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H-dibaryon in ΛΛ scattering
Introduction

H-dibaryon: uuddss bound state predicted in a quark model

Experiments: Negative

R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977)

H. Takahashi, et al., Phys. Rev. Lett. 87, 212502 (2001)
- Nagara event: double Λ hyper nuclei -> no deeply bound H

- Belle: Υ(1S), Υ(2S) decay -> no signal (<< deuteron)
B.H. Kim, et al., [Belle collaboration] Phys. Rev. Lett. 114, 022301 (2015)

[24]; fit residuals are also shown. The dashed curve in the
figure shows the expected H signal for a !ð1S; 2SÞ ! HX
branching fraction that is 1=20th that for antideuterons.

For the second " ("2) in the H ! "1"2 ("i ! pi!
#
i )

channel, in addition to the criteria used for "1 selection,
FoMs based on MC events are used to optimize additional
requirements on a fit that constrains the "1"2 vertex to
the IP, and c""2

$ #0:5 cm. Entries in which two of the
selected tracks originate from a single particle are removed
by the requirementsMðp1p2Þ $ 1878 MeV,Mð!#

1 !
#
2 Þ $

288 MeV and Nhitsðp1Þ þ Nhitsðp2Þ $ 60. In 3.2% (2.8%)
of the data (MC) events, two or more entries have one or
more tracks in common. In these cases, we choose the track

combination that has the best ""-IP vertex fit. For signal
MC events, this selects the correct combination 95.4% of
the time. The "" candidates are subjected to a kinematic
fit that constrains both p!# masses to m". The MC-
determined selection efficiencies, obtained by averaging
!ð1SÞ and !ð2SÞ signal MC results, are #2 ¼ 10:9% for
H ! "" and ##2 ¼ 10:1% for #H ! #" #".
The difference between the "" and #" #" signal yields

in the region Mð""Þ< 2:38 GeV, determined from two-
dimensional fits to scatter plots of Mðp1!1Þ vs Mðp2!2Þ
with the " mass requirements relaxed, is larger than
the difference in the MC-determined "" and #" #" accep-
tances. This is attributed to deficiencies in the simulation of
low-energy #" and #p inelastic interactions in the material of
the inner detector. To account for this, a correction factor
of 0:83'0:13 is applied to the H ! #" #" and H ! #" #p!þ

efficiencies. The error on this factor is included in the
systematic error.
The continuum-subtracted Mð""Þ (Mð #" #"Þ) distribu-

tion for events that satisfy all of the selection requirements
is shown in the top (bottom) panel of Fig. 2, where there is
no sign of a near-threshold enhancement similar to that
reported by the E522 Collaboration [10] nor any other
evident signal for H ! "" ( #H ! #" #" ). The curve is the
result of a background-only fit using the functional form
described above; fit residuals are also shown. Expectations
for a signal branching fraction that is 1=20 that for the
antideuterons is indicated with a dashed curve.
For each channel, we do a sequence of binned, minimum

$2 fits to the invariant mass distributions in Figs. 1 and 2
using a signal function to represent H ! fi (f1 ¼ "p!#

and f2 ¼ "") and an ARGUS function to represent the
background. In the fits, the signal peak position is confined
to a 4MeVwindow that is scanned in 4MeV steps across the
ranges ðm"þmpþm!#Þ(Mð"p!#Þ(2m" and 2m"(
Mð""Þ(2m"þ28MeV. For the "p!# ( #" #p!þ) mode,
the signal function is a Gaussian whose resolution width is
fixed at its MC-determined value scaled by a factor f ¼
0:85ð1:12Þ that is determined from a comparison of data
and MC fits to inclusive $# ! "!# and $cð2470Þ0 !
$#!þ signals found in the same data samples. For the
"" mode, the signal function is a Lorentzian with FWHM
fixed at either % ¼ 0 or 10 MeV convolved with a Gaussian.
Since the fi and #fi acceptances are different, we fit the
particle and antiparticle distributions separately.
None of the fits exhibit a positive signal with greater

than 3% significance. The fit results are translated into
90% C.L. upper limits on the signal yield, NUL

i ðMHÞ and
#NUL
i ðMHÞ, by convolving a normalized function of the

form expð#&$2=2Þ with a normalized Gaussian whose
width equals the systematic error (discussed below) and
then determining the yield below which 90% of the area
above Ni ¼ 0 is contained. These values are used to
determine upper limits on the inclusive product branching
fractions via the relation
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FIG. 1 (color online). Top: The continuum-subtracted
Mð"p!#Þ distribution (upper) and fit residuals (lower) for the
combined !ð1SÞ and !ð2SÞ data samples. The curve shows
the results of the background-only fit described in the text.
The dashed curve shows the expected H signal for a !ð1S;2SÞ!
HX branching fraction that is 1=20th that for antideuterons.
Bottom: The corresponding Mð #" #p!þÞ distributions.
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Bð!ð1S; 2SÞ ! HXÞBðH ! fiÞ

<
1

2N!ðB"!p!#Þi
NUL

i ðMHÞ
"i

; (1)

where N! ¼ ð260% 6Þ & 106 is the total number of
!ð1SÞ plus !ð2SÞ events in the data sample [25] and
B"!p!# ¼ 0:639% 0:005 [15].

