Quark mass dependence of H-dibaryon in M scattering

Yasuhiro Yamaguchia, Tetsuo Hyodo ${ }^{\text {b }}$

${ }^{a}$ Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova ${ }^{b}$ Yukawa Institute for Theoretical Physics, Kyoto Univ.

Introduction

Formulation

- Effective field theory
- Quark mass dependence

Intermezzo: scattering theory
Results

- M scattering: SU(3) limit / physical point
- Extrapolation in quark mass plane

Summary

Contents

 8號

$$
x=
$$

-

8
8
8 8 8

-

\square

Introduction

H-dibaryon in M scattering

H-dibaryon: uuddss bound state predicted in a quark model R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977)

Experiments: Negative

- Nagara event: double \wedge hyper nuclei -> no deeply bound H H. Takahashi, et al., Phys. Rev. Lett. 87, 212502 (2001)
- Belle: $Y(1 S), Y(2 S)$ decay -> no signal (<< deuteron) B.H. Kim, et al., [Belle collaboration] Phys. Rev. Lett. 114, 022301 (2015)

Recent activities

RHIC-STAR: M correlation \rightarrow scattering length
L. Adamczyk, et al., [STAR collaboration] Phys. Rev. Lett. 114, 022301 (2015);
K. Morita, T. Furumoto, A. Ohnishi, Phys. Rev. C 91, 024916 (2015)

H-dibaryon in lattice QCD

- Bound at unphysical quark masses

HAL QCD, T. Inoue et al., Phys. Rev. Lett. 106, 162002 (2011); NPLQCD, S. Beane et al., Phys. Rev. Lett. 106, 162001 (2011); HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012); ...

- Physical point simulation is ongoing.

Introduction

Near-threshold scaling

Extrapolation: unbound at physical point

S. Shanahan, A. Thomas, R. Young, Phys. Rev. Lett. 107, 092004 (2011);
J. Haidenbauer, U.G. Meissner, Phys. Lett. B 706, 100 (2011)

Near-threshold scaling in s-wave (bound -> unbound)
T. Hyodo, Phys. Rev. C90, 055208 (2014)

- unitary limit (infinitely large scattering length) Unitary limit at unphysical quark masses?

Purpose of this talk

How does the H-dibaryon bound state in the M scattering change along with the variation of the quark masses?

Input: three lightest lattice data in SU(3) limit.
Effective framework which describes the M scattering in a relatively wide range of quark masses.
(Quantitative prediction at physical point may be given by lattice QCD / systematic ChPT.)

Formulation

Low-energy baryon-baryon scattering

Length scales in the SU(3) limit
HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012)

- Interaction range by NG boson exchange: $r^{0} \sim 0.24-0.42$ fm
- large scattering length: a ~ 1.2-1.7 fm
- large radius <- small binding energy: 0.77-1.14 fm

At low energy, the interaction can be treated as point like.

Effective Lagrangian

Low-energy effective Lagrangian with contact interactions c.f. D.B. Kaplan, Nucl. Phys. B494, 471 (1997)

$$
\begin{aligned}
\mathcal{L}_{\text {free }} & =\sum_{a=1}^{4} \sum_{\sigma=\uparrow, \downarrow} B_{a, \sigma}^{\dagger}\left(i \frac{\partial}{\partial t}+\frac{\nabla^{2}}{2 M_{a}}+\delta_{a}\right) B_{a, \sigma}+H^{\dagger}\left(i \frac{\partial}{\partial t}+\frac{\nabla^{2}}{2 M_{H}}+\nu\right) H \\
\mathcal{L}_{\text {int }} & =-g\left[D^{(1) \dagger} H+H^{\dagger} D^{(1)}\right]-\lambda^{(1)} D^{(1) \dagger} D^{(1)}-\lambda^{(8)} D^{(8) \dagger} D^{(8)}-\lambda^{(27)} D^{(27) \dagger} D^{(27)} \\
D^{(F)} & =[B B]_{J=0, S=-2, I=0}^{(F)}
\end{aligned}
$$

Length scales at the physical point

- No π exchange in $M . \pi$ exchange in $N \equiv(M+25 \mathrm{MeV})$
—> safely applicable below $N \equiv$ threshold

Formulation

Low-energy scattering amplitude

Coupled-channel scattering amplitude ($\mathrm{i}=\mathrm{M}, \mathrm{N} \equiv, \Sigma \Sigma$)

$$
\begin{aligned}
f_{i i}(E) & =\frac{\mu_{i}}{2 \pi}\left[\left(\mathcal{A}^{\text {tree }}(E)\right)^{-1}+I(E)\right]_{i i}^{-1} \\
\mathcal{A}_{i j}^{\text {tree }}(E) & =i 久 j+i \geqslant \\
& =-\left(V_{i j}+\frac{g^{2} d_{i}^{\dagger} d_{j}}{E-\nu+i 0^{+}}\right), \quad V=U^{-1}\left(\begin{array}{c}
\lambda^{(1)} \\
\lambda^{(8)} \\
\lambda^{(27)}
\end{array}\right) U, \quad d=\left(\begin{array}{c}
-\sqrt{\frac{1}{8}} \\
-\sqrt{\frac{1}{2}} \\
\sqrt{\frac{\sqrt{3}}{8}}
\end{array}\right) \\
I_{i}(E) & =\underbrace{i} \\
& =\frac{\mu_{i}}{\pi^{2}}\left(-\Lambda+k_{i} \operatorname{artanh} \frac{\Lambda}{k_{i}}\right), \quad k_{i}=\sqrt{2 \mu_{i}\left(E-\Delta_{i}\right)}
\end{aligned}
$$

EFT describes the low-energy scattering for a given ($m_{\mathrm{l}}, \mathrm{m}_{\mathrm{s}}$).

