Compositeness of hadrons from effective field theory

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

イントロダクション:ハドロンの構造とエキゾチック状態

ハドロンの分類

観測されているハドロン

PDG2015 : http://pdg.lbl.gov/

qqq/qqで記述される量子数のみ(自明ではない!)。

イントロダクション:ハドロン物理における共鳴状態 qqq/qq**で記述できない状態**

テトラクォーク候補(Belle) :Z_b(10610), Z_b(10650) Y(5S) ー> π[±] + Z_b ₊ Y(nS)(bb) + π∓(ud/dū)

A. Bondar, et al., Phys. Rev. Lett. 108, 122001 (2012)

ペンタクォーク候補(LHCb) : $P_c(4450), P_c(4380)$ $\Lambda_b -> K - + P_c$ $\rightarrow J/\psi(cc) + p(uud)$

R. Aaij, et al., Phys. Rev. Lett. 115, 072001 (2015)

ごく少数しか発見されていない。なぜ少ないのか?

イントロダクション:ハドロンの構造とエキゾチック状態 様々なハドロン励起

励起状態の記述(バリオンの例)

QCDではqqq以外の構造が自然にあらわれる。

- qqq構造とエキゾチック構造の重ね合わせ
 - -> どのように判別するか?

イントロダクション:ハドロン物理における共鳴状態

強い相互作用で不安定な状態

励起ハドロンの性質

PDG2015 : http://pdg.lbl.gov/

	1 (0+ www.	4(1000) 0.1	(0+ +++++++	-	* 10+ *****	-0		4	1 /0+	بلە بلە بلە	1.1.1		LIGHT UN	FLAVORED		STRA	NGE	CHARMED, ST	RANGE	CT G(PC)	
p	1/2 ****	$\Delta(1232) = 3/$	/2 ****	Σ ⁺	1/2 ****	=	1/2 ****	Λ_c^+	1/2 '	ጥጥጥ	12.		(S = C : IG(IPC)	= B = 0)	IG (PC)	$(S = \pm 1, C)$	= B = 0) (P)	$(C = S = \pm)$	⊧1) (P)		P(J C)
n	1/2 ⁺⁺ ****	<i>∆</i> (1600) 3/	/2 ⁺ ***	Σ^0	1/2 ****	Ξ-	1/2+ ****	<i>∧_c</i> (2595) [⊣]	- 1/2-	***	20.01	-	1-(J-)		I=(J =)	1.64	(J)	D ⁺	())	• η _c (15)	$0^+(0^-+)$
N(1440)	1/2+ ****	<i>∆</i> (1620) 1/	/2- ****	Σ-	1/2+ ****	Ξ(1530)	3/2+ ****	$\Lambda_{c}(2625)^{+}$	- 3/2-	***	1210	• π ⁺	1 (0) $1^{-}(0^{-}+)$	• $\phi(1680)$	0(1)	• K [±]	1/2(0)	• D ₅ D*±	0(0)	• J/ψ(15)	0(1)
N(1520)	3/2" ****	<i>∆</i> (1700) 3/	/2- ****	$\Sigma(1385)$	3/2+ ****	$\Xi(1620)$	*	A _c (2765) ⁺	-	*	1000	• n-	$0^+(0^-+)$	• p3(1090)	$1^{+}(3^{-})$ $1^{+}(1^{-})$	• K ^Q	$1/2(0^{-})$	• D* (2217)±	$0(0^{\pm})$	• $\chi_{c0}(1P)$	$0^{+}(1^{+})$
N(1535)	1/2 ****	$\Delta(1750) 1/$	/2+ *	$\Sigma(1480)$	*	$\Xi(1690)$	***	1.(2880)	- 5/2+	***		• f6(500)	$0^{+}(0^{+}^{+})$	a(1700)	1-(2++)	• K ⁰	$1/2(0^{-1})$	$D_{s0}(2317)$	$0(0^{+})$ $0(1^{+})$	• $h_c(1P)$?(1+-)
N(1650)	1/2- ****	<u>∧(1900)</u> 1/	/2- **	$\Sigma(1560)$	**	=(1820)	3/2 ***	A-(2940)+		***		 ρ(770) 	$1^{+}(1^{-})$	• f ₀ (1710)	$0^{+}(0^{+}+)$	K [*] ₀ (800)	$1/2(0^+)$	• $D_{s1}(2536)^{\pm}$	$0(1^+)$	• χ _{c2} (1P)	$0^{+}(2^{++})$
