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Introduction: experimental developments

KN̅-πΣ interaction from chiral SU(3) dynamics

Current status of Λ(1405)
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- new πΣ spectra from various reactions

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)



3

K ̅meson and KN̅ interaction
Introduction: experimental developments

Two aspects of K(K)̅ meson
- NG boson of chiral SU(3)R ⊗ SU(3)L —> SU(3)V

—> spontaneous/explicit symmetry breaking

- is coupled with πΣ channel
- generates Λ(1405) below threshold

KN̅ interaction ...
T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is fundamental building block for K-̅nuclei, K ̅in medium, ...

πΣ

KN̅
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er

gy

- massive by strange quark: mK ~ 496 MeV
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M

Λ(1405)

molecule three-quark
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K ̅in nuclei
Introduction: experimental developments

KN̅ interaction
- strong attraction
- no repulsive core?

—> We need a realistic KN̅ interaction.

- bound states in few-nucleon systems
Rigorous calculations (2007-)

- binding energy depends on the employed KN̅ interaction

I=0 I=1
NN deuteron (2 MeV) attractive
KN̅ Λ(1405) (15-30 MeV) attractive

Possible (quasi-)bound K ̅in nuclei
- deep binding, high density?

Y. Nogami, Phys. Lett. 7, 288, (1963);
T. Yamazaki, Y. Akaishi, Phys. Lett. B535, 70 (2002);
A. Dote, et al., Phys. Lett. B590, 51 (2004)

T. Yamazaki, Y. Akaishi / Physics Letters B 535 (2002) 70–76 71

Fig. 1. Calculated !KN and !K-nucleus potentials and bound levels: !(1405), 2!KH and
3
!KH for K

−p, K−pp and K−ppn systems, respectively. The
nuclear contraction effect is taken into account. The shaded zones indicate the widths. The "π and !π emission thresholds are also shown.

problem is how to produce !∗ in a nucleus and
how to identify produced !K bound states. Here, we
point out that the “strangeness exchange reactions”
(K−,π−) (or similarly, (π+,K+)) would lead to
the production and detection of !K bound states [6].
Although it resembles the ordinary method for !

and " hypernuclear spectroscopy, no attention has
ever been paid to the excitation region, which is
much higher than M"c2 = 1190 MeV. One of the
advantages of this reaction is to produce very exotic!K
bound systems on proton-rich “nuclei”, such as p–p,
that are unbound without the presence of K−. We first
discuss the structure of such exotic systems that can
be formed only by the (K−,π−) reaction and then
consider their production processes.

2. Structure of proton-rich !K bound states

Table 1 shows what kinds of exotic species of !K
bound states are formed following (K−,π−) reactions.
The I = 0 !KN pair, which possesses a strong attrac-
tion, gives an essential clue to lower the energy of a
bound system. Thus, K−pp, K−ppp and K−pppn sys-
tems on non-existing nuclei, which can be produced
from d(K−,π−), 3He(K−,π−) and 4He(K−,π−) re-

actions, respectively, are of particular interest. The
doorway states are expressed as 2!∗H, 3!∗He and 4!∗He
in the hypernuclear nomenclature, which are con-
verted to !K bound states, namely, 2!KH,

3
!KHe and

4
!KHe,

respectively. The two less-exotic !K bound nuclei, 3!KH
and 4!KH, can be produced by the (e, e

′K+) and (K−,n)
reactions, as shown in Table 1.
We have calculated the binding energies (B) and

widths (Γ ) of such proton-rich !K bound states by
the G-matrix method, starting from the following
elementary !KN interactions, as derived in Refs. [1–3]:

(1)vI
!KN(r) = vI

D exp
[
−(r/0.66 fm)2

]
,

(2)vI
!KN,π"

(r) = vI
C1 exp

[
−(r/0.66 fm)2

]
,

(3)vI
!KN,π!