- scattering length, bound state pole, ...
- quark mass dep. \rightarrow baryon masses and couplings λ

Modeling quark mass dependence

"Quark masses" via GMOR relation

$$
\begin{aligned}
B_{0} m_{l} & =\frac{m_{\pi}^{2}}{2}, \quad B_{0} m_{s}=m_{K}^{2}-\frac{m_{\pi}^{2}}{2} \\
B_{0} & =-\frac{\langle\bar{q} q\rangle}{3 F_{0}^{2}}
\end{aligned}
$$

Baryon masses: linear in m_{a}

$$
\begin{aligned}
& M_{N}\left(m_{l}, m_{s}\right)=M_{0}-(2 \alpha+2 \beta+4 \sigma) B_{0} m_{l}-2 \sigma B_{0} m_{s} \\
& M_{\Lambda}\left(m_{l}, m_{s}\right)=M_{0}-(\alpha+2 \beta+4 \sigma) B_{0} m_{l}-(\alpha+2 \sigma) B_{0} m_{s} \\
& M_{\Sigma}\left(m_{l}, m_{s}\right)=M_{0}-\left(\frac{5}{3} \alpha+\frac{2}{3} \beta+4 \sigma\right) B_{0} m_{l}-\left(\frac{1}{3} \alpha+\frac{4}{3} \beta+2 \sigma\right) B_{0} m_{s} \\
& M_{\Xi}\left(m_{l}, m_{s}\right)=M_{0}-\left(\frac{1}{3} \alpha+\frac{4}{3} \beta+4 \sigma\right) B_{0} m_{l}-\left(\frac{5}{3} \alpha+\frac{2}{3} \beta+2 \sigma\right) B_{0} m_{s}
\end{aligned}
$$

- three mass difference by $(\alpha, \beta) \rightarrow$ GMO relation
- fit to experiment/lattice \rightarrow r reasonable

HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012)

Modeling quark mass dependence

Coupling constants <- scattering length in SU(3) limit
T. Inoue, private communication.

- $\mathrm{a}=-f(\mathrm{E}=0)$ 1: bound, 8: repulsive, 27: attractive
- linear in m_{q} : $\lambda^{(F)}\left(m_{l}, m_{s}\right)=\lambda_{0}^{(F)}+\lambda_{1}^{(F)} B_{0}\left(2 m_{l}+m_{s}\right)$
- singlet channel: $g=0$ (contact), $g \neq 0$ (bare H)
this talk

Intermezzo: scattering theory

Pole of the scattering amplitude

Scattering amplitude and S-matrix (for each partial wave)
J.R. Taylor, Scattering theory (Wiley, New York, 1972)

$$
f(p)=\frac{\not(-p)-\not(p)}{2 \operatorname{ip} f(p)}, \quad s(p)=\frac{\not(-p)}{\not(p)}
$$

- Jost function <- asymptotic form of wave function

$$
\frac{\psi_{p}(r) \sim \not(p) e^{-i p r}}{\text { incoming }}-\frac{\wedge-p) e^{i p r}}{\text { outgoing }}
$$

Pole of the amplitude $f(p) \rightarrow \infty$

- zero of Jost function $\not \wedge p)=0$
- outgoing wave only $\left.\psi_{p}(r)\right|_{(p)=0} \sim e^{i p r}$
- eigenstate of Hamiltonian <- bound state $\left.\psi_{i \kappa}(r)\right|_{(i k)=0} \sim e^{-\kappa r}$

Intermezzo: scattering theory

Pole of the scattering amplitude

Analytic continuation of $f(p) \rightarrow>$ pole in complex p plane T. Hyodo, Genshikaku Kenkyu Vol. 61 No. 1, 15 (2016)

- Resonance: 4th quadrant of complex p plane
- Virtual state: negative imaginary p axis (s-wave only)
- natural generalization of bound state

Pole trajectory from bound state to resonance (s-wave)

- Pole goes through virtual state.
T. Hyodo, Phys. Rev. C90, 055208 (2014)

CDD pole of the scattering amplitude

CDD pole: pole of the inverse amplitude
L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

- zero of the scattering amplitude

$$
f\left(p_{c}\right)=0, \quad 1 / f\left(p_{c}\right) \rightarrow \infty
$$

- related to independent particle (but $\mathrm{p}_{\mathrm{c}} \neq$ bare pole) G.F. Chew, S.C. Frautschi, Phys. Rev. 124, 264 (1961)
- effective range expansion converges only in $|\mathrm{p}|<\left|\mathrm{p}_{\mathrm{c}}\right|$

$$
1 / f(p)=p \cot \delta(p)-i p
$$

Ramsauer-Townsend effect: CDD pole above threshold J.R. Taylor, Scattering theory (Wiley, New York, 1972)