N(1675)	5/2 ****	$\Lambda(1905) = 5/$	/2+ ****	$\Sigma(1580)$	3/2- *	=(1050)	***	$\nabla (2455)$	1/2+	****	1000	 ω(782) 	0-(1)	$\eta(1760)$	0+(0 - +)	• K*(892)	1/2(1-)	• D _{s2} (2573)	0(??)	• η _C (25)	0+(0 - +)
N(1690)	5/2+ ****	$\Delta(100)$ 1/	/2+ ****	$\Sigma(1620)$	1/2 *	=(2030)	< 5? ***	$\Sigma_{C}(2455)$	2/2+	***	1.1	 η'(958) 	0+(0 - +)	 π(1800) 	$1^{-}(0^{-+})$	• K1(1270)	1/2(1+)	 D[*]_{s1}(2700)[±] 	$0(1^{-1})$	• ψ(2S)	0-(1)
N(1000)	3/2	$\Delta(1910) = 1/$	/2+ ***	$\Sigma(1020)$	1/2 ***	_(2000)	< <u>2</u>	$Z_{c}(2520)$	3/2 '		12.00	 <i>t</i>₀(980) <i>s</i>₀(980) 	$0^+(0^++)$	$f_2(1810)$	$0^+(2^++)$ $2^7(2^-+)$	• K ₁ (1400)	1/2(1+)	$D_{sJ}^{*}(2860)^{\pm}$	$0(?^{!})$	• ψ(3/70) ×(2922)	0(1)
/V(1685)		$\Delta(1920) = 3/$	/ Z 1	2 (1000)	1/2	=(2120)	*	$\Sigma_{c}(2800)$		***	1.00	• ab(900)	$0^{-}(1^{-})$	X(1835) X(1840)	2?(2??)	• K*(1410)	1/2(1)	$D_{s,J}(3040)^{\pm}$	0(?!)	• X(3872)	$0^+(1^+)$
N(1700)	3/2 ***	$\Delta(1930)$ 5/	/2 ***	2 (1670)	3/2 ****	Ξ(2250)	**	$=_{c}^{+}$	1/2+	***		• h (1170)	$0^{-}(1^{+})$	• $\phi_2(1850)$	$0^{-}(3^{-})$	• K ₀ (1430)	$\frac{1}{2(0^{+})}$	BOTTO	M	• X(3900) [±]	?(1+)
N(1710)	1/2+ ***	<i>∆</i> (1940) 3/	/2**	$\Sigma(1690)$	**	Ξ(2370)	**	$=_{c}^{0}$	$1/2^{+}$	***		• b1(1235)	$1^{+}(1^{+}-)$	η ₂ (1870)	$0^+(2^-+)$	K(1460)	$\frac{1}{2(2^{-})}$	(B = ±1))	X(3900)0	?(??)
N(1720)	3/2+ ****	<i>∆</i> (1950) 7/	/2+ ****	Σ(1730)	3/2+ *	Ξ(2500)	*	Ξ'^+	$1/2^{+}$	***		• a1(1260)	$1^{-}(1^{++})$	 π₂(1880) 	1-(2-+)	K ₂ (1580)	$1/2(2^{-})$	• B [±]	$1/2(0^{-})$	• χ _{c0} (3915)	0+(0++)
N(1860)	5/2+ **	<i>∆</i> (2000) 5/	/2 ⁺ **	$\Sigma(1750)$	1/2" ***			=/0	$1/2^+$	***		• f ₂ (1270)	$0^+(2^{++})$	ρ (1900)	1+(1)	K(1630)	1/2(??)	• B ⁰	$1/2(0^{-})$	• $\chi_{c2}(2P)$	$0^+(2^+)$
N(1875)	3/2- ***	∆(2150) 1/	/2- *	$\Sigma(1770)$	1/2+ *	Ω^{-}	3/2+ ****	= (2645)	3/2+	***		• f1(1285)	$0^+(1^+)$	$f_2(1910)$	$0^+(2^++)$	$K_1(1650)$	1/2(1+)	• B^{\pm}/B^0 ADMD	XTURE	X(3940) X(4020)±	· · ((· · ·)
N(1880)	1/2+ **	$\Delta(2200) 7/$	/2- *	$\Sigma(1775)$	5/2- ****	$\Omega(2250)^{-}$	***	= (2045)	1/2-	***		• (1295)	$1^{-}(0^{-}+)$	• 12(1950) (2(1990)	1+(3)	• K*(1680)	1/2(1-)	ADMIXTURE	baryon	• \u020)=	$0^{-}(1^{-})$
N(1895)	1/2 **	$\Lambda(2300) 9/$	/2+ **	$\Sigma(1840)$	3/2+ *	$O(2380)^{-}$	**	$=_{c}(2190)$	1/2	4444		• a(1320)	$1^{-}(2^{++})$	• fs(2010)	$0^{+}(2^{+}+)$	• K ₂ (1770)	1/2(2)	V_{cb} and V_{ub} C	KM Ma -	X(4050) [±]	?(??)
