# Quark mass dependence of H-dibaryon in // scattering





Yasuhiro Yamaguchia, Tetsuo Hyodob

<sup>a</sup>Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova <sup>b</sup>Yukawa Institute for Theoretical Physics, Kyoto Univ.

### Contents



### Introduction



### **Formulation**

- Effective field theory
- Quark mass dependence



### Result

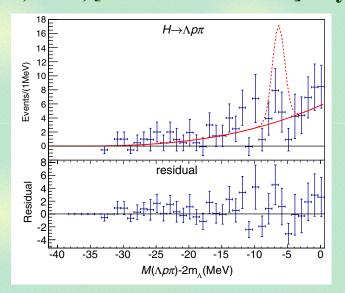
- // amplitude: SU(3) limit / physical point
- Extrapolation in quark mass plane

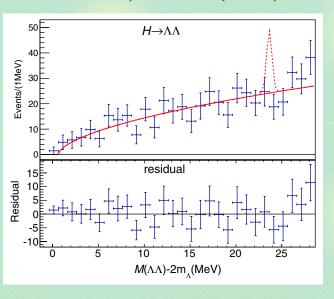


### **Summary**

### H-dibaryon in //∧ scattering

#### H-dibaryon: uuddss bound state predicted in a quark model

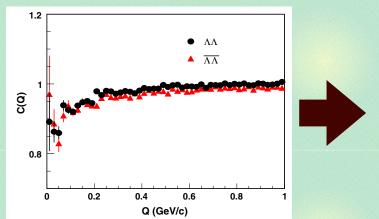

R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977)

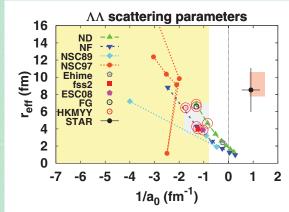

#### **Experiments: Negative**

- Nagara event: double ∧ hyper nuclei -> no deeply bound H H. Takahashi, et al., Phys. Rev. Lett. 87, 212502 (2001)

- Belle: Y(1S), Y(2S) decay -> no signal (<< deuteron)

B.H. Kim, et al., [Belle collaboration] Phys. Rev. Lett. 114, 022301 (2015)



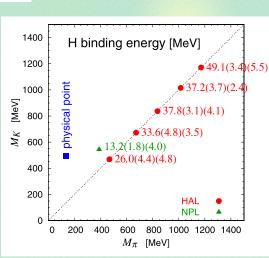




#### **Recent activities**

#### RHIC-STAR: ∧∧ correlation —> scattering length

- L. Adamczyk, et al., [STAR collaboration] Phys. Rev. Lett. 114, 022301 (2015);
- K. Morita, T. Furumoto, A. Ohnishi, Phys. Rev. C 91, 024916 (2015)





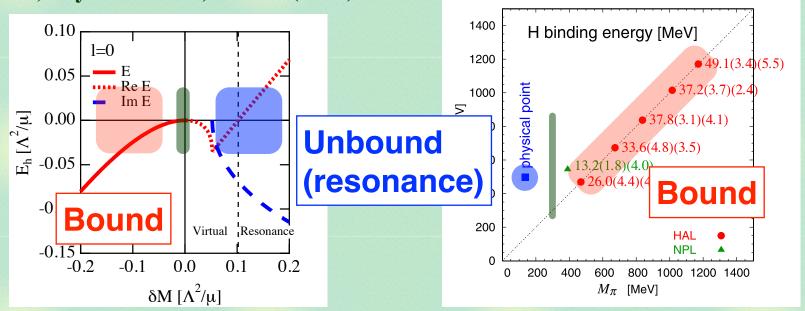

#### H-dibaryon in lattice QCD

- Bound with unphysical quark masses

HAL QCD, T. Inoue *et al.*, Phys. Rev. Lett. 106, 162002 (2011); NPLQCD, S. Beane *et al.*, Phys. Rev. Lett. 106, 162001 (2011); HAL QCD, T. Inoue *et al.*, Nucl. Phys. A881, 28 (2012); ...

