What we know about the $\Lambda(1405)$

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

Contents

- Current status of $\Lambda(1405)$ and $\overline{K}N$ interaction
 - Recent experimental achievements
 - Systematic analysis in chiral dynamics
 - Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)
 - $\Lambda(1405)$ in $\pi\Sigma$ spectrum

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W. Weise, J. Phys. Conf. Ser. 569, 012077 (2014) + in preprataion; K. Miyahara, T. Hyodo, E. Oset, arXiv:1508.04882 [nucl-th]

Structure of $\Lambda(1405)$

- KN molecule?

K. Miyahara, T. Hyodo, arXiv:1506.05724 [nucl-th]; Y. Kamiya, T. Hyodo, arXiv:1509.00146 [hep-ph]

Introduction

K meson and **K**N interaction

Two aspects of $K(\overline{K})$ meson

- NG boson of chiral SU(3)_R \otimes SU(3)_L -> SU(3)_V
- massive by strange quark: mk ~ 496 MeV
 - —> spontaneous/explicit symmetry breaking

KN interaction ...T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

is coupled with π∑ channel
generates ∧(1405) below threshold

molecule

three-quark

- is fundamental building block for \overline{K} -nuclei, \overline{K} in medium, ...,

Recent experimental achievements

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

 shift and width of atomic state <-> K-p scattering length U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)
 Direct constraint on the KN interaction at fixed energy

Recent experimental achievements

$\pi\Sigma$ invarint mass spectra

$\pi\Sigma$ spectrum before 2008: single mode, no absolute values

R.J. Hemingway, Nucl. Phys. B253, 742 (1985)

After 2008: γp -> K+(πΣ)⁰ **LEPS, CLAS,** pp -> K+p(πΣ)⁰ **HADES**

0.1

(a)

 $\Sigma^+\pi$

🗕 data

M. Niiyama, *et al.*, Phys. Rev. C78, 035202 (2008); K. Moriya, *et al.*, Phys. Rev. C87, 035206 (2013); G. Agakishiev, *et al.*, Phys. Rev. C87, 025201 (2013)

Cross sections in different charge modes are available.

Strategy for KN interaction

Above the KN threshold: direct constraints

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the $\overline{K}N$ **threshold: indirect constraints**

- $\pi\Sigma$ mass spectra (new data: LEPS, CLAS, HADES,...)

Construction of the realistic amplitude

Chiral coupled-channel approach with systematic χ^2 fitting

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012)

 $P_{\rm lab}~[{\rm MeV}/c]$

Best-fit results

				TW	TWB	NL	O,	Experiment		
		$\Delta E [eV]$]	373	377	30	6	$283 \pm 36 \pm 6$	[10]	
		$\Gamma \ [eV]$		495	514	59	1	$541 \pm 89 \pm 22$ [10]		
Branching ratios		γ		2.36	2.36	2.3	7	2.36 ± 0.04	[11]	
		R_n		0.20	0.19	0.1	9	0.189 ± 0.015	[11]	
		R_c		0.66	0.66	0.66		0.664 ± 0.011	[11]	
		$\chi^2/d.o.f$	f	1.12	1.15	0.9	6			
cross sections	$\begin{bmatrix} \mathbf{q} & 350 \\ 300 \\ \mathbf{a} & 250 \\ \mathbf{y} & 200 \\ \mathbf{h} & 150 \\ \mathbf{b} & 50 \\ \mathbf{b} & 100 \\ $	250	$\sigma(K^-p o ar{K}^0)$ [dm] $(n^0 \tilde{K}^0 o ar{V})$ $\sigma(K^-p o ar{V})$	50 100 Plai	TW TWB NLO 150 200 250 [MeV/c]		$\begin{bmatrix} \operatorname{dm} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$		TW	250
	$\begin{bmatrix} qm \\ 250 \\ TWB \\ TWB \\ NLO \\ NLO \\ 150 \\ - 3 \\ + \mu \\ - d_{-} \\ H \\ 0 \\ 0 \end{bmatrix} $	······	$\sigma(K^-p ightarrow \pi^0 \Sigma^0) \ [ext{dm}]$		TWB TWB NLO		$[\operatorname{qun}] ({}_{0}\mathbf{V}_{0}\boldsymbol{\mu} \leftarrow d_{-}\boldsymbol{X})\boldsymbol{\nu}$		TW TWB NLO	

SIDDHARTA is consistent with cross sections (c.f. DEAR).

