
Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

Contents

Current status of nuclear force

Phenomenological potentials

- Boson exchange, Av18, quark model, ...
- Realistic precision (χ^2 /d.o.f. < 1)

Chiral EFT

- Systematic improvement
- Realistic precision (χ^2 /d.o.f. < 1)

Lattice QCD

- First principle (fit required for practical use)
- Not yet realistic

Few-body calculations

KN interaction

Requirement for the KN system

- large subthreshold extrapolation (~ 100 MeV?)
- accurate description of scattering Data (better than NN?)

Phenomenological potentials: boson (hadron) exchange

S. Shinmura, M. Wada, M. Obu, Y. Akaishi, Prog. Theor. Phys. 124, 125 (2010) J. Haidenbauer, G. Krein, U.-G. Meissner, L. Tolos, Eur. Phys. J. A 47, 18 (2011)

- not fitted to $\overline{K}N$ data (aiming at unified description)

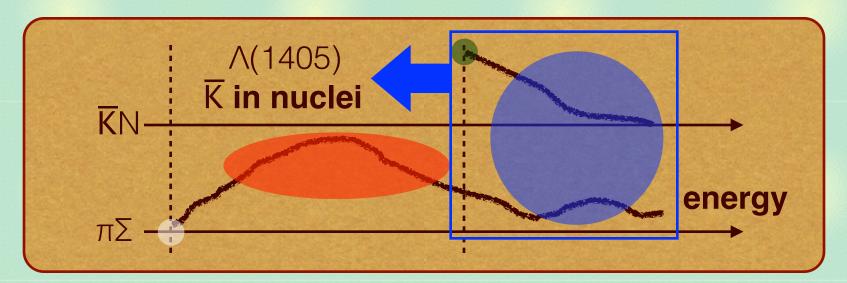
Lattice?

- more difficult than NN (coupled-channel, quark annihilation)

Chiral coupled-channel approach: This talk

- Systematic improvement with NLO terms

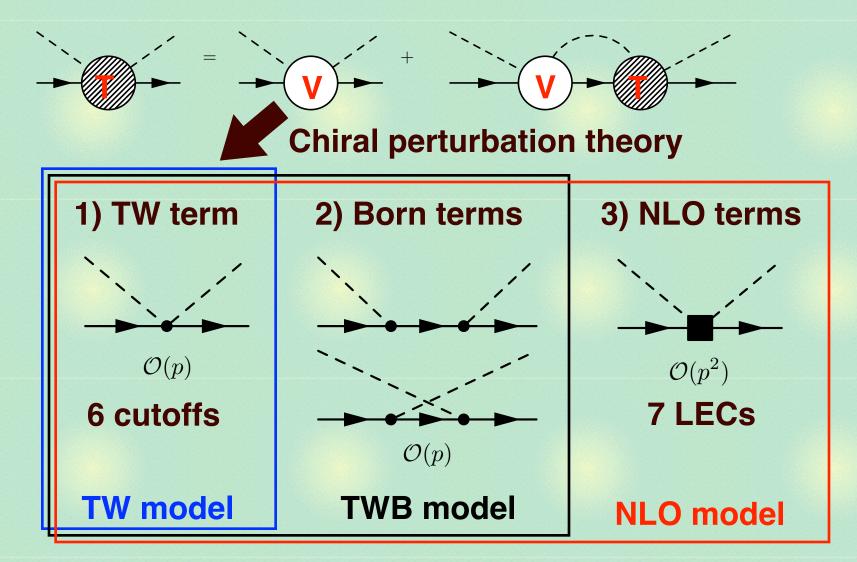
- Realistic precision with $\overline{K}N$ data (χ^2 /d.o.f. <1)


Strategy for KN interaction

Above the KN threshold:

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the $\overline{K}N$ threshold:


- πΣ mass spectra (new data: LEPS, CLAS, c.f. Niiyama-san)
- $\pi\Sigma$ scattering length (no data at present)

Construction of the realistic amplitude

Chiral coupled-channel approach with systematic χ^2 fitting

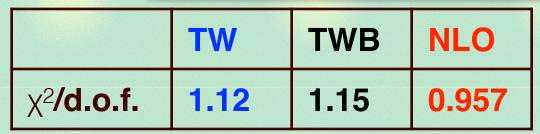
Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012)