- Physical point simulation is ongoing.




### **Near-threshold scaling**

#### Extrapolation: unbound at physical point

- S. Shanahan, A. Thomas, R. Young, Phys. Rev. Lett. 107, 092004 (2011);
- J. Haidenbauer, U.G. Meissner, Phys. Lett. B 706, 100 (2011)

#### **Near-threshold scaling in s-wave (bound -> unbound)**

T. Hyodo, Phys. Rev. C90, 055208 (2014)



- unitary limit (infinitely large scattering length)

Unitary limit at unphysical quark masses?

### **Purpose of this talk**



How does the H-dibaryon bound state in the /// scattering change along with the variation of the quark masses?

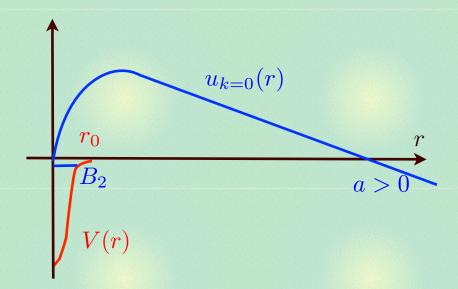


Input: three lightest lattice data in SU(3) limit.



Effective framework which describes the \^\
scattering in a relatively wide range of quark
masses.

(Precise // interaction at physical point may be studied by lattice QCD / systematic ChPT.)


**Formulation** 

### Low-energy baryon-baryon scattering

#### Length scales in the SU(3) limit

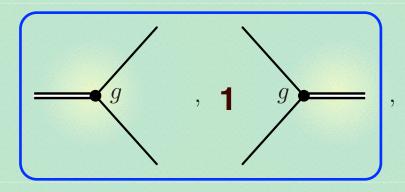
HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012)

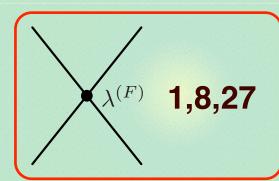
- Interaction range by NG boson exchange: r<sup>0</sup> ~ 0.24-0.42 fm
- large scattering length: a ~ 1.2-1.7 fm
- large radius <- small binding energy: 0.77-1.14 fm



At low energy, the interaction can be treated as point like.

### **Effective Lagrangian**


### Low energy effective Lagrangian with contact interactions


c.f. D.B. Kaplan, Nucl. Phys. B494, 471 (1997)

$$\mathcal{L}_{\text{free}} = \sum_{a=1}^{4} \sum_{\sigma=\uparrow,\downarrow} B_{a,\sigma}^{\dagger} \left( i \frac{\partial}{\partial t} + \frac{\nabla^2}{2M_a} + \delta_a \right) B_{a,\sigma} + H^{\dagger} \left( i \frac{\partial}{\partial t} + \frac{\nabla^2}{2M_H} + \nu \right) H$$

$$\mathcal{L}_{\text{int}} = -g [D^{(1)\dagger} H + H^{\dagger} D^{(1)}] - \lambda^{(1)} D^{(1)\dagger} D^{(1)} - \lambda^{(8)} D^{(8)\dagger} D^{(8)} - \lambda^{(27)} D^{(27)\dagger} D^{(27)}$$

$$D^{(F)} = [BB]_{J=0,S=-2,I=0}^{(F)}$$





#### Length scales at the physical point

- No  $\pi$  exchange in  $\wedge\wedge$ .  $\pi$  exchange in  $N\Xi$  ( $\wedge\wedge$  + 25 MeV)
- -> safely applicable below N≡ threshold