(r) = vI
C2 exp

[
−(r/0.66 fm)2

]
,

with vI=0
D = −436 MeV, vI=0

C1 = −412 MeV,
vI=0
C2 = 0, vI=1

D = −62 MeV, vI=1
C1 = −285 MeV and

vI=1
C2 = −285 MeV, where vI

π"(r) = vI
π!(r) = 0 is

taken to simply reduce the number of parameters.
These interactions, characterized by the strongly at-
tractive vI=0

!KN channel, were shown to lead to a strongly
attractive optical potential (see detailed discussions in
Ref. [3]), which is consistent with a substantial reduc-
tion of the K− mass in the nuclear medium, predicted
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Experimental constraints for the KN̅ interaction
Introduction: experimental developments

Above the KN̅ threshold:
- K-p total cross sections (old data)

Below the KN̅ threshold:
- πΣ mass spectra (new data: LEPS, CLAS, HADES,…)
- πΣ scattering length (no data at present)

- KN̅ threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

KN̅

πΣ
energy

Λ(1405)
K ̅in nuclei



6

SIDDHARTA measurement 
Introduction: experimental developments

Precise measurement of the kaonic hydrogen X-rays
M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

- shift and width of atomic state <—> K-p scattering length
U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Direct constraint on the KN̅ interaction at fixed energy

K-

p

strong int.

EM int.

EM value
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g
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exp.

SIDDHARTA Collaboration / Nuclear Physics A 881 (2012) 88–97 95

Fig. 7. Comparison of the present result for the strong-interaction 1s-energy-level shift and width of kaonic hydrogen
with the two experimental results: KEK-PS E228 (1997) [14] and DEAR (2005) [15]. The error bars correspond to
quadratically added statistical and systematic errors. The right panel shows the error in the energy shift as a function of
the width (vertical axis) for each experiment. The dashed lines represent the SIDDHARTA precision calculated assuming
the same statistics but with differing width.

both the background X-ray lines and a continuous background; (a) shows the residuals of the
measured kaonic-hydrogen X-ray spectrum after subtraction of the fitted background, clearly
displaying the kaonic-hydrogen K-series transitions.

As a result, the 1s-level shift ϵ1s and width Γ1s of kaonic hydrogen were determined by
SIDDHARTA to be

ϵ1s = −283 ± 36(stat) ± 6(syst) eV and

Γ1s = 541 ± 89(stat) ± 22(syst) eV,

respectively, where the first error is statistical and the second is systematic. The quoted systematic
error is a quadratic summation of the following contributions: the SDD gain shift, the SDD re-
sponse function, the ADC linearity, the low-energy tail of the kaonic-hydrogen higher transitions,
the energy resolution, and the procedural dependence shown by an independent analysis [31].

4. Conclusion

We have determined the strong-interaction energy-level shift and width of the kaonic-
hydrogen atom 1s state with the best accuracy up to now [31]. The obtained shift and width
are plotted in Fig. 7 along with the other two recent results [14,15]. It should be noted that the
smaller the width, the better the accuracy of determining the energy. The right panel of Fig. 7
shows the errors on the energy shift as a function of the width (vertical axis) for each exper-
iment, together with guide lines representing SIDDHARTA precision calculated assuming the
same statistics but with differing width. In comparison with the DEAR result, the accuracy of
determining the energy in SIDDHARTA is obviously improved.

�E
�
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New πΣ spectra
Introduction: experimental developments

Photoproduction experiments: γp -> K+(πΣ)0

M. Niiyama, et al., Phys. Rev. C78, 035202 (2008);
K. Moriya, et al., Phys. Rev. C87, 035206 (2013)

New and precise spectra are being available.

- LEPS@1.5 < Eγ < 2.4 GeV, CLAS@1.56 < Eγ < 3.83 GeV

- HADES: pp -> K+p(πΣ)0

G. Agakishiev, et al., Phys. Rev. C87, 025201 (2013)

Hadron-induced reactions:

- J-PARC E31(planned): K-d -> n(πΣ)0

PHOTOPRODUCTION OF !(1405) AND . . . PHYSICAL REVIEW C 78, 035202 (2008)
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FIG. 6. Missing mass for the γp → K+X reaction. (a) K+#+π− final state. (b) K+#−π+ final state. Solid lines in (a) and (b) show fit
results of K+!(1520) plus nonresonant (K+#π ) production. (c) The combined spectra of the #+π− and #−π+ decay modes. Closed and
open circles show spectra obtained by this work and by a previous measurement [29], respectively.

misidentification rate of #+ and #− using the above
procedure was estimated to be 12% using MC simulation.
The distributions of MM(K+π±) are shown in Fig. 5(d).
The solid histogram is MM(K+π−) and the dashed one is
MM(K+π+). The masses of #+(1189) and #−(1197) were
determined via a Gaussian fit to the data to be 1191 ± 1
MeV/c2 and 1199 ± 1 MeV/c2, respectively. The measured
widths of #+(1189) and #−(1197) were 20 ± 1 MeV/c2 and
16 ± 1 MeV/c2 and are consistent with the expected value of
17 MeV/c2 as estimated by MC.