N(1900)	3/2+ ***	$\Delta(2350) = 5/$	/2- *	$\Sigma(1880)$	1/2+ **	$O(2470)^{-}$	**	$=_{C}(2815)$	3/2		1111	• f ₀ (1370)	$0^{+}(0^{+}+)$	f ₀ (2020)	0 ⁺ (0 + +)	• K ₃ (1700)	$1/2(3^{-})$	B*	1/2(1-)	X(4140)	0 ⁺ (??+)
N(1000)	7/2+ **	$\Delta(2300) = 3/$	/2+ *	$\Sigma(1000)$	1/2 *	32(2410)		$= =_{c}(2930)$		*	622.5	$h_1(1380)$?-(1+-)	• a ₄ (2040)	1-(4++)	K(1830)	1/2(0-)	• B ₁ (5721) ⁺	$1/2(1^+)$	 ψ(4160) 	$0^{-}(1^{-})$
N(1990)	r/2+ **	$\Delta(2350)$ 1/	/2 ***	$\Sigma(1015)$	1/2			$\Xi_c(2980)$		***	1000	• π ₁ (1400)	$1^{-}(1^{-+})$	• f ₄ (2050)	$0^+(4^{++})$	$K_0^*(1950)$	1/2(0+)	• B ₁ (5721) ⁰	$1/2(1^+)$	X(4160)	$2^{2}(2^{2})$
/v(2000)	5/2 * ***	Z1(2400) 9/		2 (1915)	5/21 44			$\Xi_{c}(3055)$		***	1111	• η(1405)	0'(0') $0^{+}(1^{+}+)$	$\pi_2(2100)$	1(2')	$K_2^*(1980)$	1/2(2+)	B* _J (5732)	?(?')	X(4230) $X(4240)^{\pm}$	2?(0-)
N(2040)	3/2 *	$\Delta(2420)$ 11	1/2 ****	Σ(1940)	3/2 *			$\Xi_{c}(3080)$		***		 μ(1420) ω(1420) 	$0^{-}(1^{-})$	$f_0(2100)$ $f_0(2150)$	$0^{+}(2^{+}+)$	• K ₄ (2045)	1/2(4+)	• B ₂ (5747) ⁺	$1/2(2^+)$	X(4250) [±]	?(??)
N(2060)	5/2 **	$\Delta(2750)$ 13	3/2-**	Σ(1940)	3/2 ***			$\Xi_{c}(3123)$		*	1000	f ₂ (1430)	$0^{+}(2^{++})$	ρ(2150)	1+(1)	$K_2(2250)$	$1/2(2^{-})$ $1/2(2^{+})$	• B ₂ (5/47) ⁶ • B(5070) ⁺	$\frac{1}{2(2^{\circ})}$	• X(4260)	??(1)
N(2100)	1/2+ *	Δ (2950) 15	5/2+ **	Σ(2000)	1/2 *			Ω^{0}_{c}	$1/2^{+}$	***	6000	• a ₀ (1450)	$1^{-}(0^{++})$	 φ(2170) 	0-(1)	K [±] (2380)	$\frac{1}{2(5^{-})}$	• B(5970) ⁰	7(7?)	X(4350)	$0^{+}(?^{?+})$
N(2120)	3/2 ⁻ **			Σ(2030)	7/2+ ****			0 (2770)	3/2+	***	1000	 ρ(1450) 	$1^+(1^{})$	$f_0(2200)$	$0^+(0^{++})$. Ka(2500)	$1/2(4^{-})$	- ()		• X(4360)	?:(1)
N(2190)	7/2 ⁻ ****	Λ 1/	/2+ ****	Σ(2070)	5/2+ *			520(2110)	0/2			• η(14/5) • £(1500)	$0^+(0^{-1})$	tj(2220)	$0^+(2^++)$	⁴ K(3100)	? [?] ??)	BOTTOM, ST	RANGE	 ψ(4415) X(4430)[±] 	0 (1) 7(1 ⁺)
N(2220)	9/2+ ****	A(1405) 1/	/2 ****	Σ(2080)	3/2+ **			=+		*		fr(1510)	$0^{+}(1^{+})$	η(2225) φ ₂ (2250)	$1^{+}(3^{-})$	CHAR	MED	• B ⁰	0(0=)	• X(4660)	?(1)
N(2250)	9/2 ****	A(1520) 3/	/2 ⁻ ****	$\Sigma(2100)$	7/2 *			- cc				 f'₂(1525) 	$0^{+}(2^{+}+)$	• f ₂ (2300)	$0^{+}(2^{+}+)$	(C=	±1)	• B [*]	$0(1^{-})$		
N(2300)	1/2+ **	A(1600) 1/	/2 ⁺ ***	$\Sigma(2250)$	***			1 0	$1/2^{+}$	***		$f_2(1565)$	0+(2++)	f4(2300)	0+(4++)	• D [±]	$1/2(0^{-})$	• B ₅₁ (5830) ⁰	0(1+)	(1 C))b