### Low energy scattering amplitude

### Coupled-channel scattering amplitude ( $i=\wedge\wedge$ , N=, $\Sigma\Sigma$ )

$$f_{ii}(E) = \frac{\mu_i}{2\pi} [(\mathcal{A}^{\text{tree}}(E))^{-1} + I(E)]_{ii}^{-1}$$

$$A_{ij}^{\text{tree}}(E) = i$$
  $j$   $j$ 

$$= -\left(V_{ij} + \frac{g^2 d_i^{\dagger} d_j}{E - \nu + i0^+}\right), \quad V = U^{-1} \begin{pmatrix} \lambda^{(1)} \\ \lambda^{(8)} \\ \lambda^{(27)} \end{pmatrix} U, \quad d = \begin{pmatrix} -\sqrt{\frac{1}{8}} \\ -\sqrt{\frac{1}{2}} \\ \sqrt{\frac{3}{8}} \end{pmatrix}$$

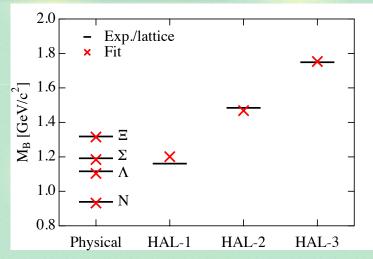
$$I_{i}(E) = \underbrace{i}_{i}$$

$$= \frac{\mu_{i}}{\pi^{2}} \left( -\Lambda + k_{i} \operatorname{artanh} \frac{\Lambda}{k_{i}} \right), \quad k_{i} = \sqrt{2\mu_{i}(E - \Delta_{i})}$$

### EFT describes the low energy scattering for a given (m<sub>i</sub>, m<sub>s</sub>).

- scattering length, bound state pole, ...
- Quark mass dep.  $\rightarrow$  baryon masses and couplings  $\lambda$

#### **Formulation**


### Modeling quark mass dependence

#### "Quark masses" via GMOR relation

$$B_0 m_l = \frac{m_\pi^2}{2}, \quad B_0 m_s = m_K^2 - \frac{m_\pi^2}{2}$$

$$B_0 = -\frac{\langle \bar{q}q \rangle}{3F_0^2}$$

#### Baryon masses: linear in mq



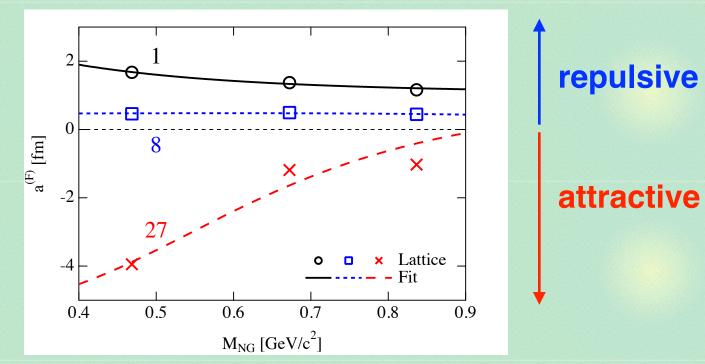
$$M_{N}(m_{l}, m_{s}) = M_{0} - (2\alpha + 2\beta + 4\sigma)B_{0}m_{l} - 2\sigma B_{0}m_{s},$$

$$M_{\Lambda}(m_{l}, m_{s}) = M_{0} - (\alpha + 2\beta + 4\sigma)B_{0}m_{l} - (\alpha + 2\sigma)B_{0}m_{s},$$

$$M_{\Sigma}(m_{l}, m_{s}) = M_{0} - \left(\frac{5}{3}\alpha + \frac{2}{3}\beta + 4\sigma\right)B_{0}m_{l} - \left(\frac{1}{3}\alpha + \frac{4}{3}\beta + 2\sigma\right)B_{0}m_{s},$$

