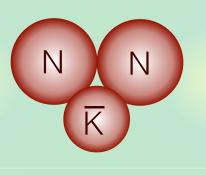

- bound below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy,

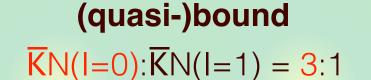
12

(Selected topics of) Kaonic nuclei

High density?

Nucleon density distribution in four-nucleon system

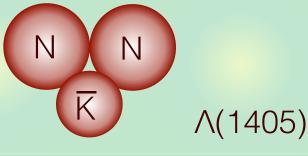

- central density increases (not substantially <- NN core)
- B = 68-76 MeV (Kyoto $\overline{K}N$)
- B = 85-87 MeV (AY)


Central density is not always proportional to B < - tail of w.f₁₃

(Selected topics of) Kaonic nuclei

Interplay between NN and KN correlations 1

Two-nucleon system



unbound

$$\overline{K}N(I=0):\overline{K}N(I=1) = 1:3$$

Interplay between NN and KN correlations 2

Four-nucleon system with $J^{\pi}=0^{-}$, I=1/2, $I_3=+1/2$

$$|ar{K}NNNN
angle = C_1$$

- KN correlation

$$I=0$$
 pair in K-p (3 pairs) or \overline{K}^0 n (2 pairs) : $C_1 > C_2$

- NN correlation

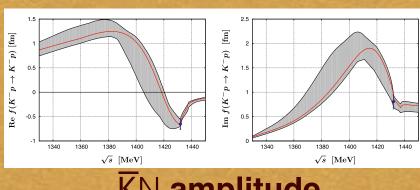
ppnn forms a :
$$C_1 < C_2$$

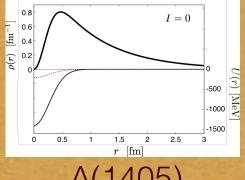
- Numerical result

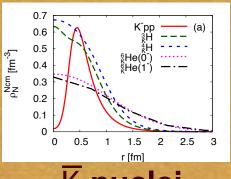
$$|C_1|^2 = 0.08$$
, $|C_2|^2 = 0.92$

NN correlation $> \overline{K}N$ correlation

Summary: ∧(1405)


 $\overline{K}N$ scattering is quantitatively described (χ^2 /d.o.f. ~ 1) by NLO chiral coupled-channel approach with accurate K-p scattering length.


Realistic KN potential is now available.


Few-body kaonic nuclei exist as quasi-bound states. Structure is determined by the interplay between NN and KN correlations.

KN amplitude

 $\Lambda(1405)$

K nuclei