0 L

 $P_{\rm lab}~[{\rm MeV}/c]$

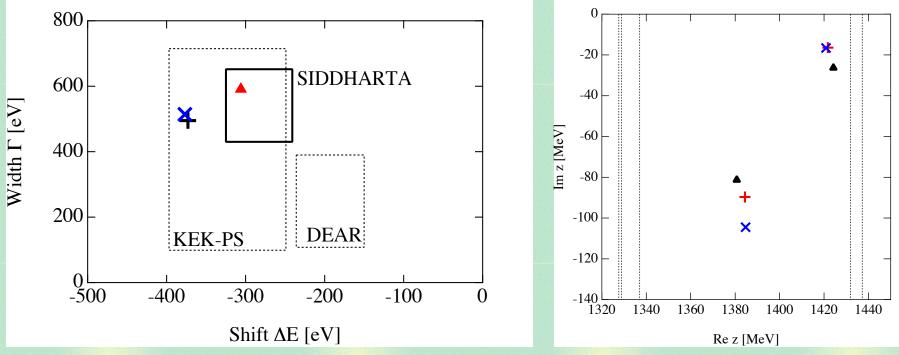
Best-fit results

				oouno				
		_	TW	TWB	NLO	Experiment		
		$\Delta E \ [eV]$	373	377	306	$283 \pm 36 \pm 6$	[10]	
	SIDDHARTA {	$\Gamma [eV]$	495	514	591	$541 \pm 89 \pm 22$	[10]	
Branching ratios {		γ	2.36	2.36	2.37	2.36 ± 0.04	[11]	
		R_n	0.20	0.19	0.19	0.189 ± 0.015	[11]	
		R_c	0.66	0.66	0.66	0.664 ± 0.011	[11]	
		χ^2 /d.o.f	1.12	1.15	0.96			
sections	$\begin{bmatrix} \mathbf{a} & 350 \\ 300 \\ \mathbf{a} & 250 \\ \mathbf{b} & 200 \\ \uparrow & 150 \\ \mathbf{b} & 50 \\ \mathbf{b} & 50 \\ \mathbf{b} & 50 \\ \mathbf{b} & 50 \\ \mathbf{b} & 0 \\ \mathbf{b} & 100 \\ \mathbf{b} & 100 \\ \mathbf{b} & 150 \\ \mathbf{c} & 100 \\ \mathbf{b} & 150 \\ \mathbf{c} & 200 \\ \mathbf{c} \\ \mathbf{b} & \mathbf{c} \end{bmatrix}$	$(u_0 \underline{Y} \rightarrow d \underline{X})$	60 50 40 30 20 50 100 P lat	TW TWB NLO 150 200 250 5 [MeV/c]	$[\operatorname{dm}] (\overset{0}{+} \underline{\chi}^{-} \pi + \underline{\eta}^{-} X) \overset{0}{-} \overset$	100 150 Plab [MeV		250
cross sec	$\begin{bmatrix} 250 \\ TWB \\ TWB \\ 200 \\ 1 \\ 150 \\ \mu \\ 1 \\ 100 \\ -X \\ 50 \\ 0 \end{bmatrix}$	$\sigma(K^-p o \pi^0 \Sigma^0) ~[{ m inb}]$	140 120 100 100 100 100 100 100 10		$[\operatorname{qm}] ({}_{0}\operatorname{V}_{0}\mu \leftarrow d_{-}\operatorname{Y}) \wp$		TW TWB NLO	