The measured spectra of the !(1405) for the #+π− and
#−π+ modes were compared with each other and with
spectra from a previous measurement [29]. In the previous
measurement, both a K+ and a charged pion were detected
in the LEPS spectrometer. However, in this work, a K+

was detected in the LEPS spectrometer, and two charged
pions were measured by the TPC. Therefore, these two
measurements differ in the angle between the K+ and the pion.
Figures 6(a) and 6(b) show the spectrum of MM(K+) after the
#+ and #− selection cuts, respectively. The spectra obtained
by this work are shown as closed circles. Open circles show
the unnormalized spectra from the previous measurement [29].
The !(1520) peak visible in these spectra was fitted using a
Breit-Wigner function atop the phase space distribution of
nonresonant (K+#π ) production. The solid lines show the fit
results. The mass peak positions are 1520 ± 2 MeV/c2 in the
#+π− decay mode and 1517 ± 2 MeV/c2 in the #−π+ decay
mode. Thus, the mass of !(1520) is consistent with the PDG
value in each decay mode. The peak position of the !(1405)
in #−π+ was consistent with the PDG value of 1405 MeV/c2.
However, the peak structure in the #+π− mode was not clear.
The decay mode dependence of the line shapes of !(1405)
is likely due to strong interference between isospin 0 and 1
amplitudes of the #π interaction, as discussed in Ref. [9]. The
apparent difference for the line shape of the !(1405) in the
#−π+ decay mode between the current work and the previous
measurement will be discussed in the next section. The isospin
interference term is canceled by summing the spectra of the
#+π− and #−π+ modes. The summed spectrum was obtained

after correcting for the decay branch of #+ → pπ0 (∼52%),
and the result is shown in Fig. 6(c). Closed and open circles
show the spectra measured by this work and by the previous
one, respectively, where the normalization for the spectrum
by the previous measurement was determined by fitting in the
range of 1.34 < MM(K+) < 1.47 GeV/c2. The χ2/ndf was
1.4. Thus, the line shape of !(1405) after the sum is consistent
with the one from the previous measurement.

The yield of !(1405) was extracted by fitting the theoretical
spectrum of Nacher et al. [9] to the peak in the combined spec-
trum of the #+π− and #−π+ modes. The combined spectrum
is shown as closed circles in Fig. 7 for 0.8 < cos(&KCM ) < 1.0
and two photon energy ranges: 1.5 < Eγ < 2.0 GeV (a)
and 2.0 < Eγ < 2.4 GeV (b). The spectra were corrected
for the detector acceptance and were normalized using the
differential cross section of K+!(1116) production measured
from data set (I) [4] in each photon energy bin. The spectra
were fitted with the distribution for K+!(1405),K+!(1520),
and nonresonant (K+#π ) production as determined by MC
simulation. The strength of each reaction was obtained by
the fitting, with the assumption that the ratio of the yields of
nonresonant (K+#π ) production in the two photon energy
regions is proportional to the phase volume. The solid curves
show the spectra of !(1405) calculated by Nacher et al.,
and the dashed lines show the distribution for nonresonant
(K+#π ) production. The contamination from (K∗0#+) pro-
duction was measured using the invariant mass distribution
of (K+π−) pairs in the 2.0 < Eγ < 2.4 GeV region, and the
expected spectrum of (K∗0#+) production generated by the
MC simulation is shown as the dot-dashed line in Fig. 7(b). The
open circles show the spectrum of K+#0(1385) production
with normalization determined from the yield found above.
The fit results are shown as the solid histograms. The χ2/ndf
for the fits were 1.8 and 1.7 for photon energy of 1.5 <
Eγ < 2.0 GeV and 2.0 < Eγ < 2.4 GeV, respectively. The
theoretical spectrum of Nacher et al. is seen to be consistent
with the experimental data in the low photon energy region. A
second fit was performed using a different theoretical spectrum
due to Kaiser et al. [8] derived from an effective Lagrangian.