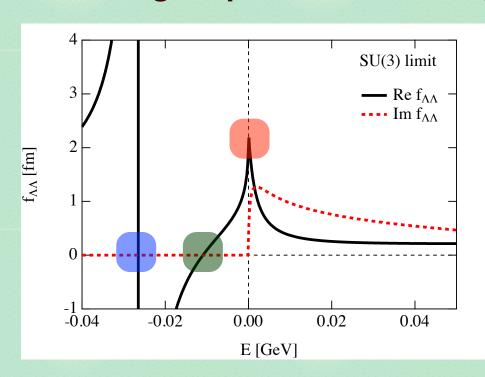
$$M_{\Xi}(m_{l}, m_{s}) = M_{0} - \left(\frac{1}{3}\alpha + \frac{4}{3}\beta + 4\sigma\right)B_{0}m_{l} - \left(\frac{5}{3}\alpha + \frac{2}{3}\beta + 2\sigma\right)B_{0}m_{s},$$

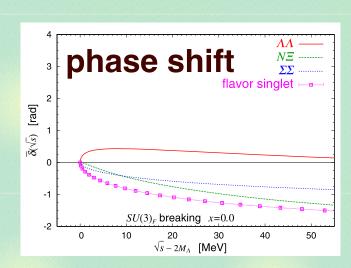
- three mass difference by ( $\alpha$ ,  $\beta$ ) —> GMO relation
- fit to experiment/lattice -> reasonable


HAL QCD, T. Inoue et al., Nucl. Phys. A881, 28 (2012)

### Modeling quark mass dependence

#### Coupling constants < - scattering length in SU(3) limit


- T. Inoue, private communication.
- a = -f(E=0) 1: bound, 8: repulsive, 27: attractive
- This talk: linear in mq, no bare H


$$\lambda^{(F)}(m_l, m_s) = \lambda_0^{(F)} + \lambda_1^{(F)} B_0 (2m_l + m_s)$$
$$g(m_l, m_s) = 0$$



### ∧∧ amplitude : SU(3) limit

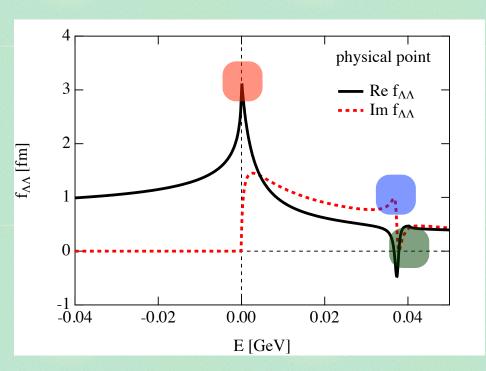
### **∧** scattering amplitude in the SU(3) limit



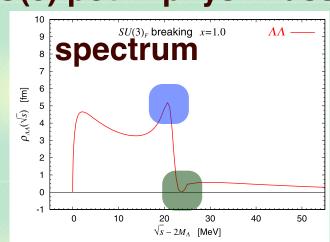


HAL QCD, T. Inoue *et al.*, Nucl. Phys. A881, 28 (2012)

- bound H < bound state in 1</li>
- attractive scattering length a = -f(E=0) < attraction in 27


$$f_{\Lambda\Lambda}(E) = \frac{1}{8}f^{(1)}(E) + \frac{1}{5}f^{(8)}(E) + \frac{27}{40}f^{(27)}(E)$$

- CDD pole below threshold: f(E)=0 —> ERE breaks down.


L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

### **/// amplitude : Physical point**

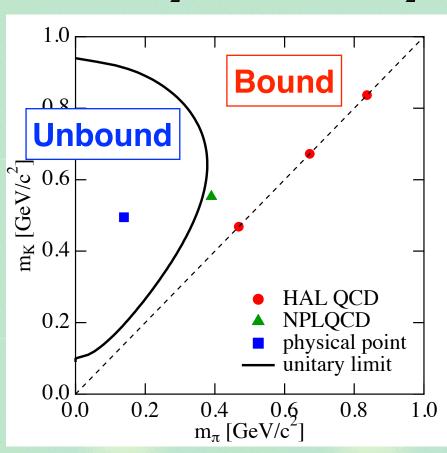
#### **∧** scattering amplitude at the physical point