SIDDHARTA is consistent with cross sections

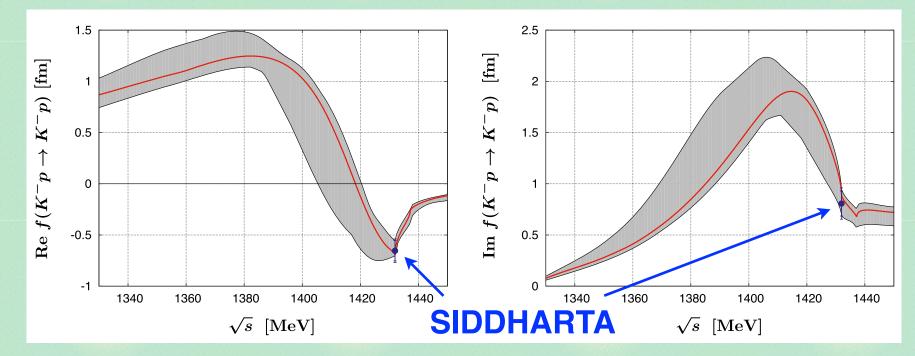
0 l

 $P_{\rm lab} \ [{\rm MeV/c}]$

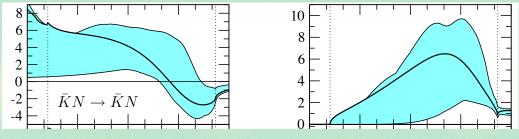

 P_{lab} [MeV/c]

Shift, width, and pole positions

Shift and width


∧(1405) Pole positions

TW and **TWB** are reasonable, while best-fit requires **NLO**. Systematic error of the pole positions is small.

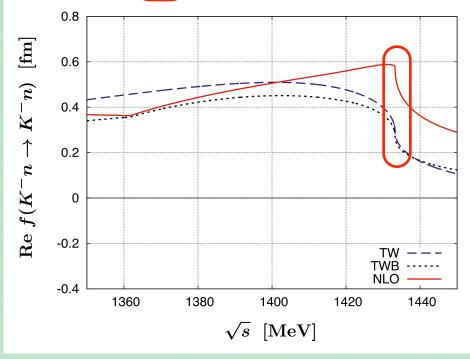

Subthreshold extrapolation

Behavior of K-p -> K-p amplitude below threshold

- c.f. $\overline{K}N \longrightarrow \overline{K}N$ (I=0) without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

Subthreshold extrapolation is now well controlled.


Remaining ambiguity

For K-nucleon interaction, we need both K-p and K-n.

$$a(K^{-}p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^{-}n) = a(I=1) + \dots$$
$$a(K^{-}n) = 0.29 + i0.76 \text{ fm} \quad (\text{TW}) \quad ,$$

$$a(K^{-}n) = 0.27 + i0.74 \text{ fm} (\text{TWB}) ,$$

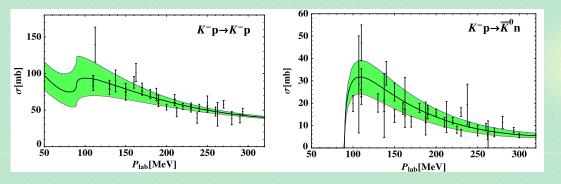
 $a(K^-n) = 0.57 + i0.73 \text{ fm}$ (NLO).

Some deviation: constraint on K-n (< – kaonic deuterium?)

10

KN potential

- Construction of local KN potential: few-body application <u>T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)</u>
 - Equivalent amplitude on the real axis
 - Single-channel, complex, energy-dependent
 - SIDDHARTA constraint was not included.
 - Pole position was not reproduced.
- New realistic KN potential K. Miyahara, T. Hyodo, arXiv:1506.05724 [nucl-th]
 - Equivalent amplitude on the complex energy plane (pole)
 - Matched with NLO + χ^2 analysis + SIDDHARTA data


Calculation of KNN **system: K. Miyahara, S. Ohnishi.**

Analyses by other groups

Other models with NLO + χ^2 analysis + SIDDHARTA data

- Bonn group

M. Mai, U.-G. Meissner, Nucl. Phys. A900, 51 (2013)

Κ̈́N $\pi^0\Lambda$ πΣ 20 0 -20 [m W_{CMS}[MeV] -40 -60 -80 -1001550-120 1300 1350 1400 1450 1500 1250 Re W_{CMS}[MeV]