035202-7
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than the sum of the two errors. The agreement between the
two decay mode reconstruction channels is generally good.
The average of these two measurements will be used in the
subsequent comparisons with the other charge decay modes.

In all cases the !+π− mass distribution clearly peaks at
a mass of around 1420 MeV/c2, which is higher than the
nominal mass of the #(1405) at 1405.1 MeV/c2 listed by the
PDG [25]. We also note the sharp drop or break of the mass
distributions at the NK̄ threshold near 1.435 GeV/c2, which
is a signature of the opening of a new threshold for S-wave
resonances. This is discussed in Sec. IX.

B. Line shape results for all !π channels

Our main results [44], the line shape comparison for all
three !π channels, is shown in Fig. 17. As noted, the !+π−

channel is the weighted average of the two measured final
states. The !0π0 channel and !−π+ channels are again shown
with inner and outer error bars, where the inner bars are
statistical, and the outer bars include the estimated residual
discrepancy in the fits added in quadrature to the inner bars.
For each of nine bins in invariant energy W , we show the !π
mass distribution in each of three charge states. The data have
been summed over the full range of measured kaon production
angles. The large-angle cutoffs were not quite identical for all
charge states because of differing acceptances, but because the
cross sections get very small at large angles (cos θ c.m.

K+ < −0.5)
we can neglect these differences.

For all energies, it is evident that the line shapes differ
markedly between charge states; in some regions they differ by
well over 5σ . This occurs far away from the indicated reaction
thresholds, making it unlikely that the effects are attributable
to mere mass differences. None of the mass distributions are
reproduced by the simple relativistic Breit-Wigner line shape
with PDG-given centroid and width. The !+π− channel peaks
at a higher mass than the !−π+ channel, while having a
width that is significantly smaller. The charge dependence
of the mass distributions is largest for W between 2.0 and
2.4 GeV. For W approaching 2.8 GeV the mass distributions
tend to merge together. This hints that whatever I ̸= 0 coherent
admixture of isospin states is at work here, it fades away at
higher total energy. Our own fit to the line shapes to extract
our best estimates for the mass and width of the #(1405) and
other structures causing this charge-dependence of the mass
distributions are shown in Sec. IX.

Comparing our line shape results to the prediction of Nacher
et al. [7] computed in a chiral unitary model approach, we see
in Fig. 18 that they are indeed different for each !π channel.
In the chiral unitary theory this was explained as an I = 1
amplitude interfering with the I = 0 #(1405) amplitude in
such a way that the !+π− and !−π+ channels were shifted
in opposite directions due to the interference term. The model
curves were computed for Eγ = 1.7 GeV, but we compare with
our results at Eγ = 1.88 GeV because our statistics are better
there. The model calculation uses a Weinberg-Tomozawa
contact interaction that is energy and angle independent,
allowing us to compare the model to the data in any energy
bin. In our results it is the !+π− channel that is shifted to
higher mass with a narrower width, and the !−π+ channel is

Σπ Invariant Mass (GeV/c2)

dσ
/d

m
 (

µb
/G

eV
)
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1
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3

1.35 1.4 1.45 1.5

FIG. 18. (Color online) Mass distributions at W = 2.10 GeV and
Eγ = 1.88 GeV in comparison to the model of Nacher et al. [7] scaled
down by a factor of 2.0. The !+π− channel is shown as red circles
and the red dot-dashed line; the !0π 0 channel is shown as the blue
squares and the blue dashed line; the !−π+ channel is shown as the
green triangles and the green solid line. The dashed vertical colored
lines at the left side show the reaction thresholds, and the vertical
dashed lines at 1.405- and 1.437-GeV mark the nominal centroid and
the NK̄ thresholds, respectively. The error bars on the data points are
combined statistical and point-to-point systematic uncertainties.

smaller and wider, in contrast to the model calculation. Also,
the model curves have been scaled down by a factor of 2.0
to match the data, suggesting that the model overestimates
the strength of the photocouplings by that amount. In Sec. IX
we make our own phenomenological isospin decomposition
to find a plausible explanation of what is seen.