 $P_{\rm lab}~[{\rm MeV}/c]$

 P_{lab} [MeV/c]

Comparison with SIDDHARTA

TW		TWB	NLO		
χ² /d.o.f.	1.12	1.15	0.957		

TW and **TWB** are reasonable, while best-fit requires **NLO**.

Subthreshold extrapolation

Behavior of K-p -> K-p amplitude below threshold

- c.f. $\overline{K}N \longrightarrow \overline{K}N$ (I=0) without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

Subthreshold extrapolation is better controlled.

Extrapolation to complex energy: two poles

Two poles: superposition of two states

J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001); D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003); <u>T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)</u>

- Higher energy pole at 1420 MeV, not at 1405 MeV
- Attractions of WT in 1 and 8 ($\overline{K}N$ and $\pi\Sigma$) channels

NLO analysis confirms the two-pole structure.

Remaining ambiguity

 \overline{KN} interaction has two isospin components (I=0, I=1).

$$a(K^{-}p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^{-}n) = a(I=1) + \dots$$
$$a(K^{-}n) = 0.29 + i0.76 \text{ fm} \quad (\text{TW}) \quad ,$$
$$a(K^{-}n) = 0.27 + i0.74 \text{ fm} \quad (\text{TWB}) \quad ,$$
$$a(K^{-}n) = 0.57 + i0.73 \text{ fm} \quad (\text{NLO}) \quad .$$

Some deviation: constraint on |=1 (< – kaonic deuterium?)

12

Analyses by other groups

Further studies with NLO + χ^2 analysis + SIDDHARTA data

- Bonn group

M. Mai, U.-G. Meissner, Nucl. Phys. A900, 51 (2013)

Κ̈́N $\pi^0\Lambda$ πΣ 20 0 -20 [m W_{CMS}[MeV] -40 -60 -80 -1001550-120 1300 1350 1400 1450 1500 1250 Re W_{CMS}[MeV]

- Murcia group

 $K^-p \rightarrow K^-p$

Z.H. Guo, J.A. Oller, Phys. Rev. C87, 035202 (2013)

~13 parameters -> several local minima / "exotic" solution by Bonn group (second pole above $\overline{K}N$)?

 $K^-p \rightarrow \bar{K}^0 n$

Constraints from the $\pi\Sigma$ **spectrum**

Combined analysis of scattering data + $\pi\Sigma$ spectrum

M. Mai, U.-G. Meissner, Eur. Phys. J. A 51, 30 (2015)

- a simple model for the photoproduction $\gamma p \rightarrow K^+(\pi \Sigma)^0$
- CLAS data of the $\pi\Sigma$ spectrum

-> The "exotic" solution is excluded.

Pole positions of $\Lambda(1405)$

Mini-review prepared for PDG

Pole structure of the $\Lambda(1405)$

Ulf-G. Meißner, Tetsuo Hyodo

February 4, 2015

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S = -1 and isospin I = 0. It is the archetype of

[11,12] Ikeda-Hyodo-Weise, [14] Guo-Oller, [15] Mai-Meissner

approach	pole 1 [MeV]	pole 2 [MeV]
Ref. [11, 12] NLO	$1424_{-23}^{+7} - i26_{-14}^{+3}$	$1381^{+18}_{-6} - i81^{+19}_{-8}$
Ref. $[14]$ Fit I	$1417^{+4}_{-4} - i24^{+7}_{-4}$	$1436_{-10}^{+14} - i126_{-28}^{+24}$
Ref. $[14]$ Fit II	$1421^{+3}_{-2} - i19^{+8}_{-5}$	$1388^{+9}_{-9} - i114^{+24}_{-25}$
Ref. [15] solution $#2$	$1434^{+2}_{-2} - i10^{+2}_{-1}$	$1330^{+4}_{-5} - i56^{+17}_{-11}$
Ref. [15] solution $#4$	$1429^{+8}_{-7} - i12^{+2}_{-3}$	$1325^{+15}_{-15} - i90^{+12}_{-18}$

converge around 1420 still some deviations

c.f. comprehensive analysis of the CLAS data (at LO)

L. Roca, E. Oset, Phys. Rev. C 87, 055201 (2013); C 88, 055206 (2013)

πΣ spectra depend on the reaction (ratio of KN/πΣ in the intermediate state, interference with I=1,...).