Sources of systematic errors and their contributions are
listed in Table I. The tracking, pid, and " reconstruction
uncertainties are common to other Belle analyses and are
determined from data-MC comparisons of various control
samples. For the channel-specific vertex requirements,
we use data-MC differences found in high-statistics
samples of inclusive !ð1S; 2SÞ ! " #p!þ and " #" events
with Mð" #p!Þ< 2:28 GeV (Mð" #"Þ<2:38GeV) selected
with the same vertex criteria. The continuum subtraction

systematic error contribution is determined from the errors
in the relative on- and off-resonance luminosity measure-
ments. Systematic errors associatedwith theMC-determined
acceptance andminimummomentum requirement are deter-
mined by varying parameters used in the PYTHIA generator
and GEANT simulation programs. The systematic errors asso-
ciated with the signal fitting are determined from changes
induced by variations in the binning and fitting ranges in fits
to an inclusive$cð2470Þ0 ! $#!þ signal seen in the same
data sample. Sums in quadrature of the individual contribu-
tions are taken as the total systematic errors.
For the final limits, we use the branching fraction value

that contains <90% of the above-zero area of the product
of the H and #H likelihood functions. Figure 3 shows the
resultingMH # 2m"-dependent upper limits for the"p!#

TABLE I. Systematic error sources (in percent). When the H
and #H values differ, the #H values are given in parentheses.

Source H ! "p!# H ! ""

N!ð1SÞ þ N!ð2SÞ 2.3 2.3
Tracking 3.6 3.6
Particle id 7.2 4.3
" reconstruction 3.2(5.3) 12.6(9.6)
Vertex requirements 3.9 3.5
Signal efficiency 2.0(15.7) 1.9(15.8)
Continuum subtraction 1.4 1.4
Bð" ! p!#Þ 0.8 1.6
PDG Fitting 2.0 2.0
Resolution 2.6 2.6
Quadrature sum 10.2(19.1) 14.7(19.8)
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FIG. 2 (color online). Top: The continuum-subtracted Mð""Þ
distribution (upper) and fit residuals (lower) for the combined
!ð1SÞ and !ð2SÞ data samples with the background-only fit
superimposed. The curves are the same as in Fig. 1. Bottom: The
corresponding Mð #" #"Þ distributions.
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FIG. 3 (color online). Upper limits (at 90% C.L.) for
Bð!ð1S; 2SÞ ! HXÞ for a narrow (% ¼ 0) H dibaryon vs MH #
2m" are shown as solid horizontal bars. The þ1# (þ2#) values
from the fitted signal yields are shown as the dotted (dashed)
bars. (For some mass bins, these are negative and not shown.)
The vertical dotted line indicates the MH ¼ 2m" threshold. The
limits below (above) the 2m" threshold are for f1 ¼ "p!#

(f2 ¼ ""). The horizontal dotted line indicates the average
PDG value for Bð!ð1S; 2SÞ ! #dXÞ.
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Recent activities
Introduction

RHIC-STAR: ΛΛ correlation —> scattering length
L. Adamczyk, et al., [STAR collaboration] Phys. Rev. Lett. 114, 022301 (2015);
K. Morita, T. Furumoto, A. Ohnishi, Phys. Rev. C 91, 024916 (2015)

a pair that shares one or two daughters with the real Λ were
avoided by removing any Λ pair with a common daughter.
Possible two-track biases from reconstruction were studied
by evaluating correlation functions with various cuts on the
scalar product of the normal vectors to the decay plane of
the Λs and on the radial distance between Λ vertices in a
given pair. No significant change in the correlation function
has been observed due to these tracking effects. Each mixed
event pair was also required to satisfy the same pairwise
cuts applied to the real pairs from the same event. The
efficiency and acceptance effects canceled out in the ratio
AðQÞ=BðQÞ. Corrections to the raw correlation functions
were applied according to the expression

C0ðQÞ ¼ CmeasuredðQÞ − 1

PðQÞ
þ 1; ð2Þ

where the pair purity, PðQÞ, was calculated as a product of
S=ðSþ BÞ for the two Λs of the pair. The pair purity is 92%
and is constant over the analyzed range of invariant relative
momentum.
The selected sample of Λ candidates also included

secondary Λs, i.e., decay products of Σ0, Ξ−, and Ξ0,
which were still correlated because their parents were
correlated through QS and emission sources. Toy model
simulations have been performed to estimate the feed-down
contribution from Σ0Λ, Σ0Σ0, and Ξ−Ξ−. The Λ, Σ, and Ξ
spectra have been generated using a Boltzmann fit at
midrapidity (T ¼ 335 MeV [18]) and each pair was
assigned a weight according to QS. The pair was allowed
to decay into daughter particles and the correlation function
was obtained by the mixed-event technique. The estimated
feed-down contribution was around 10% for Σ0Λ, around