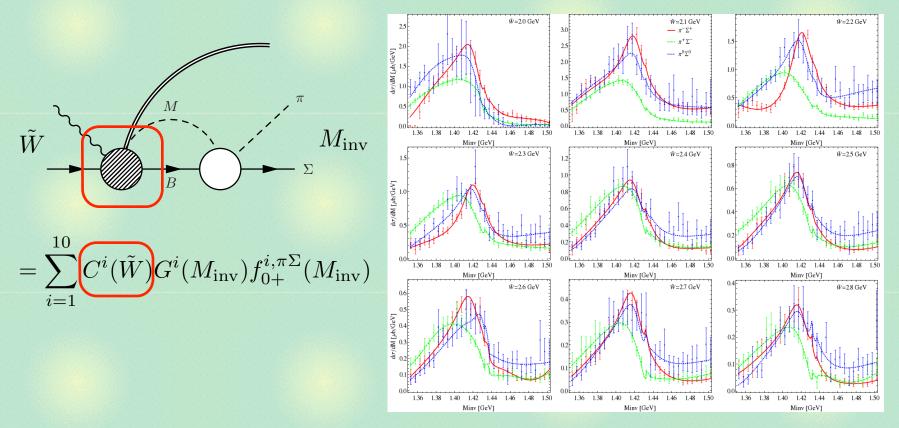
12

- Murcia group

 $K^-p \rightarrow K^-p$

Z.H. Guo, J.A. Oller, Phys. Rev. C87, 035202 (2013)

~13 parameters -> several local minima / "exotic" solution by Bonn group (second pole above $\overline{K}N$)?


 $K^-p \rightarrow \bar{K}^0 n$

Constraints from the $\pi\Sigma$ **spectrum**

Combined analysis of scattering data + $\pi\Sigma$ spectrum

M. Mai, U.-G. Meissner, Eur. Phys. J. A 51, 30 (2015)

- a simple model for the photoproduction $\gamma p \rightarrow K^+(\pi \Sigma)^0$
- CLAS data of the $\pi\Sigma$ spectrum

-> The "exotic" solution is excluded.

Pole positions of $\Lambda(1405)$

Mini-review prepared for PDG2015

Pole structure of the $\Lambda(1405)$

Ulf-G. Meißner, Tetsuo Hyodo

February 4, 2015

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S = -1 and isospin I = 0. It is the archetype of

[11,12] Ikeda-Hyodo-Weise, [14] Murcia, [15] Bonn (updated)

approach	pole 1 [MeV]	pole 2 [MeV]
Ref. [11, 12] NLO	$1424_{-23}^{+7} - i26_{-14}^{+3}$	$1381^{+18}_{-6} - i81^{+19}_{-8}$
Ref. [14] Fit I	$1417^{+4}_{-4} - i24^{+7}_{-4}$	$1436_{-10}^{+14} - i126_{-28}^{+24}$
Ref. [14] Fit II	$1421^{+3}_{-2} - i19^{+8}_{-5}$	$1388^{+9}_{-9} - i114^{+24}_{-25}$
Ref. [15] solution $#2$	$1434^{+2}_{-2} - i10^{+2}_{-1}$	$1330^{+4}_{-5} - i56^{+17}_{-11}$
Ref. [15] solution $#4$	$1429^{+8}_{-7} - i12^{+2}_{-3}$	$1325^{+15}_{-15} - i90^{+12}_{-18}$

well convergence still some deviations

Current status of A(1405) and KN interaction

Summary: chiral SU(3) dynamics

We perform systematic χ^2 analysis for the $\overline{K}N-\pi\Sigma$ interaction in chiral coupled-channel approach.

With the accurate SIDDHARTA data, we can construct realistic KN-πΣ interaction. Ambiguity in the subthreshold extrapolation for Λ(1405) energy region is significantly reduced.