N(2570)	5/2- **	A(1670) 1/	/2- ****	$\Sigma(2455)$	**			A (E012)0	1/2	***		$\rho(1570)$	$1^+(1^{})$	$f_0(2330)$	$0^{+}(0^{+}+)$	• D ⁰	1/2(0 ⁻)	 B[*]₅₂(5840)⁰ 	0(2+)	$\eta_{b}(15)$	0'(0') $0^{-}(1^{-})$
N(2600)	11/2- ***	A(1690) 3/	/2- ****	$\Sigma(2620)$	**			$\Lambda_{B}(3912)$	1/2	***		$h_1(1595)$	0(1') $1^{-}(1^{-}+)$	• T ₂ (2340)	1+(5)	• D*(2007) ⁰	1/2(1-)	$B_{sJ}^{*}(5850)$?(?')	• Y to(1P)	$0^{+}(0^{+}+)$
N(2700)	13/2+ **	$\Lambda(1710) 1/$	/2+ *	$\Sigma(3000)$	*			<i>N_b</i> (5920) ⁵	3/2	-lealed		$a_1(1640)$	$1^{-}(1^{++})$	$p_5(2350)$ $a_2(2450)$	$1^{-}(6^{+}^{+})$	• D*(2010) [±]	1/2(1)	ВОТТОМ, СН/	ARMED	• χ _{b1} (1P)	$0^{+}(1^{++})$
10(2100)	15/2	A(1800) = 1/	/2- ***	$\Sigma(2170)$	*			Σ_b	1/2 '	***		f5(1640)	$0^{+}(2^{+}+)$	f ₆ (2510)	0+(6++)	$D_0(2400)^{\pm}$	$1/2(0^+)$ $1/2(0^+)$	(B = C = ±	⊧1)	• h _b (1P)	??(1+-)
		A(1910) 1/	/2+ ***	Z (3170)				Σ_{b}^{*}	3/2+	***	100 C	 η₂(1645) 	0+(2 - +)	OTHE		• D ₁ (2420) ⁰	$1/2(1^+)$	• B_{c}^{+}	0(0-)	• χ _{b2} (1P)	$0^+(2^{++})$
		A(1000) E/	/2+ ****					Ξ_b^0, Ξ_b^-	$1/2^{+}$	***	1.1.1	 ω(1650) 	$0^{-}(1^{-})$	Further St		D1(2420)±	1/2(??)	$B_c(2S)^{\pm}$?'(?'')	$\eta_{b}(25)$	$0^{+}(0^{+})$
		/(1820) 5/	/2 +					$\Xi'_{b}(5935)$	- 1/2+	***	200	• $\omega_3(1670)$	$0^{-}(3^{-})$	Turula St	lates	$D_1(2430)^0$	1/2(1+)			• T(25)	0(1)
		/(1830) 5/	/2 ****					$\Xi_{b}(5945)^{0}$	3/2+	***	20.00	• <i>π</i> ₂ (±670)	1 (2 ')			• D ₂ (2460) ⁰	1/2(2+)			• Xm(2P)	$0^{+}(0^{-}+)$
		7(1890) 3/	/2*****					=*(5955)	- 3/2+	***	1000					 D²₂(2460)[±] D(2550)⁰ 	$1/2(2^+)$ $1/2(0^-)$			• χ _{b1} (2P)	$0^+(1^{++})$
		/(2000)	*					0-	$1/2^+$	***						D(2550)°	$\frac{1}{2(0^{\circ})}$			$h_b(2P)$?!(1+-)
		A(2020) 7/	/2+ *					32 b	1/2		1.000					D*(2640)±	1/2(??)			• χ _{b2} (2P)	$0^+(2^{++})$
		A(2050) 3/	/2- *													D(2750)	1/2(??)			• 7(35) • 7(3P)	$0^{+}(1^{+})$
		A(2100) 7/	/2- ****															1		• $\gamma(45)$	0-(1)
		A(2110) 5/	/2+ ***								1. A.									X(10610)	$\pm 1^{+(1^{+})}$
		A(2325) 3/	/2- *																	X(10610)	1+(1+)
		A(2350) 9/	/2+ ***																	X(10650)	+ ?+(1+)
		A(2585)	**																	 7(10860) 7(11020) 	$0^{-}(1^{-})$
<u> </u>		71(2000)						1												• 7(11020)	(±)