5% for Σ0Σ0, and around 4% for Ξ−Ξ−. Thermal model
studies have shown that only 45% of the Λs in the sample
are primary [21]. However, one needs to run afterburners
to determine the exact contribution to the correlation
function from feed-down, which requires knowledge of
final-state interactions. The final-state interaction parame-
ters for Σ0Σ0, Σ0Λ, and ΞΞ interactions are not well known,
which makes it difficult to estimate feed-down using a
thermal model [21]. Therefore, to avoid introducing large
systematic uncertainties from the unknown fraction of
aforementioned residual correlations, the measurements
presented here are not corrected for residual correlations.
The effect of momentum resolution on the correlation

functions has also been investigated using simulated tracks
from Λ decays, with known momenta, embedded into real
events. Correlation functions have been corrected for
momentum resolution using the expression

CðQÞ ¼ C0ðQÞCinðQÞ
CresðQÞ

; ð3Þ

where CðQÞ represents the corrected correlation function,
and CinðQÞ=CresðQÞ is the correction factor. CinðQÞ was
calculated without taking into account the effect of
momentum resolution and CresðQÞ included the effect of
momentum resolution applied to each Λ candidate. More
details can be found in Ref. [22]. The impact of momentum
resolution on correlation functions was negligible com-
pared with statistical errors. Figure 2 shows the exper-
imental ΛΛ and Λ̄ Λ̄ correlation function after corrections
for pair purity and momentum resolution for 0–80%
centrality Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The
Λ̄ Λ̄ correlation function is slightly lower than the ΛΛ
correlation function, although within the systematic errors.
Noting that the correlations CðQÞ in Fig. 2 are nearly
identical for Λ and Λ̄, we have chosen to combine the
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FIG. 1 (color online). The invariant mass distribution for Λ and
Λ̄ produced in Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, for
0–80% centrality. The Λ (Λ̄) candidates lying in the mass range
1.112 to 1.120 GeV=c2, shown by solid red vertical lines, were
selected for the correlation measurement.
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FIG. 2 (color online). The ΛΛ and Λ̄ Λ̄ correlation function in
Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, for 0–80% centrality.
The plotted errors are statistical only.
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!! INTERACTION FROM . . . PHYSICAL REVIEW C 91, 024916 (2015)

TABLE I. !! potentials. The scattering length (a0) and effective range (reff ) are fitted using a two-range Gaussian potential, V!!(r) =
V1 exp(−r2/µ2

1) + V2 exp(−r2/µ2
2).

Model a0 (fm) reff (fm) µ1 (fm) V1 (MeV) µ2 (fm) V2 (MeV) Ref.

ND46 4.621 1.300 1.0 −144.89 0.45 127.87 [18] rc = 0.46 fm
ND48 14.394 1.633 1.0 −150.83 0.45 355.09 [18] rc = 0.48 fm
ND50 −10.629 2.042 1.0 −151.54 0.45 587.21 [18] rc = 0.50 fm
ND52 −3.483 2.592 1.0 −150.29 0.45 840.55 [18] rc = 0.52 fm
ND54 −1.893 3.389 1.0 −147.65 0.45 1114.72 [18] rc = 0.54 fm
ND56 −1.179 4.656 1.0 −144.26 0.45 1413.75 [18] rc = 0.56 fm
ND58 −0.764 6.863 1.0 −137.74 0.45 1666.78 [18] rc = 0.58 fm
NF42 3.659 0.975 0.6 −878.97 0.45 1048.58 [19] rc = 0.42 fm
NF44 23.956 1.258 0.6 −1066.98 0.45 1646.65 [19] rc = 0.44 fm
NF46 −3.960 1.721 0.6 −1327.26 0.45 2561.56 [19] rc = 0.46 fm
NF48 −1.511 2.549 0.6 −1647.40 0.45 3888.96 [19] rc = 0.48 fm
NF50 −0.772 4.271 0.6 −2007.35 0.45 5678.97 [19] rc = 0.50 fm
NF52 −0.406 8.828 0.6 −2276.73 0.45 7415.56 [19] rc = 0.52 fm
NSC89-1020 −0.250 7.200 1.0 −22.89 0.45 67.45 [20] mcut = 1020 MeV
NSC89-920 −2.100 1.900 0.6 −1080.35 0.45 2039.54 [20] mcut = 920 MeV
NSC89-820 −1.110 3.200 0.6 −1904.41 0.45 4996.93 [20] mcut = 820 MeV
NSC97a −0.329 12.370 1.0 −69.45 0.45 653.86 [21]
NSC97b −0.397 10.360 1.0 −78.42 0.45 741.76 [21]
NSC97c −0.476 9.130 1.0 −91.80 0.45 914.67 [21]
NSC97d −0.401 1.150 0.4 −445.77 0.30 373.64 [21]
NSC97e −0.501 9.840 1.0 −110.45 0.45 1309.55 [21]
NSC97f −0.350 16.330 1.0 −106.53 0.45 1469.33 [21]
Ehime −4.21 2.41 1.0 −146.6 0.45 720.9 [23]
fss2 −0.81 3.99 0.92 −103.9 0.41 658.2 [25]
ESC08 −0.97 3.86 0.80 −293.66 0.45 1429.27 [22]