Pole position of $\Lambda(1405)$:

 $z_1 = (1424^{+7}_{-23} - i26^{+3}_{-14}) \text{ MeV}, \quad z_2 = (1381^{+18}_{-6} - i81^{+19}_{-8}) \text{ MeV}$

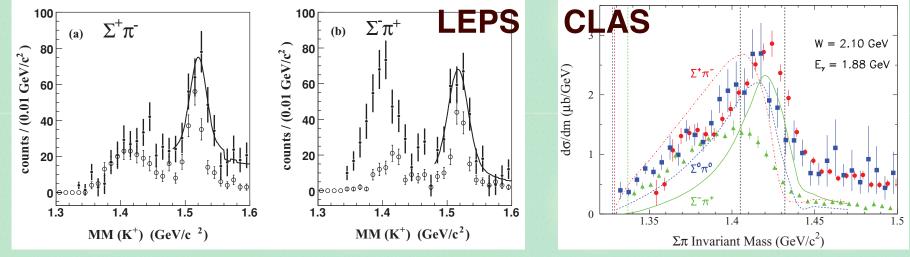
Remaining ambiguity: |=1 channel <-- kaonic deuterium measurement.

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Summary of current status of $\Lambda(1405)$

Fitting data above KN threshold, the (main) pole of $\Lambda(1405)$ appears at ~1420-20i MeV, not at 1405 MeV.

Solution Consistency with $\pi\Sigma$ spectra is important to constrain the amplitude far below threshold.

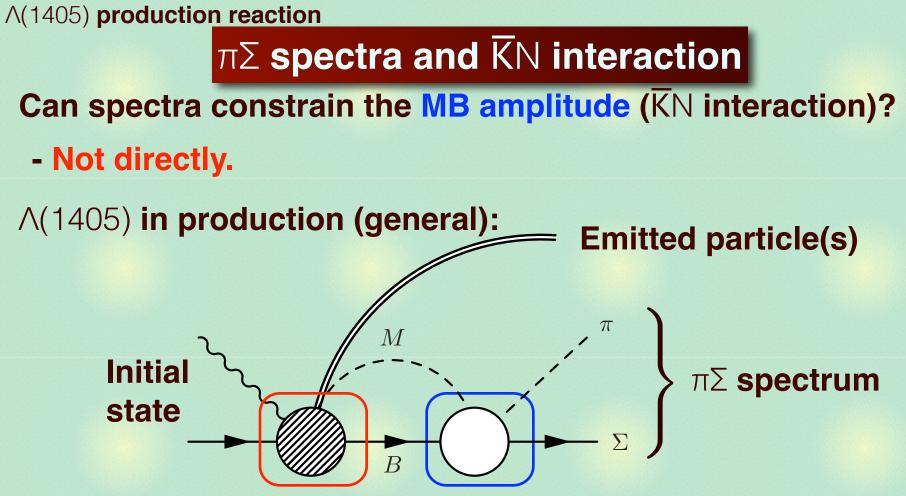

Future direction:

NLO chiral interaction χ² error analysis reliable reaction model K̄N scattering dataK-p scattering lengthπΣ spectrum

New $\pi\Sigma$ spectra

- **Photoproduction experiments:** $\gamma p \rightarrow K^+(\pi \Sigma)^0$
- LEPS@1.5 < $E\gamma$ < 2.4 GeV, CLAS@1.56 < $E\gamma$ < 3.83 GeV

M. Niiyama, *et al.*, Phys. Rev. C78, 035202 (2008); K. Moriya, *et al.*, Phys. Rev. C87, 035206 (2013)

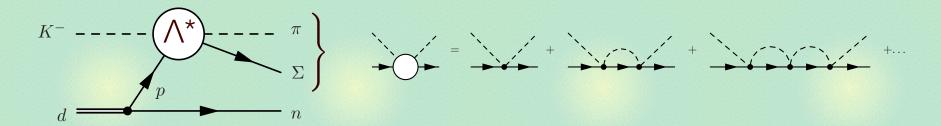

Hadron-induced reactions:

- **HADES:** pp -> K+p(πΣ)⁰

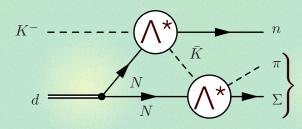
G. Agakishiev, et al., Phys. Rev. C87, 025201 (2013)

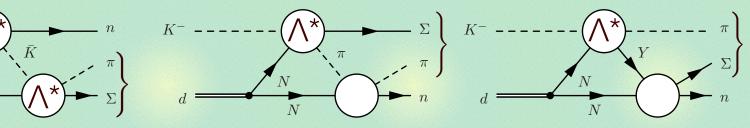
- J-PARC E31 (to be available): K-d -> n(πΣ)⁰

New and precise spectra are being available.