- 強い相互作用で安定/不安定
- 励起状態のほとんどが不安定:ハドロン散乱の共鳴状態

イントロダクション:ハドロン物理における共鳴状態

量子力学の共鳴状態

1) ポテンシャル共鳴 -1チャンネル (P) トンネル効果 - ポテンシャル障壁: E>0 - トンネル効果で不安定 - (Pチャンネルの複合状態) 2) フェッシュバッハ共鳴 V()- チャンネル結合問題 (P+Q) - Qの束縛状態Eq<0, Ep>0 Ρ - チャンネル間遷移で不安定 ャンネル間遷移 - (P以外の寄与:"素粒子"状態)

イントロダクション:ハドロン物理における共鳴状態 共鳴状態の難しさ

ハミルトニアンの"固有状態"としての共鳴状態

- エネルギーを複素数に

G. Gamow, Z. Phys. 51, 204 (1928)

Zur Quantentheorie des Atomkernes. Von G. Gamow, z. Zt. in Göttingen. Mit 5 Abbildungen. (Eingegangen am 2. August 1928.) Um diese Schwierigkeit zu überwinden, müssen wir annehmen, daß die Schwingungen gedämpft sind, und E komplex setzen:

$$E = E_0 + i \frac{h \lambda}{4 \pi}$$

wo E_0 die gewöhnliche Energie ist und λ das Dämpfungsdekrement (Zerfallskonstante). Dann sehen wir aber aus den Relationen (2a) und (2b),

- 波動関数が遠方で発散:通常の規格化ができない $\langle R | R angle = \int dr |\psi_R(r)|^2 ightarrow \infty$

bi-orthogonal basis (Gamow vector) で規格化可能

N. Hokkyo, Prog. Theor. Phys. 33, 1116 (1965) T. Berggren, Nucl. Phys. A 109, 265 (1968)

$$| ilde{R}\,
angle = |\,R^*\,
angle, \quad \langle\, ilde{R}\,|\,R\,
angle = \int dm{r}[\psi_R(m{r})]^2 < \infty$$

- 演算子の期待値(例: <r2>)が複素数 -> 解釈?