interaction, we need to take account of the meson exchange
between quarks or baryons. There are several quark model
BB interactions which include the meson exchange effects.
We adopt here the fss2 model [25], as a typical quark model
interaction. This interaction is constructed for the octet-octet
BB interaction and describes the NN scattering data at a
comparable precision to meson exchange potential models.
For fss2, we use a phase-shift equivalent local potential in the
two range Gaussian form [25], derived by using the inversion
method based on supersymmetric quantum mechanics [26].

Low energy scattering parameters of the !! interactions
considered here are summarized in Table I. In Fig. 1, we
show the scattering parameters (1/a0 and reff) of the !!
interactions under consideration. These scattering parameters
characterize the low energy scattering phase shift in the
so-called shape independent form as

k cot δ = − 1
a0

+ 1
2
reffk

2 + O(k4). (1)

For negatively large 1/a0, the attraction is weak and the phase
shift rises slowly at low energy. When we go from left to
right in the figure, the interaction becomes more attractive
and a bound state appears when a0 becomes positive. We have
parametrized the boson exchange !! interactions, described
above in two-range Gaussian potentials,

V!!(r) = V1 exp
(
−r2/µ2

1

)
+ V2 exp

(
−r2/µ2

2

)
, (2)

then fit the low energy scattering parameters, a0 and reff .

In addition to the !! potentials listed in Table I, we also
examine the potentials used in Refs. [2] [by Filikhin and
Gal (FG)] and [3] [by Hiyama, Kamimura, Motoba, Yamada,
and Yamamoto (HKMYY)] with the three-range Gaussian fit
given in those references. The parameters are summarized in
Table II.
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FIG. 1. (Color online) !! interactions and scattering parameters
in the (1/a0,reff ) plane. The !! interactions favored by the !!

correlation data without feed-down correction are marked with big
circles. The thin big and thick small shaded areas correspond to the
favored regions of scattering parameters with and without feed-down
correction, respectively, which show stable and small χ2 minimum
(see text). The results of the analysis by the STAR Collaboration
is shown by the filled circle [15], together with systematic error
represented by the surrounding shaded region.
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H-dibaryon in lattice QCD

HAL QCD, T. Inoue et al., Phys. Rev. Lett. 106, 162002 (2011);
NPLQCD, S. Beane et al., Phys. Rev. Lett. 106, 162001 (2011);
HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012); …
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Fig. 5. The energy E0 and the root-mean-square distance
√

⟨r2⟩ of the bound state in the flavor singlet channel at each
quark mass. Bars represent statistical errors only.

Fig. 6. Summary of the H -dibaryon binding energy in recent full QCD simulations. HAL stands for the present results
and NPL stands for the result in Ref. [32].

(389,544) MeV, which is consistent with our result. Fig. 6 gives a summary of the binding
energy of the H -dibaryon obtained in recent full QCD simulations.

6. SU(3) breaking and H -dibaryon

When the flavor SU(3) symmetry is broken, masses of octet baryons are not degenerated any
more. Fig. 7 shows masses of “octet” baryons in the real world M

Phys
Y plotted at the right side,

while those in the flavor SU(3) symmetric world with κuds = 0.13840 is plotted at the left side.
The degenerated octet baryon mass M

SU(3)
Y is more or less equal to an average of physical “octet”

baryon masses. For later purpose, we introduce a phenomenological linear interpolation between
the two limits, MY (x) = (1 − x)M

SU(3)
Y + xM

Phys
Y with a parameter x, as shown by the dashed

lines in the figure.
In broken flavor SU(3) world, the H -dibaryon belongs to the S = −2, I = 0 sector of B = 2,

JP = 0+ states, instead of the flavor singlet channel. There are three BB channels in this sector
i.e. ΛΛ, NΞ and ΣΣ , which couple each other and whose interactions are described by a 3 by 3
potential matrix Vij (r) in the particle basis. Observables in the real world in this sector, including

- Physical point simulation is ongoing.