The other existing prediction for the mass distribution of
the !π final states is that of Lutz and Soyeur [11]. In their
so-called double kaon pole model, the combined effects of the
!(1385) and the #(1405) were considered, and this produced
some variation among the three charge combinations we have
presented. However, as has been discussed, we subtracted off
the effect of the !(1385) and still are left with a substantial
variation in the three final states. We do not compare our results
directly to theirs because they are qualitatively similar in shape
to those of Ref. [7] and also because they are about a factor of
four too large in cross section, indicating a serious quantitative
discrepancy when comparing to our results.

VII. SYSTEMATIC UNCERTAINTIES AND TESTS

A. Overall systematics of the run

For systematic uncertainties, there were global contribu-
tions from the yield extraction, acceptance corrections, flux
normalization, and the line shape fitting procedure. The main
cuts that influenced the yield extraction were the 'TOF
cuts, the CL cuts in the kinematic fit, and the selection of
intermediate the ground-state hyperon. All of these cuts were
varied within each bin of center-of-mass energy and angle,
and the total yields were checked for any differences due to
the cuts. Variation in the 'TOF width by 0.2 ns changed

035206-15

LEPS CLAS
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πΣ spectra and KN̅ interaction
Introduction: experimental developments

Can spectra constrain the MB amplitude (KN̅ interaction)?

—> Detailed model analysis for each reaction

- Not directly.

- Spectra depend on the reaction (ratio of KN̅/πΣ in the 
  intermediate state, interference with I=1,…).

MB amplitude

Λ(1405) in production reaction:

B

M

⌃

⇡

Initial
state

(

πΣ spectrum

Emitted particle(s)

reaction model
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KN̅ interaction is important both for hadron 
physics (structure of Λ(1405) resonance) and 
for nuclear physics (K ̅in nuclei).

Precise K-p scattering length by SIDDHARTA  
—> quantitative constraint on KN̅ interaction

New πΣ spectra from various reactions            
—> reliable reaction model required

Construct realistic KN̅ scattering model 
based on a reliable framework.

Short summary of introduction
Introduction: experimental developments
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Strategy for KN̅ interaction
KN̅-πΣ interaction from chiral SU(3) dynamics

Above the KN̅ threshold:
- K-p total cross sections (old data)

Below the KN̅ threshold:
- πΣ mass spectra (new data: LEPS, CLAS, HADES,…)
- πΣ scattering length (no data at present)

- KN̅ threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

KN̅

πΣ
energy

Λ(1405)
K ̅in nuclei
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Construction of the realistic amplitude
KN̅-πΣ interaction from chiral SU(3) dynamics

Chiral coupled-channel approach with systematic χ2 fitting

= +

TW model
O(p2)O(p) O(p)

2) Born terms1) TW term 3) NLO terms

LECs

ChPT

TWB model NLO model

T V TV

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012);



TW TWB NLO Experiment

�E [eV] 373 377 306 283± 36± 6 [10]

� [eV] 495 514 591 541± 89± 22 [10]

� 2.36 2.36 2.37 2.36± 0.04 [11]

Rn 0.20 0.19 0.19 0.189± 0.015 [11]

Rc 0.66 0.66 0.66 0.664± 0.011 [11]

�2/d.o.f 1.12 1.15 0.96

pole positions 1422� 16i 1421� 17i 1424� 26i

[MeV] 1384� 90i 1385� 105i 1381� 81i

Table 1
Results of the systematic �2 analysis using leading order (TW) plus Born terms (TWB) and full NLO
schemes. Shown are the energy shift and width of the 1s state of the kaonic hydrogen (�E and �),
threshold branching ratios (�, Rn and Rc), �2/d.o.f of the fit, and the pole positions of the isospin I = 0
amplitude in the K̄N -⇡⌃ region.

the subtraction constants ai in Eq. (7), especially those in the ⇡⇤ and ⌘⌃ channels,
exceed their expected “natural” values ⇠ 10�2 by more than an order of magnitude [14].
This clearly indicates the necessity of including higher order terms in the interaction
kernel Vij . It also emphasizes the important role of the accurate kaonic hydrogen data in
providing sensitive constraints.

The additional inclusion of direct and crossed meson-baryon Born terms does not
change �E and �2/d.o.f. in any significant way. It nonetheless improves the situation
considerably since the subtraction constants ai now come down to their expected “nat-
ural” sizes.

