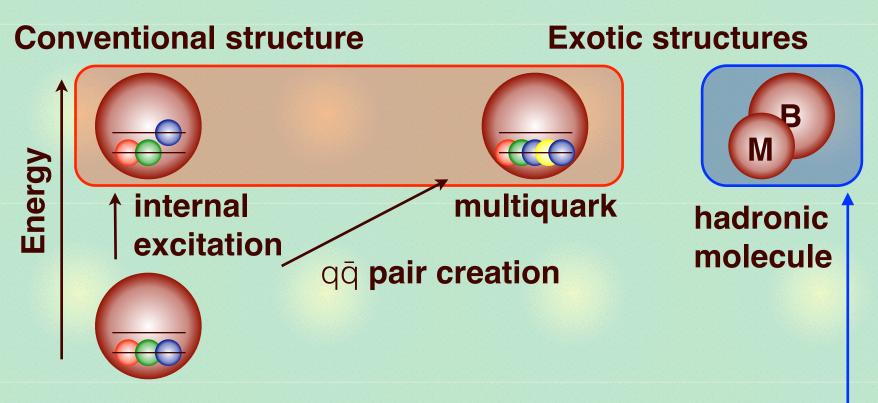
Compositeness of hadrons from effective field theory

Yuki Kamiya, Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Method to study the internal structure

Internal structure of excited hadrons?



- Weak binding relation: observables -> compositeness

S. Weinberg, Phys. Rev. 137, B672 (1965)

c.f. Talk by T. Sekihara (Fri)

Weak binding relation for stable states

Compositeness of s-wave weakly bound state ($R \gg R_{typ}$)

S. Weinberg, Phys. Rev. 137, B672 (1965);

T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}, \quad r_e = R \left\{ \frac{X-1}{X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$$

a₀: scattering length, r_e: effective range

 $R = (2\mu B)^{-1/2}$: radius of wave function

Rtyp: length scale of interaction

X: probability of finding composite component

- deuteron is NN composite ($a_0 \sim R \gg r_e$) -> X ~ 1
- internal structure from observable
- no nuclear force potential / wavefunction of deuteron

Note: applicable only for stable states

Weak-binding relation: stable bound state

Effective field theory

Low-energy scattering with near-threshold bound state

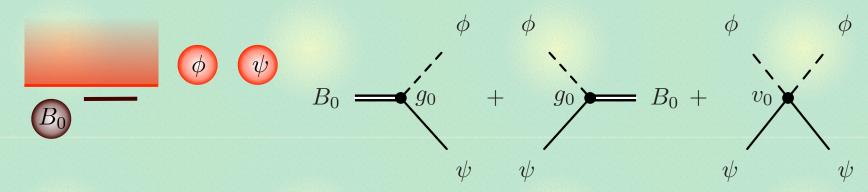
- Nonrelativistic EFT with contact interaction

D.B. Kaplan, Nucl. Phys. B494, 471 (1997)

Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016)

$$H_{\text{free}} = \int d\boldsymbol{r} \left[\frac{1}{2M} \nabla \psi^{\dagger} \cdot \nabla \psi + \frac{1}{2m} \nabla \phi^{\dagger} \cdot \nabla \phi + \frac{1}{2M_0} \nabla B_0^{\dagger} \cdot \nabla B_0 + \nu_0 B_0^{\dagger} B_0 \right],$$

$$H_{\text{int}} = \int d\boldsymbol{r} \left[g_0 \left(B_0^{\dagger} \phi \psi + \psi^{\dagger} \phi^{\dagger} B_0 \right) + v_0 \psi^{\dagger} \phi^{\dagger} \phi \psi \right]$$



- cutoff: ∧ ~ 1/R_{typ} (interaction range of microscopic theory)
- At low momentum $p \ll \Lambda$, interaction ~ contact

Compositeness and "elementariness"

Eigenstates

$$H_{\mathrm{free}}|B_0\rangle = \nu_0|B_0\rangle, \quad H_{\mathrm{free}}|\mathbf{p}\rangle = \frac{p^2}{2\mu}|\mathbf{p}\rangle \quad \text{free (discrete + continuum)}$$
 $(H_{\mathrm{free}} + H_{\mathrm{int}})|B\rangle = -B|B\rangle \quad \text{full (bound state)}$

- normalization of |B> + completeness relation

$$\langle B | B \rangle = 1, \quad 1 = |B_0\rangle\langle B_0| + \int \frac{d\mathbf{p}}{(2\pi)^3} |\mathbf{p}\rangle\langle \mathbf{p}|$$

- projections onto bare states

$$1 = Z + X$$
, $Z \equiv |\langle B_0 | B \rangle|^2$, $X \equiv \int \frac{d\mathbf{p}}{(2\pi)^3} |\langle \mathbf{p} | B \rangle|^2$