- Bound with unphysical quark masses
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Near-threshold scaling
Introduction

Unitary limit at unphysical quark masses?

T. Hyodo, Phys. Rev. C90, 055208 (2014)
Near-threshold scaling in s-wave (bound -> unbound)
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Bound Virtual Resonance

- unitary limit (infinitely large scattering length)

S. Shanahan, A. Thomas, R. Young, Phys. Rev. Lett. 107, 092004 (2011);
J. Haidenbauer, U.G. Meissner, Phys. Lett. B 706, 100 (2011)

Extrapolation: unbound at physical point

Unbound
(resonance) Bound
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How does the H-dibaryon bound state in the ΛΛ 
scattering change along with the variation of 
the quark masses?

Input: three lightest lattice data in SU(3) limit.

Effective framework which describes the ΛΛ 
scattering in a relatively wide range of quark 
masses.

Purpose of this talk
Introduction

(Precise ΛΛ interaction at physical point may
 be studied by lattice QCD / systematic ChPT.)
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Low-energy baryon-baryon scattering
Formulation

Length scales in the SU(3) limit

- Interaction range by NG boson exchange: r0 ~ 0.24-0.42 fm
HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012)

At low energy, the interaction can be treated as point like.

V (r)

r0 r

uk=0(r)

a > 0B2

- large scattering length: a ~ 1.2-1.7 fm
- large radius <- small binding energy: 0.77-1.14 fm
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Effective Lagrangian
Formulation

Lfree =
4X

a=1

X

�=",#
B†

a,�

✓
i
@

@t
+

r2

2Ma
+ �a

◆
Ba,� +H†

✓
i
@

@t
+

r2

2MH
+ ⌫

◆
H

Lint = �g[D(1)†H +H†D(1)]� �(1)D(1)†D(1) � �(8)D(8)†D(8) � �(27)D(27)†D(27)

D(F ) = [BB](F )
J=0,S=�2,I=0

Low energy effective Lagrangian with contact interactions

g , g , �(F )1 1,8,27

c.f. D.B. Kaplan, Nucl. Phys. B494, 471 (1997)

—> safely applicable below NΞ threshold
- No π exchange in ΛΛ. π exchange in NΞ (ΛΛ + 25 MeV)

Length scales at the physical point
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Low energy scattering amplitude
Formulation

Coupled-channel scattering amplitude (i=ΛΛ, NΞ, ΣΣ)
fii(E) =

µi

2⇡
[(Atree(E))�1 + I(E)]�1

ii

Ii(E) = i

=
µi

⇡2

✓
�⇤+ kiartanh

⇤

ki

◆
, ki =

p
2µi(E ��i)

Atree
ij (E) = i j + i j

= �
 
Vij +

g2d†idj
E � ⌫ + i0+

!
, V = U�1

0

@
�(1)

�(8)

�(27)

1

AU, d =

0

BBB@

�
q

1
8

�
q

1
2q

3
8

1

CCCA

EFT describes the low energy scattering for a given (ml, ms). 

- Quark mass dep. —> baryon masses and couplings λ
- scattering length, bound state pole, …
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Modeling quark mass dependence
Formulation

“Quark masses” via GMOR relation 2.0

1.8

1.6

1.4

1.2
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M
B 

[G
eV

/c
2 ]

Physical HAL-1 HAL-2 HAL-3

N

Λ

Ξ
Σ

 Exp./lattice
 Fit

HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012)
- fit to experiment/lattice —> reasonable

B0ml =
m2

⇡

2
, B0ms = m2

K � m2
⇡

2

B0 = �hq̄qi
3F 2

0

Baryon masses: linear in mq

- three mass difference by (α, β) —> GMO relation

MN (ml,ms) = M0 � (2↵+ 2� + 4�)B0ml � 2�B0ms,

M⇤(ml,ms) = M0 � (↵+ 2� + 4�)B0ml � (↵+ 2�)B0ms,

M⌃(ml,ms) = M0 �
✓
5

3
↵+

2

3
� + 4�

◆
B0ml �

✓
1

3
↵+

4

3
� + 2�

◆
B0ms,

M⌅(ml,ms) = M0 �
✓
1

3
↵+

4

3
� + 4�

◆
B0ml �

✓
5

3
↵+

2

3
� + 2�

◆
B0ms
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Modeling quark mass dependence
Formulation

Coupling constants <— scattering length in SU(3) limit

- This talk: linear in mq, no bare H
�(F )(ml,ms) = �(F )

0 + �(F )
1 B0 (2ml +ms)

g(ml,ms)= 0

 - a = -f(E=0) 1: bound, 8: repulsive, 27: attractive
T. Inoue, private communication.
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attractive
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ΛΛ amplitude : SU(3) limit
Result