- $f\left(p_{c}\right)=0 \rightarrow$ phase shift $\delta\left(p_{c}\right)=\pi$: no scattering
$-s\left(p_{c}\right)=1$: incoming = outgoing, perfect transmission

M scattering : SU(3) limit

M scattering amplitude in the $\operatorname{SU}(3)$ limit

HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012)

- bound $\mathrm{H}<-$ bound state in 1
- attractive scattering length $\mathrm{a}=-\mathrm{f}(\mathrm{E}=0)<$ - attraction in 27

$$
f_{\Lambda \Lambda}(E)=\frac{1}{8} f^{(1)}(E)+\frac{1}{5} f^{(8)}(E)+\frac{27}{40} f^{(27)}(E)
$$

- CDD pole below threshold: $f(E)=0 \rightarrow$ ERE breaks down.

M scattering : Physical point

M scattering amplitude at the physical point

SU(3) pot. + phys. mass

HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012)

- no bound H , but a resonance below $\mathrm{N} \equiv$ threshold
- attractive scattering length: $a_{M}=-3.2 \mathrm{fm}$
- Ramsauer-Townsend effect near resonance: $f(E)=0$
<- remnant of the CDD pole

Pole trajectories from SU(3) limit to physical point

Pole trajectory with $\times(x=0$: SU(3) limit, $x=1$: phys. point)

- pole is not continuously connected
- bound state $->$ virtual state
- shadow pole -> resonance
R. Eden, J. Taylor, Phys. Rev. 133, B1575 (1964)
- CDD pole is continuously connected

Extrapolation and unitary limit

Extrapolation in the NGboson/quark mass plane

$$
B_{0} m_{l}=\frac{m_{\pi}^{2}}{2}, \quad B_{0} m_{s}=m_{K}^{2}-\frac{m_{\pi}^{2}}{2}
$$

- unitary limit between SU(3) limit and physical point

Implication to many-body system

Many-body system of \wedge baryons: BEC-BCS crossover
W. Zwerger, Lect. Notes Phys. 836, 1 (2012); M. Randeria, Nature Phys. 6, 561 (2010)

> Superfluid of H-dibaryons = "H-matter"
> R. Tamagaki,

> Prog. Theor. Phys. 85, 321 (1991)

- "H-matter" may be realized with unphysical quark masses ${ }_{19}$

Summary

SU(3) limit: bound H with attractive scattering
length <- CDD pole below the threshold.
Physical point: Ramsauer-Townsend effect
near resonance H <- remnant of the CDD pole
The M scattering undergoes the unitary limit
between SU(3) limit and physical point.
Y. Yamaguchi, T. Hyodo, Phys. Rev. C94,065207(2016)
SU(3) limit: bound H with attractive
length <- CDD pole below the thr
Physical point: Ramsauer-Townse
near resonance H <- remnant of th
The N scattering undergoes the
between SU(3) limit and physical po
Y. Yamaguchi, T. Hyodo, Phys. Rev. C94,065207 (2016)

$$
\text { Y. Yamaguchi, T. Hyodo, Phys. Rev. C94, } 065207 \text { (2016) }
$$

\qquad

Summary

 2

\qquad

,

We study the quark mass dependence of the H-
dibaryon and the M interaction using EFT.
SU(3) limit: bound H with attractive scattering
length <- CDD pole below the threshold.
Physical point: Ramsauer-Townsend effect
near resonance $H<-$ remnant of the CDD pole.
The M scattering undergoes the unitary limit
We study the quark mass dependence of the H-
dibaryon and the M interaction using EFT.
SU(3) limit: bound H with attractive scattering
length <- CDD pole below the threshold.
Physical point: Ramsauer-Townsend effect
near resonance $H<-$ remnant of the CDD pole.
The M scattering undergoes the unitary limit
We study the quark mass dependence of the H-
dibaryon and the M interaction using EFT.
SU(3) limit: bound H with attractive scattering
length <- CDD pole below the threshold.
near resonance H <- remnant of the CDD pole.
The M scattering undergoes the unitary limit
We study the quark mass dependence of the H-
dibaryon and the M interaction using EFT.
SU(3) limit: bound H with attractive scattering
length <- CDD pole below the threshold.
near resonance H <- remnant of the CDD pole.
The M scattering undergoes the unitary limit
We study the quark mass dependence of the H-
dibaryon and the M interaction using EFT.
SU(3) limit: bound H with attractive scattering
length <- CDD pole below the threshold.
Physical point: Ramsauer-Townsend effect
near resonance $H<-$ remnant of the CDD pole.
The M scattering undergoes the unitary limit

We study the quark mass dependence of the H -
dibaryon and the M interaction using EFT.
SU(3) limit: bound H with attractive scattering
length <- CDD pole below the threshold.
Physical point: Ramsauer-Townsend effect
near resonance H <- remnant of the CDD pole.
The M scattering undergoes the unitary limit