-> Detailed model analysis for each reaction

J-PARC E31 experiment: K-d -> n(^βΣ)⁰

- two-step approaches
 - D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A42, 257 (2009); A47, 42 (2011);
 - K. Miyagawa, J. Haidenbauer, Phys. Rev. C85, 065201 (2012);
 - J. Yamagata-Sekihara, T. Sekihara, D. Jido, PTEP 043D02 (2013)

Full Faddeev(AGS) calculation with relativistic kinematics

 $M_{\pi\Sigma}(MeV)$

∧_c decay

Weak decay of $\Lambda_c \rightarrow \pi^+MB$ (MB= $\pi\Sigma$, $\overline{K}N$)

K. Miyahara, T. Hyodo, E. Oset, arXiv:1508.04882 [nucl-th]

- final state interaction of MB generates $\Lambda(1405)$
- dominant process (CKM, N_c counting, diquark correlation) filters the MB pair in I=0.

Clean $\Lambda(1405)$ signal can be found in the charged $\pi\Sigma$ modes. 18

KN molecule?

KN molecule

- Structure of $\Lambda(1405)$: three-quark or meson-baryon?
 - constituent quark model: too light?

N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)

- vector meson exchange: well reproduce

R.H. Dalitz, T.C. Wong, G. Rajasekaran Phys. Rev. 153, 1617 (1967)

Recent lattice QCD study

J. Hall, et al., Phys. Rev. Lett. 114, 132002 (2015)

KN molecule?

KN potential

- Local KN potential —> wave function T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)
 - Equivalent amplitude on the real axis
 - Single-channel, complex, energy-dependent
- **Realistic** $\overline{K}N$ potential for NLO with SIDDHARTA (χ^2 /dof ~ 1)

The size of $\Lambda(1405)$ is much larger than ordinary hadrons.

Compositeness

Model-independent relation of compositeness X <- (B, a₀) S. Weinberg, Phys. Rev. 137, B672 (1965); V. Baru, *et al.*, Phys. Lett. B 586, 53 (2004)

- Generalization to quasi-bound states

Y. Kamiya, T. Hyodo, arXiv:1509.00146 [hep-ph]

Talk by Kamiya 2B2

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left| \frac{R_{\text{typ}}}{R} \right| \right) + \sqrt{\frac{{\mu'}^3}{{\mu}^3}} \mathcal{O}\left(\left| \frac{l}{R} \right|^3 \right) \right\}, \quad R = 1/\sqrt{2\mu E_{QB}}$$

- NLO Analyses of $\wedge(1405)$ with SIDDHARTA (χ^2 /d.o.f. ~ 1)

Ref.	E_{QB} (MeV)	a_0 (fm)	$X_{\bar{K}N}$	$\tilde{X}_{\bar{K}N}$	U	$ r_{e}/a_{0} $
[43]	-10 - i26	1.39 - i0.85	1.2 + i0.1	1.0	0.5	0.2
[44]	-4-i8	1.81 - i0.92	0.6 + i0.1	0.6	0.0	0.7
[45]	-13 - i20	1.30 - i0.85	0.9 - i0.2	0.9	0.1	0.2
[46]	2 - i10	1.21 - i1.47	0.6 + i0.0	0.6	0.0	0.7
[46]	-3-i12	1.52 - i1.85	1.0 + i0.5	0.8	0.6	0.4

[43] Ikeda-Hyodo-Weise, [44,46] Mai-Meissner, [45] Guo-Oller

 $\Lambda(1405)$ is a \overline{KN} molecule. <— observable quantities

Summary: ∧(1405)