ΛΛ scattering amplitude in the SU(3) limit

f⇤⇤(E) =
1

8
f (1)(E) +

1

5
f (8)(E) +

27

40
f (27)(E)

4

3

2

1

0

-1

f Λ
Λ
 [f

m
]

0.040.020.00-0.02-0.04

E [GeV]

SU(3) limit
 

 Re fΛΛ
 Im fΛΛ

- bound H <— bound state in 1
- attractive scattering length a = -f(E=0) <— attraction in 27

HAL QCD, T. Inoue et al., 
Nucl. Phys. A881, 28 (2012)

38 HAL QCD Collaboration / Nuclear Physics A 881 (2012) 28–43

Fig. 8. The bar-phase-shifts of the baryon–baryon 1S0 scattering in S = −2, I = 0 sector, as a function of energy in the
center of mass frame at several values of the SU(3) breaking parameter x. The scattering length ai are also shown. In the
top left panel for the x = 0 case, the phase-shifts in the flavor-singlet channel are also given for a reference.

it finally becomes repulsive. For example, the scattering length is negative (a = −0.91 fm) at
x = 0.4 since the H -dibaryon exists below but close enough to the ΛΛ threshold. At x = 0.6,
the binding energy of the H -dibaryon becomes almost zero, so that the scattering length becomes
very large (a = −29.8 fm). As x further increases, the H -dibaryon goes above the ΛΛ threshold
at a little above x = 0.6. In the bottom two panels of Fig. 8, we observe an appearance of the
H -dibaryon as the resonance at δ̄ ≃ π/2 in the case that x = 0.8 and 1.0.

The behavior of the H -dibaryon (either bound state or resonance) can be seen more directly
by its energy eigenvalue in the complex scaling method as shown in Fig. 9. In this method,

phase shift

- CDD pole below threshold: f(E)=0 —> ERE breaks down.
L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)



40 HAL QCD Collaboration / Nuclear Physics A 881 (2012) 28–43

Fig. 10. The invariant-mass-spectrum of ΛΛ calculated by assuming the S-wave dominance, at several values of the
SU(3) breaking parameter x.

width of 2.7 MeV in the present estimate. Similar results were obtained in phenomenological
models [24,34].

Shown in Fig. 10 is the invariant-mass-spectrum of the process ΛΛ → ΛΛ given by
ρΛΛ(

√
s ) = |Sl=0

ΛΛ,ΛΛ − 1|2/k with an assumption of S-wave dominance. A peak which cor-
responds to the H -dibaryon can be clearly seen at x = 0.6, 0.8 and 1.0. This demonstrates that
there is a chance for experiments of counting two Λ’s to confirm the existence of the resonant
H -dibaryon in nature. Deeply bound H -dibaryon with the binding energy BH > 7 MeV from
the ΛΛ threshold has been ruled out by the discovery of the double Λ hypernucleus, 6

ΛΛHe [5].
On the other hand, an enhancement of the two Λ’s production has been observed at a little above

HAL QCD, T. Inoue et al., 
Nucl. Phys. A881, 28 (2012)

spectrum
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ΛΛ amplitude : Physical point
Result

ΛΛ scattering amplitude at the physical point

- no bound H, but a resonance below NΞ threshold
- attractive scattering length: aΛΛ = -3.2 fm
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 Re fΛΛ
 Im fΛΛ

- Ramsauer-Townsend effect near resonance : δ=π -> f(E)=0
   <— remnant of the CDD pole

J.R. Taylor, Scattering theory (Wiley, New York, 1972)
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ΛΛ amplitude : Physical point
Result

pole trajectory 9
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FIG. 8. (Color online) Trajectories of the poles in the ΛΛ
scattering in the contact model with a variation of the inter-
polation parameter x in Eq. (36). The arrows indicate the
direction of the pole movement with the increase of the pa-
rameter x. The bound state (virtual and resonance state)
pole is on the I-I-I (II-I-I) sheet. Bound and virtual poles are
slightly shifted from the real axis for the purpose of illustra-
tion.
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FIG. 9. (Color online) Behaviors of the energies of the CDD
pole as functions of the interpolation parameter x in Eq. (36).
Thick (thin) line represents the result in the contact (bare H)
model.

masses are extrapolated to the physical values with the
lattice potential in the SU(3) limit. Unfortunately, the
complex scaling method used in Ref. [5] cannot find the
virtual state pole and the pole below the NΞ threshold
in the unphysical Riemann sheet.
The behavior of the CDD pole (zero of the ΛΛ ampli-

tude) is also worth investigating. In the SU(3) limit, the
CDD pole exists below the ΛΛ threshold, and it appears
above the ΛΛ threshold at the physical point. By contin-
uously varying the parameter x, we find that these poles
are indeed connected with each other, as shown in Fig. 9.
We thus conclude that the CDD pole in the SU(3) limit
is the origin of the vanishing of the ΛΛ amplitude near
the NΞ threshold at the physical point.
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FIG. 10. (Color online) Unitary limit in the mπ-mK plane
in units of GeV. Thick (thin) line represents the result in the
contact (bare H) model. Diagonal dotted line represents the
SU(3) limit.