閾値近傍のハドロン共鳴状態の複合性

ハドロンの複合性

閾値近傍のハドロン共鳴状態の複合性:有効場の理論による弱束縛関係式

安定状態の弱束縛関係式

s波弱束縛状態 (R » R_{typ})の複合性 0<X<1

S. Weinberg, Phys. Rev. 137, B672 (1965); T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}, \quad r_e = R\left\{\frac{X-1}{X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right)\right\}$$

a₀: 散乱長, r_e: 有効レンジ

R = (2µB)^{-1/2}:半径(波動関数の広がり)

Rtyp:相互作用の典型的長さスケール

 - 重陽子はNN複合状態(a₀~R≫r_e) <- X ~ 1

 核力や波動関数を知らなくても観測可能量から構造が分かる。

問題点:

- 不安定状態に拡張できない

閾値近傍のハドロン共鳴状態の複合性:有効場の理論による弱束縛関係式

有効場の理論

閾値近傍に束縛状態のある低エネルギー散乱の記述

- 接触相互作用の非相対論的QFT

D.B. Kaplan, Nucl. Phys. B494, 471 (1997) E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

カットオフ: A ~ 1/R_{typ} (本来の相互作用の長さスケール)
 相互作用が点状に見える低エネルギー p « A で有効

閾値近傍のハドロン共鳴状態の複合性:有効場の理論による弱束縛関係式 複合性と"素粒子性"

固有状態:

 $H_{\text{free}}|B_0\rangle = \nu_0|B_0\rangle, \quad H_{\text{free}}|p\rangle = \frac{p^2}{2\mu}|p\rangle \quad \text{free (discrete + continuum)}$ $(H_{\text{free}} + H_{\text{int}})|B\rangle = -B|B\rangle \quad \text{full (bound state)}$

- 束縛状態 |B> の規格化 + 完全性関係式 $\langle B | B \rangle = 1, \quad 1 = |B_0\rangle\langle B_0| + \int \frac{d\mathbf{p}}{(2\pi)^3} |\mathbf{p}\rangle\langle \mathbf{p}|$

- 複合性と素粒子性

$$1 = Z + X, \quad Z \equiv |\langle B_0 | B \rangle|^2, \quad X \equiv \int \frac{d\mathbf{p}}{(2\pi)^3} |\langle \mathbf{p} | B \rangle|^2$$

"素粒子性" 複合性

Z, X: 非負実数 -> 確率として解釈できる。

閾値近傍のハドロン共鳴状態の複合性:有効場の理論による弱束縛関係式

弱束縛関係式

↓●散乱振幅(厳密な結果)

複合性 X は v(E) と G(E) でかける。一般にはくりこみ依存。

<u>T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015)</u> <u>T. Hyodo, arXiv:1511.00870 [hep-ph]</u>

 $X = \{1 + G^2(-B)v'(-B)[G'(-B)]^{-1}\}^{-1}$

散乱長を 1/R で展開:主要項の係数が X で表現できる!

$$a_{0} = -f(E = 0) = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}$$
くりこみ依存
くりこみ不変

X <- (B, a₀): R が R_{typ} より十分大きいとき

閾値近傍のハドロン共鳴状態の複合性:準束縛状態への拡張 不安定状態への拡張

崩壊チャンネルを導入

$$\begin{split} H_{\rm free}' &= \int d\boldsymbol{r} \bigg[\frac{1}{2M'} \nabla \psi'^{\dagger} \cdot \nabla \psi' - \nu_{\psi} \psi'^{\dagger} \psi' + \frac{1}{2m'} \nabla \phi'^{\dagger} \cdot \nabla \phi' - \nu_{\phi} \phi'^{\dagger} \phi' \bigg], \\ H_{\rm int}' &= \int d\boldsymbol{r} \bigg[g_0' \left(B_0^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} B_0 \right) + v_0' \psi'^{\dagger} \phi'^{\dagger} \phi' \psi' + v_0^t (\psi^{\dagger} \phi^{\dagger} \phi' \psi' + \psi'^{\dagger} \phi'^{\dagger} \phi \psi) \bigg], \end{split}$$