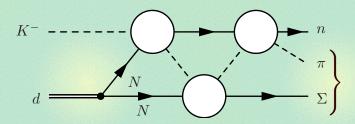

reaction model MB amplitude

Spectra depend on the reaction (ratio of KN/πΣ in the intermediate state, interference with I=1,...).


-> Detailed model analysis for each reaction


Faddeev approach for K-d reaction

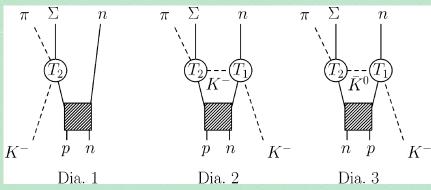
- Diagrams for K-d -> πΣn : J-PARC E31 (~1 GeV K-)
 - one-step process



- two-step processes

- three-step processes,...

- (non-resonant background)
- + infinitely many diagrams


Faddeev equation sums all diagrams nonperturbatively.

Previous attempts for K-d reaction

Two-step approaches

- D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A42, 257 (2009);
- J. Esmaili, Y. Akaishi, T. Yamazaki, Phys. Rev. C83, 055207 (2011);
- D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A47, 42 (2011);
- K. Miyagawa, J. Haidenbauer, Phys. Rev. C85, 065201 (2012);
- J. Yamagata-Sekihara, T. Sekihara, D. Jido, PTEP 043D02 (2013)

- Perturbative: full three-body dynamics is not included.

Faddeev(AGS) approach for stopped K

J. Revai, Few-Body Syst. 54, 1865 (2013)

- $\pi \wedge N$ channel is not included.
- relative s-wave to spectator (valid at low energy)
- nonrelativistic kinematics (valid at low energy)

Strategy for in-flight K-d reaction

- Framework of K-d -> πΣn for J-PARC E31 (~1 GeV K-)
 - S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W. Weise,
 - J. Phys. Conf. Ser. 569, 012077 (2014)
 - Faddeev(AGS) amplitude: full three-body dynamics
 - Inclusion of the $\pi \wedge N$ channel: proper |=1 contribution
 - Inclusion of relative L > 0 with spectator (two-body interaction is s-wave only)
 - MB interaction: energy-dep. and energy-indep. interactions (fitted to cross sections, to be constrained by SIDDAHRTA)

Y. Ikeda, H. Kamano, T. Sato, Prog. Theor. Phys. 124, 533 (2010)

Recent improvements:

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W. Weise, in preparation

- Relativistic kinematics (1 GeV incident momentum)
- Inclusion of πN , YN final state interaction

 $\Lambda(1405)$ production reaction

$\pi\Sigma$ spectra with various charge combinations

$\pi\Sigma$ spectra @ P_{K-} = 1 GeV, angle integrated

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W. Weise, in preparation

Difference of energy-dep. / energy-indep. (shape, magnitude) - distinction of subthreshold KN amplitude

$\Lambda(1405)$ production reaction

$\pi\Sigma$ spectra with various charge combinations

πΣ spectra @ P_{K-} = 1 GeV, forward neutron

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W. Weise, in preparation

Difference of π - Σ + and π + Σ - spectra

- large interference effect with |=1 components

$$|\bar{K}[NN]_{I=0}\rangle_{I=1/2} = -\frac{1}{2} |\bar{K}N]_{I=0}N\rangle_{I=1/2} + \frac{\sqrt{3}}{2} |\bar{K}N]_{I=1}N\rangle_{I=1/2}$$

Summary: production reaction We study the K-d -> πΣn reaction for J-PARC E31

We employ the Faddeev(AGS) amplitude with π AN channel, relative \bot to spectator, all final state interactions and relativistic kinematics are included.

Deviation of different charged $\pi\Sigma$ states indicates the large interference with |=1.

Lineshape and the magnitude of $\pi\Sigma$ spectra are sensitive to subthreshold $\overline{K}N$ interaction.

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W. Weise, J. Phys. Conf. Ser. 569, 012077 (2014) + in preparation