ハドロンの複合性と 低エネルギー普遍性

兵藤 哲雄

京都大学 基礎物理学研究所

観測されているハドロン

PDG2016 : http://pdg.lbl.gov/

$ \begin{array}{c} m(160) & 57^{-+++} & 4(190) & 37^{-++} & 12(100) & 37^{-+} & 12(100) & 37^{-+} & 12(100) & 17^{-++} & 12(1$
--

qqq/qqで記述される量子数のみ(自明ではない!)。

qqq/qqで記述できない状態

テトラクォーク候補(Belle) : Z_b(10610), Z_b(10650) $Y(5S) -> \pi^{\pm} + Z_{b}$ \rightarrow Y(nS)(bb) + $\pi \mp (ud/du)$

: P_c(4450), P_c(4380)

 $\Lambda_{\rm b}$ -> K- + P_c $\rightarrow J/\psi(c\bar{c}) + p(uud)$

R. Aaij, et al., Phys. Rev. Lett. 115, 072001 (2015)

ごく少数しか発見されていない。なぜ少ないのか?

様々なハドロン励起

励起状態の記述(バリオンの例)

qqq以外のエキゾチック構造をどのように判別するか?

- 反クォークの存在:"価クォーク数"の非保存
- カラー閉じ込め:クォークは<mark>漸近状態</mark>ではない

ハドロンの複合性

複合性×:ハドロン波動関数の2ハドロン部分空間への射影

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)</u>

$$\hat{1} = \hat{P}_{\text{two-body}} + \hat{P}_{\text{others}}, \quad \hat{P}_{\text{two-body}} = \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} |\boldsymbol{p}\rangle \langle \boldsymbol{p} |$$

$$Z = \langle B | \hat{P}_{others} | B
angle$$

"一粒子性"
(その他すべて)

- 定量的なクラスター性の指標 X+Z=1, 0<X<1
- 束縛状態の (X, Z) は確率として解釈可能 < -- 波動関数の規格化
- 漸近状態 (ハドロン) で定義: QCDでwell defined

低エネルギー普遍性

2体系の普遍性:ユニタリー極限

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

- 1) s波の短距離相互作用
- 2) 散乱長: |a| ≫ r_s:相互作用距離
- 系はスケール不変
- a > 0 で浅い束縛状態が存在

$$B_2 = \frac{1}{ma^2} \left[1 + \mathcal{O}\left(\frac{r_s}{a}\right) \right]$$

例:核子と4He原子

	N [MeV]	⁴ He [mK]
B ₂	2.22	1.31
1/ma ²	1.41	1.12

4He

安定状態の弱束縛関係式

s波弱束縛状態 (R ≫ Rtyp) の複合性 0<X<1

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)</u>

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}, \quad r_e = R\left\{\frac{X-1}{X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

- a₀**:散乱長,** r_e**:有効レンジ,** R = (2µB)^{-1/2}**:波動関数の広がり** R_{typ}**:相互作用の典型的長さスケール**
- - 重陽子はNN複合状態(a₀~R≫r_e) <- X ~ 1

 核力や波動関数を知らなくても観測可能量から構造が分かる。

B—> 0 極限は完全に複合的: X = 1 (スケール不変性: a₀=R) <u>T. Hyodo, Phys. Rev. C90, 055208 (2014)</u>

- 弱束縛関係式:スケール不変性の破れと複合性の関係

準束縛状態(崩壊の効果込み)の弱束縛関係式 X <-- (EQB, a0) Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016), PTEP 2017 023D02 (2017)

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \sqrt{\frac{{\mu'}^3}{\mu^3}}\mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu_0'}}$$

∧(1405): KN閾値近傍の共鳴状態 R.H. Dalitz, S.F. Tuan, Phys. Rev. Lett. 425 (1959)

- 複素固有エネルギーとKN散乱長の決定 Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011)
- E_{QB} = -10 -26i **MeV**, a₀ = 1.39-0.85i **fm**
- X_{KN} =1.2 + 0.1i

∧(1405)の(閾値に近い)状態はKN複合的

1460 ₁₄₄₀

Re[z] [MeV

1420 1400

Im[z] [MeV]

スケール不変性

弱束縛関係式

2体系での低エネルギー普遍性:ユニタリー極限

V. Efimov, Phys. Lett. B 33, 563 (1970)

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

普遍性の発現:散乱長の調整

T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014)

- лл 散乱長 <-- クォーク質量ma、カイラル対称性の回復に依存

アイソスピン対称(π⁰π⁰π⁰-π⁰π⁻π⁺) アイソスピンの破れ(π⁰π⁰π⁰)

- 物理系への示唆: 核媒質中での σ と π* の 同時 ソフト 化?

メソンと2中性子系の普遍性

K-nn/D⁰nn 系 (J=0, I=3/2, I₃=-3/2) \neq K-pp (I=1/2)

U. Raha, Y. Kamiya, S.-I. Ando, T. Hyodo, in preparation

- 全ての相互作用がアイソスピン |=1 (no /\(1405))
- エフィモフ効果に有利
 - 結合チャンネルがない
- クーロン相互作用がない
- $a_{nn} \sim -20 \text{ fm} \gg r_s \sim O(1) \text{ fm}$

結果

- 2体K-n系:ms増加 (mk ~ 1337 MeV) でユニタリー極限
- 3体K-nn系:K-nがユニタリー極限のときにエフィモフ効果
- 物理系への示唆:3体共鳴状態?