The best fit (with �2/d.o.f. = 0.96) is achieved when incorporating NLO terms in the
calculations. The inputs used are: the decay constants f⇡ = 92.4 MeV, fK = 110.0 MeV,
f⌘ = 118.8 MeV, and axial vector couplings D = 0.80, F = 0.46 (i.e. gA = D+F = 1.26);
subtraction constants at a renormalization scale µ = 1 GeV (all in units of 10�3): a1 =
a2 = �2.38, a3 = �16.57, a4 = a5 = a6 = 4.35, a7 = �0.01, a8 = 1.90, a9 = a10 =
15.83; and NLO parameters (in units of 10�1 GeV�1): b̄0 = �0.48, b̄D = 0.05, b̄F =
0.40, d1 = 0.86, d2 = �1.06, d3 = 0.92, d4 = 0.64. Within the set of altogether
“natural”-sized constants ai the relative importance of the K⌅ channels involving double-
strangeness exchange is worth mentioning.

As seen in Table 1, the results are in excellent agreement with threshold data. The
same input reproduces the whole set of K�p cross section measurements as shown in
Fig. 2 (Coulomb interaction e↵ects are included in the diagonal K�p ! K�p channel
as in Ref. [6]). A systematic uncertainty analysis has been performed by varying the
parameters obtained from �2 fits within the range permitted by the uncertainty measures
of the kaonic hydrogen experimental data. Since the shift and width of kaonic hydrogen
are rather insensitive to the I = 1 scattering amplitudes, the total cross section of
K�p ! ⇡0⇤ reaction is also used for the uncertainty analysis. We find that all cross
sections are well reproduced with the constraint from the kaonic hydrogen measurement
as shown by the shaded areas in Fig. 2. A detailed description of this analysis will be
given in a longer forthcoming paper [15].

Equipped with the best fit to the observables at K�p threshold and above, an opti-
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Best-fit results
KN̅-πΣ interaction from chiral SU(3) dynamics

SIDDHARTA is consistent with cross sections
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Shift, width, and pole positions
KN̅-πΣ interaction from chiral SU(3) dynamics

TW and TWB are reasonable, while best-fit requires NLO.
Pole positions are now converging. 
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Fig. 4. Real part (left) and imaginary part (right) of the K−p → K−p forward scattering amplitude obtained from
the NLO calculation and extrapolated to the subthreshold region. The empirical real and imaginary parts of the K−p

scattering length deduced from the recent kaonic hydrogen measurement (SIDDHARTA [15]) are indicated by the dots
including statistical and systematic errors. The shaded uncertainty bands are explained in the text.

z1 = 1424 − i26 MeV, z2 = 1381 − i81 MeV.

The higher energy z1 pole is dominated by the K̄N channel and the lower energy z2 pole receives
stronger weight from the πΣ channel. This confirms the two-poles scenario of the Λ(1405) [7,
22,23]. Actually, the existence of two poles around the Λ(1405) resonance had been found in
previous NLO calculations [8,9], but the precise location of the poles, especially of the lower
one, could not be determined in these earlier studies, given the lack of precision in the empirical
constraints.

In the present analysis, the SIDDHARTA measurement provides much more severe con-
straints also on the pole positions. The real parts of z1 and z2 are remarkably stable in all three
TW, TWB and NLO schemes. The imaginary parts deviate within ! 20 MeV between these
schemes, as seen in Table 3. Using the error analysis from Eq. (23) together with the best-fit
NLO results, one finds:

z1 = 1424+7
−23 − i26+3

−14 MeV, z2 = 1381+18
−6 − i81+19

−8 MeV. (24)

The uncertainties of the pole locations are thus significantly reduced from previous work, and the
two-poles structure of the Λ(1405) is now consistently established with the constraints from the
precise kaonic hydrogen measurement. Because of isospin symmetry, the two poles are stable
against variations of the I = 1 subtraction constants (the ones in the πΛ and ηΣ channels). The
error assignments in the pole positions and half widths are mainly reflecting the uncertainties of
the K̄N and πΣ subtraction constants.

3.3.3. K−p and K−n scattering lengths
A discussion of low-energy K̄-nuclear interactions requires the knowledge of both the K−p

and K−n amplitudes near threshold. The complete K̄N threshold information involves both
isospin I = 0 and I = 1 channels. The K−p scattering length a(K−p) = [a0 +a1]/2 is given by
the average of the I = 0 and I = 1 components, whereas the K−n scattering length a(K−n) = a1
is purely in I = 1. Note that Coulomb corrections to a(K−p) and isospin breaking effects in
threshold energies may be significant [11] and must be taken into account in a detailed quantita-
tive analysis.
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Subthreshold extrapolation
KN̅-πΣ interaction from chiral SU(3) dynamics

Subthreshold extrapolation is now well controlled.