準束縛状態:固有値が複素数 $H = H_{\text{free}} + H'_{\text{free}} + H_{\text{int}} + H'_{\text{int}}$ $H|QB\rangle = E_{QB}|QB\rangle, \quad E_{QB} \in \mathbb{C}$

一般化された関係式:閾値エネルギー差の補正項

$$a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \sqrt{\frac{{\mu'}^3}{\mu^3}}\mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu'_0}}$$

X <- (EQB, ao): |R| が (Rtyp, I) より十分大きいとき

Compositeness: Generalization to unstable states

New definitions

- **Step 1: quantify the deviation from bound state**
 - 0 for bound state
 - becomes large when deviation is large
 - U = |Z| + |X| 1
 - -> ∪: uncertainty of interpretation
 - c.f. T. Berggren, Phys. Lett. 33B, 547 (1970)

- Step 2: define new compositeness/elementariness
 - interpreted as probabilities $\tilde{Z} + \tilde{X} = 1, \quad \tilde{Z}, \tilde{X} \in [0, 1]$
 - coincide with Z, X for bound state if $U \longrightarrow 0$

$$\tilde{Z} = \frac{1 - |X| + |Z|}{2}, \quad \tilde{X} = \frac{1 - |Z| + |X|}{2}$$

compositeness when \cup is small

閾値近傍のハドロン共鳴状態の複合性:ハドロン物理への応用:ハ(1405)

一般化された弱束縛関係式 X <一 (E_{QB}, a₀) $a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \sqrt{\frac{{\mu'}^3}{\mu^3}}\mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu'_0}}$

- ハ(1405)ポール位置とKN散乱長の決定 Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012), ...
- $E_{QB} = -10 26i \text{ MeV} -> |R| ~ 2 \text{ fm} -> 補正項は小さい$ $\left|\frac{R_{typ}}{R}\right| \lesssim 0.12, |\frac{l}{R}|^3 \lesssim 0.16$ $\pi \Sigma$ 閾値とのエネルギー差 ベクトルメソン交換

)	$ r_e/a_0 $	U	$\tilde{X}_{\bar{K}N}$	$X_{\bar{K}N}$	a_0 (fm)	E_{QB} (MeV)	Ref.
T	$\overline{2}$	0.2	0.5	1.0	1.2 + i0.1	1.39 - i0.85	-10 - i26	[43]
	7	0.7	0.0	0.6	0.6 + i0.1	1.81 - i0.92	-4-i8	[44]
解析による違い	2	0.2	0.1	0.9	0.9 - i0.2	1.30 - i0.85	-13 - i20	[45]
	7	0.7	0.0	0.6	0.6 + i0.0	1.21 - i1.47	2 - i10	[46]
	4	0.4	0.6	0.8	1.0 + i0.5	1.52 - i1.85	-3-i12	[46]

∧(1405)はKN複合状態 <-- 観測可能量

閾値近傍のハドロン共鳴状態の複合性

閾値近傍の束縛状態の複合性は観測可能量(散乱 長と束縛エネルギー)のみで決定される。 S. Weinberg, Phys. Rev. 137, B672 (1965) 有効場の理論を用いることで弱束縛関係式を不安 定状態に一般化できる。 $a_0 = R\left\{\frac{2X}{1+X} + \mathcal{O}\left(\left|\frac{R_{\text{typ}}}{R}\right|\right) + \sqrt{\frac{{\mu'}^3}{{\mu}^3}}\mathcal{O}\left(\left|\frac{l}{R}\right|^3\right)\right\}, \quad R = \frac{1}{\sqrt{-2\mu E_{QB}}}, \quad l \equiv \frac{1}{\sqrt{2\mu\nu'_0}}$ 散乱長とポール位置の精密な決定から

/(1405)が KN複合状態であることが示される。 Y. Kamiya, T. Hyodo, arXiv:1509.00146 [hep-ph]