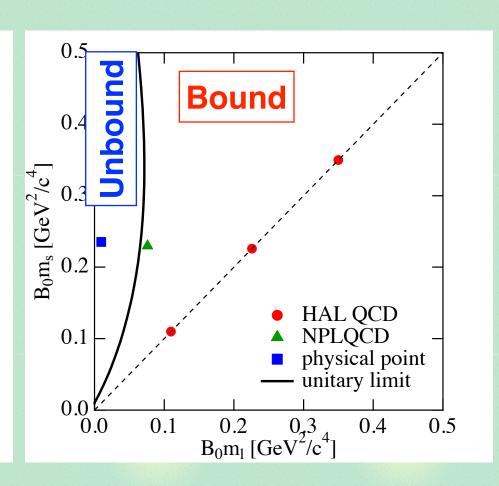


#### SU(3) pot. + phys. mass



HAL QCD, T. Inoue *et al.*, Nucl. Phys. A881, 28 (2012)


- no bound H, but a resonance below NE threshold
- attractive scattering length:  $a_{\wedge \wedge} = -3.2 \text{ fm}$
- Ramsauer-Townsend effect near resonance :  $\delta = \pi$  -> f(E) = 0 <— remnant of the CDD pole

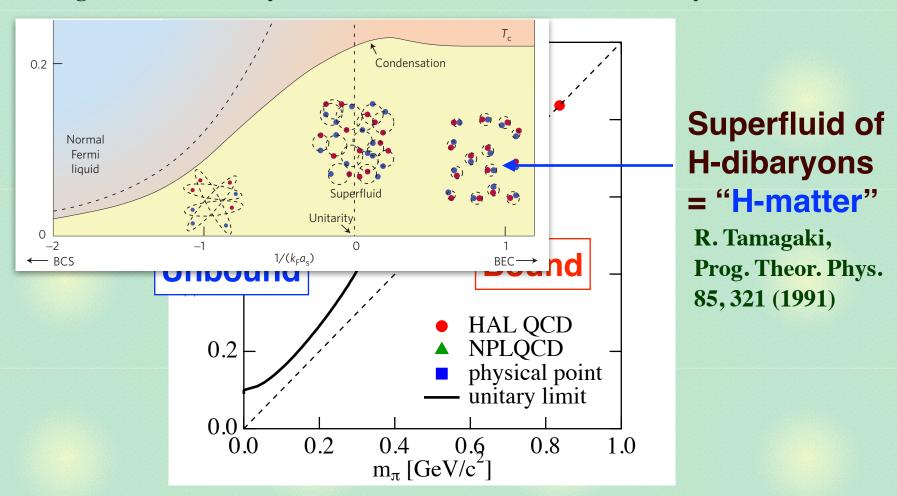

J.R. Taylor, Scattering theory (Wiley, New York, 1972)

### **Extrapolation and unitary limit**

#### Extrapolation in the NGboson/quark mass plane

$$B_0 m_l = \frac{m_\pi^2}{2}, \quad B_0 m_s = m_K^2 - \frac{m_\pi^2}{2}$$






- unitary limit between SU(3) limit and physical point

### Implication to many-body system

#### Many-body system of ∧ baryons: BEC-BCS crossover

W. Zwerger, Lect. Notes Phys. 836, 1 (2012); M. Randeria, Nature Phys. 6, 561 (2010)



- "H-matter" may be realized with unphysical quark masses.

## Summary



We study the quark mass dependence of the H-dibaryon and the ∧ interaction using EFT.



SU(3) limit: bound H with attractive scattering length <— CDD pole below the threshold.



Physical point: Ramsauer-Townsend effect near resonance H < — remnant of the CDD pole.



The \( \cappa \) scattering undergoes the unitary limit between SU(3) limit and physical point.

Y. Yamaguchi, T. Hyodo, in preparation.