Behavior of K-p —> K-p amplitude below threshold

SIDDHARTA

- c.f. KN̅ —> KN̅ (I=0) without SIDDHARTA
R. Nissler, Doctoral Thesis (2007)

5.3. Results 137
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Figure 5.13: Real (left panel) and imaginary part (right panel) of the I = 0 K̄N and
πΣ amplitudes in the full approach. The best fit is represented by the solid lines while
the bands comprise all fits in the 1σ region. The πΣ and K̄N thresholds are indicated
by the dotted vertical lines.
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Remaining ambiguity
KN̅-πΣ interaction from chiral SU(3) dynamics

For K-̅nucleon interaction, we need both K-p and K-n.
a(K�p) =

1

2
a(I = 0) +

1

2
a(I = 1) + . . . , a(K�n) = a(I = 1) + . . .

a(K�n) = 0.29 + i0.76 fm (TW) ,

a(K�n) = 0.27 + i0.74 fm (TWB) ,

a(K�n) = 0.57 + i0.73 fm (NLO) .
Y. Ikeda et al. / Nuclear Physics A 881 (2012) 98–114 111

Fig. 5. Real part (left) and imaginary part (right) of the K−n → K−n forward scattering amplitude extrapolated to the
subthreshold region.

Fig. 6. Imaginary part of the I = 0 K̄N (left) and πΣ (right) amplitudes together with error bands permitted by SID-
DHARTA experiments. The histogram (arbitrary unit) in the right panel denotes the experimental data of the π−Σ+
spectrum in the decay of Σ+(1660) → π+(π−Σ+) [25].

imaginary part of the K̄N amplitude has its maximum close to 1420 MeV, whereas the position
of the peak in the πΣ spectrum is shifted downward from the K̄N → K̄N amplitude to about
1380–1400 MeV. This is a consequence of the strong K̄N ↔ πΣ coupled-channels dynamics
dictated by chiral SU(3) symmetry. The different shapes and positions of the spectral distribu-
tions in Fig. 6 represent the coupled modes associated with the two poles z1,2 discussed earlier.
While the subthreshold K̄N spectrum has its maximum closer to the location of the “upper” pole
z1, the πΣ spectrum receives a stronger weight from the second, “lower” pole z2.

The right panel of Fig. 6 includes for reference and orientation the experimental spectrum of
the π−Σ+ channel in the decay Σ+(1660) → π+(π−Σ+) [25]. It should however be noted
that a direct comparison of this histogram with the imaginary part of the calculated I = 0 πΣ

amplitude is not meaningful. The measured spectrum is not pure I = 0 and the relative weights of
the initial states (πΣ , K̄N , . . .) are not known. In addition, because the energy of the three-body
π+(π−Σ+) system is restricted to form the Σ(1660), the higher tail of the π−Σ+ spectrum is
suppressed because of the small available phase space [10]. It is therefore necessary to construct

Some deviation: constraint on K-n (<— kaonic deuterium?)
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With accurate kaonic hydrogen data, we can 
construct realistic KN̅-πΣ interaction. Ambiguity 
in the subthreshold extrapolation for Λ(1405) 
energy region is significantly reduced.

Pole position of Λ(1405) is converging.

Remaining ambiguity: I=1 channel                           
<— kaonic deuterium measurement.

Summary: chiral SU(3) dynamics
KN̅-πΣ interaction from chiral SU(3) dynamics

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

We perform systematic χ2 analysis for the KN̅-πΣ 
interaction in chiral coupled-channel approach.

z1 = (1424+7
�23 � i26+3

�14) MeV, z2 = (1381+18
�6 � i81+19

�8 ) MeV
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Analyses by other groups
Current status of Λ(1405)

NLO interaction + χ2 analysis + SIDDHARTA data
- Bonn group

- Murcia group
Z.H. Guo, J.A. Oller, Phys. Rev. C87, 035202 (2013)

M. Mai, U.-G. Meissner, Nucl. Phys. A900, 51 (2013)58 M. Mai, U.-G. Meißner / Nuclear Physics A 900 (2013) 51–64

Fig. 1. Total cross sections for the scattering of K−p to various channels versus the K− laboratory momentum. The
black points with error bars denote the experimental data from [21–24] considered for the fits. The solid (black) lines
represent our best fit. Shaded (green in the web version) bands denote the 1σ error bands calculated as described in the
text. The reaction K−p → Λπ0 is not a part of our fit and presented here for completeness.