G. Extrapolation in the quark mass plane

We finally calculate the ΛΛ scattering length with
varying the quark masses ml and ms. By identifying
the unitary limit by the divergence of the ΛΛ scattering
length, we plot the unitary limit in the mπ-mK plane
(Fig. 10) and in the ml-ms plane (Fig. 11). Qualita-
tively, it is a common feature that the unitary limit is
realized between the physical point and the SU(3) limit.
We however find that the location of the unitary limit
in the quark mass plane highly depends on the model
employed, in contrast to the previous results where the
difference of the contact model and the bare H model is
not very prominent. The difference in the extrapolation
may have some significance in the charm sector where
the ΛcΛc bound state is discussed [48]. To clarify the
existence of the ΛcΛc bound state, we need to know the
property at physical mπ with a largemK ∼ 1.87 GeV/c2,
which is in the bound (unbound) region in the contact
(bare H) model. More lattice data in the wide range of
the quark mass plane will be helpful to pin down the
exact location of the unitary limit.
The H-dibaryon in the chiral limit ml = ms →

0 is of particular interest from the viewpoint of the
Skyrmion [49, 50]. However, the extrapolation in the
present framework to the chiral limit should be performed
with care, because the range of the NG boson exchange
interaction is infinite in the chiral limit. Although the
applicable energy region of the contact interaction model
gradually reduces when we decrease the quark (NG bo-
son) mass, the value of the scattering length at zero en-
ergy can be used to examine the existence of the bound
state. The absence of the divergence of the scattering
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FIG. 8. (Color online) Trajectories of the poles in the ΛΛ
scattering in the contact model with a variation of the inter-
polation parameter x in Eq. (36). The arrows indicate the
direction of the pole movement with the increase of the pa-
rameter x. The bound state (virtual and resonance state)
pole is on the I-I-I (II-I-I) sheet. Bound and virtual poles are
slightly shifted from the real axis for the purpose of illustra-
tion.
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FIG. 9. (Color online) Behaviors of the energies of the CDD
pole as functions of the interpolation parameter x in Eq. (36).
Thick (thin) line represents the result in the contact (bare H)
model.

masses are extrapolated to the physical values with the
lattice potential in the SU(3) limit. Unfortunately, the
complex scaling method used in Ref. [5] cannot find the
virtual state pole and the pole below the NΞ threshold
in the unphysical Riemann sheet.
The behavior of the CDD pole (zero of the ΛΛ ampli-

tude) is also worth investigating. In the SU(3) limit, the
CDD pole exists below the ΛΛ threshold, and it appears
above the ΛΛ threshold at the physical point. By contin-
uously varying the parameter x, we find that these poles
are indeed connected with each other, as shown in Fig. 9.
We thus conclude that the CDD pole in the SU(3) limit
is the origin of the vanishing of the ΛΛ amplitude near
the NΞ threshold at the physical point.
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FIG. 10. (Color online) Unitary limit in the mπ-mK plane
in units of GeV. Thick (thin) line represents the result in the
contact (bare H) model. Diagonal dotted line represents the
SU(3) limit.

G. Extrapolation in the quark mass plane

We finally calculate the ΛΛ scattering length with
varying the quark masses ml and ms. By identifying
the unitary limit by the divergence of the ΛΛ scattering
length, we plot the unitary limit in the mπ-mK plane
(Fig. 10) and in the ml-ms plane (Fig. 11). Qualita-
tively, it is a common feature that the unitary limit is
realized between the physical point and the SU(3) limit.
We however find that the location of the unitary limit
in the quark mass plane highly depends on the model
employed, in contrast to the previous results where the
difference of the contact model and the bare H model is
not very prominent. The difference in the extrapolation
may have some significance in the charm sector where
the ΛcΛc bound state is discussed [48]. To clarify the
existence of the ΛcΛc bound state, we need to know the
property at physical mπ with a largemK ∼ 1.87 GeV/c2,
which is in the bound (unbound) region in the contact
(bare H) model. More lattice data in the wide range of
the quark mass plane will be helpful to pin down the
exact location of the unitary limit.
The H-dibaryon in the chiral limit ml = ms →

0 is of particular interest from the viewpoint of the
Skyrmion [49, 50]. However, the extrapolation in the
present framework to the chiral limit should be performed
with care, because the range of the NG boson exchange
interaction is infinite in the chiral limit. Although the
applicable energy region of the contact interaction model
gradually reduces when we decrease the quark (NG bo-
son) mass, the value of the scattering length at zero en-
ergy can be used to examine the existence of the bound
state. The absence of the divergence of the scattering

CDD pole trajectory

- pole is not continuously connected (shadow pole)

- CDD pole is continuously connected
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Extrapolation and unitary limit
Result

Extrapolation in the NGboson/quark mass plane

- unitary limit between SU(3) limit and physical point
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Implication to many-body system
Result

Many-body system of Λ baryons: BEC-BCS crossover

- “H-matter” may be realized with unphysical quark masses.