"elementariness" compositeness

Z, X: real and nonnegative —> interpreted as probability

Weak-binding relation: stable bound state

Weak binding relation

ΨΦ scattering amplitude (exact result)

$$f(E) = -\frac{\mu}{2\pi} \frac{1}{[v(E)]^{-1} - G(E)} \int_{\psi}^{\phi} \int_{\psi}^{\phi} \frac{1}{[v(E)]^{-1} - G(E)} \int_{\psi}^{\phi} \frac{1}{[v(E)]^{-1} - G(E$$

Compositeness $X \leftarrow V(E)$, G(E)

T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015)

$$X = \{1 + G^2(-B)v'(-B) \left[G'(-B)\right]^{-1}\}^{-1}$$

 $1/R=(2\mu B)^{1/2}$ expansion: leading term <— X

$$a_0 = -f(E=0) = R\left\{\frac{2X}{1+X} + \overline{\mathcal{O}\left(\frac{R_{\mathrm{typ}}}{R}\right)}\right\}$$
 renormalization dependent

renormalization independent

If $R \gg R_{typ}$, correction terms neglected: $X \leftarrow (B, a_0)$

Weak-binding relation: unstable state

Introduction of decay channel

Introduce decay channel

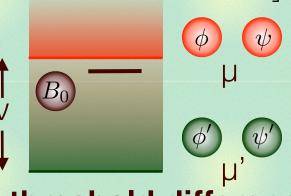
$$H'_{\text{free}} = \int d\mathbf{r} \left[\frac{1}{2M'} \nabla \psi'^{\dagger} \cdot \nabla \psi' - \nu_{\psi} \psi'^{\dagger} \psi' + \frac{1}{2m'} \nabla \phi'^{\dagger} \cdot \nabla \phi' - \nu_{\phi} \phi'^{\dagger} \phi' \right],$$

$$H'_{\text{int}} = \int d\mathbf{r} \left[g'_{0} \left(B_{0}^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} B_{0} \right) + v'_{0} \psi'^{\dagger} \phi'^{\dagger} \phi' \psi' + v'_{0}^{t} (\psi^{\dagger} \phi^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} \phi \psi) \right],$$

Quasi-bound state: complex eigenvalue

$$H = H_{\text{free}} + H'_{\text{free}} + H_{\text{int}} + H'_{\text{int}}$$

$$H|QB\rangle = E_{QB}|QB\rangle, \quad E_{QB} \in \mathbb{C}$$



Generalized relation: correction term <- threshold difference

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{OB}}} \in \mathbb{C}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu}}$$

Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016)

c.f. V. Baru, et al., Phys. Lett. B586, 53 (2004),...

If $|R| \gg (R_{typ}, I)$ correction terms neglected: $X < - (E_{QB}, a_0)$

Application

Generalized weak binding relation X < - (Eqs. a₀)

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu}}$$

- $\Lambda(1405)$ (higher) pole position and $\overline{K}N$ scattering length

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012), ...

- E_{QB} = -10 -26i MeV —> $|R| \sim 2$ fm —> small correction term

$$\left|\frac{R_{\mathrm{typ}}}{R}\right| \lesssim 0.12, \quad \left|\frac{l}{R}\right|^3 \lesssim 0.16$$
 (rho exchange, $\pi\Sigma$ threshold)

	Ref.	E_{QB} (MeV)	a_0 (fm)	$X_{ar{K}N}$	$ ilde{ ilde{X}_{ar{K}N}}$	U	
	[45]	-10 - i26	1.39 - i0.85	1.2 + i0.1	1.0	0.5	$\tilde{X} = \frac{1 - Z + X }{2}$
	[46]	-4-i8	1.81 - i0.92	0.6 + i0.1	0.6	0.0	$\Lambda = \frac{1}{2}$
	[47]	-13 - i20	1.30 - i0.85	0.9 - i0.2	0.9	0.1	
	[48]	2 - i 10	1.21 - i 1.47	0.6 + i0.0	0.6	0.0	U = Z + X - 1
•	[48]	-3-i12	1.52 - i 1.85	1.0 + i0.5	0.8	0.6	

Summary

Compositeness of near-threshold bound state can be determined only by observables.

S. Weinberg, Phys. Rev. 137, B672 (1965)

Weak binding relation can be generalized to unstable states with effective field theory.

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \mathcal{O}\left(\left|\frac{l}{R}\right|^3\right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu}}$$

Precise determination of the pole position and scattering length shows that $\Lambda(1405)$ is dominated by KN composite component. (

Y. Kamiya, T. Hyodo, Phys. Rev. C93, 035203 (2016), arXiv:1607.01899[hep-ph]