W. Zwerger, Lect. Notes Phys. 836, 1 (2012); M. Randeria, Nature Phys. 6, 561 (2010)
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news & views

One of the most stimulating areas 
of research in ultracold atoms 
is the exploration of strongly 

interacting Fermi gases1. As reported2 
in Nature Physics, John Gaebler et al. 
make a significant contribution to 
this subject by providing the first 
experimental evidence of an energy gap, 
called the pseudogap, owing to pairing 
correlations above the superfluid phase-
transition temperature Tc of the unitary 
Fermi gas. Their measurement uses 
the new technique of angle-resolved 
radiofrequency (RF) spectroscopy, 
which is an analogue of angle-resolved 
photoemission spectroscopy3,4 (ARPES), 
one of the most powerful probes of 
correlated electrons in solid-state 
materials. Despite crucial differences, 
there are also some interesting 
similarities between the pseudogap 
above Tc in ultracold Fermi gases 
and the underdoped regime of high-
temperature superconductors.

To appreciate the significance of 
these results, it is useful to recall that 
the unitary Fermi gas is in the middle of 
the crossover between two very different 
limits: Bardeen–Cooper–Schrieffer 
(BCS) superfluidity of fermion pairs 
and Bose–Einstein condensation (BEC) 
of bosons. Most superconductors or 
superfluids studied in the past hundred 
years are firmly in one or the other limit. It 
is only in the past few years that an atomic 
physics technique called the Feshbach 
resonance1 has allowed us to actually 
tune the attractive interactions between 
fermionic atoms (6Li, 40K) and span the 
entire BCS to BEC crossover shown 
in Fig. 1.

In the BCS limit, a weak attraction 
between fermions leads to the formation — 
and condensation — of Cooper pairs with 
an effective size much larger than the 
interparticle distance. The normal state 
above Tc is a Fermi liquid with a Fermi 
surface of gapless excitations. In the BEC 
limit, on the other hand, strong attraction 
leads to tightly bound diatomic molecules 
that are weakly repulsive bosons. The state 
above Tc is a normal Bose gas and only at 

very high temperatures do the molecules 
dissociate into atoms.

The unitary regime lies between these two 
very different limits. Here the interaction 
parameter between atoms, the s-wave 
scattering length, diverges and the cross-
section is limited only by unitarity, that is, 

the conservation of probability. The ground 
state near unitarity is a strongly interacting 
superfluid of pairs, the size of which is of 
the order of the interparticle spacing of 
constituent fermions. This also leads to a very 
high Tc, in which Tc = (0.15–0.2)EF, where EF 
is the Fermi energy5,6.

ULTRACOLD FERMI GASES

Pre-pairing for condensation
Pair formation and condensation usually occur together in Fermi superfluids. The observation of a pseudogap that 
implies pairing above the condensation temperature in a strongly interacting Fermi gas is thus an exciting development.

Mohit Randeria

Figure 1 | Phase diagram of the BCS to BEC crossover as a function of the dimensionless attraction 
1/(kFas) (where kF is the Fermi momentum and as is the scattering length) and the temperature T 
in units of EF. The pictures show schematically the evolution of the ground state from the BCS limit 
with large, spatially overlapping Cooper pairs to the BEC limit with tightly bound molecules. The 
ground state at unitarity (1/(kFas) = 0) has strongly interacting pairs with size comparable to 1/kF. 
As a function of increasing attraction, the pair-formation crossover scale T* diverges away from Tc 
below which a condensate exists. Most Fermi superfluids and superconductors are close to the BCS 
limit where these two temperatures coincide. The experiments reported by Gaebler et al.2 probe the 
unitary regime and reveal a pairing pseudogap in the range of temperatures between Tc and T*. This 
global phase diagram is based on ref. 5; for recent quantum Monte Carlo calculations near unitarity, 
see refs 6 and 8.
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Superfluid of 
H-dibaryons
= “H-matter”
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We study the quark mass dependence of the H-
dibaryon and the ΛΛ interaction using EFT.

SU(3) limit: bound H with attractive scattering 
length <— CDD pole below the threshold.

Physical point: Ramsauer-Townsend effect 
near resonance H <— remnant of the CDD pole.

The ΛΛ scattering undergoes the unitary limit 
between SU(3) limit and physical point.

Summary

Y. Yamaguchi, T. Hyodo, arXiv:1607.04053 [hep-ph]

Summary