As a matter of fact, the shape of the 1σ region for the energy shift and width of kaonic hydrogen
cannot be assumed to be rectangular, see Fig. 2. The resulting scattering lengths for isospin I = 0
and I = 1, i.e. a0 and a1, are displayed in Fig. 3, in comparison to some older determinations
and the determination based on scattering data alone [5]. The inclusion of the SIDDHARTA data
leads to much smaller errors, especially for a1. Our values for the scattering lengths are

a0 = −1.81+0.30
−0.28 + i0.92+0.29

−0.23 fm,

a1 = + 0.48+0.12
−0.11 + i0.87+0.26

−0.20 fm. (7)

The inclusion of isospin breaking effects was analyzed in [30]. Taking these into account yields:
a0 = −1.83+0.27

−0.28 + i0.85+0.27
−0.22 and a1 = 0.69+0.11

−0.12 + i0.95+0.31
−0.24. Note also that the inclusion of

the Λπ0 data in the fitting procedure could yield an additional constraint on the isospin I = 1

ZHI-HUI GUO AND J. A. OLLER PHYSICAL REVIEW C 87, 035202 (2013)
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FIG. 1. (Color online) The ten panels from (a) to (j) correspond to the cross sections of K−p → K−p, K−p → K̄0n,K−p → π+"−,
K−p → π−"+, K−p → π 0"0, K−p → π 0#, the π−"+ event distribution from K−p → "+(1660)π−, the K−p → η# cross section, the
π 0"0 event distribution from the reaction K−p → π 0π 0"0 with pK = 0.687 GeV, and the total cross section of K−p → π 0π 0"0, respectively.
The data points represented by black diamonds, magenta squares, orange circles, blue crosses, cyan down-triangles, and blue up-triangles in the
first four panels are taken from Refs. [48,56–60], respectively. The data in the panels (e) and (f) are from Ref. [61]. The π−"+ event distribution is
from Ref. [25] and the K−p → η# cross-section data are from Ref. [26]. The measurements on the reaction K−p → π 0π 0"0 are from Ref. [27].
The red solid lines and blue dashed lines represent the best fits from Fit I using Eqs. (11) and (12) (which is indicated by Fit I S), respectively.
The areas covered by green hatched lines and the gray shaded areas correspond to our estimates of error bands for Fit I and Fit I S, in order.

L2 in Eq. (1) read

σπN = −2M2
π (2b0 + bD + bF ) ,

a+
0+ = − M2

π

2πf 2

[
(2b0 + bD + bF ) − (b1 + b2 + b3 + 2b4)

+ (D + F )2

8mp

]
,

mN = m0 − 2(b0 + 2bF )M2
π − 4(b0 + bD − bF )M2

K ,

m# = m0 − 2
3

(3b0 − 2bD)M2
π − 4

3
(3b0 + 4bD)M2

K ,

m" = m0 − 2(b0 + 2bD)M2
π − 4b0M

2
K ,

m& = m0 − 2(b0 − 2bF )M2
π − 4(b0 + bD + bF )M2

K ,

(8)

035202-4

~13 parameters —> several local minima

M. Mai, U.-G. Meißner / Nuclear Physics A 900 (2013) 51–64 61

Fig. 5. Contour plot of the absolute value of the scattering amplitude for isospin I = 0 in the complex Wcms plane. Both
Riemann sheets RΣπ and RKN are ‘glued’ together along the K̄N threshold line. The pole positions of comparable
models are presented in the plot via squares [13], circles [6,7] and crosses [5].

Tij ∼ gigj

s − sR
, (10)

where gi and gj are coupling constants of the in- and out-going states, respectively. For each
pole (isospin I = 0) we extract the coupling constants to the K̄N and πΣ channel as follows

W1: |gK̄N | = 3.02 and |gπΣ | = 1.61,

W2: |gK̄N | = 1.89 and |gπΣ | = 4.39. (11)

At the position of the first pole (the one located at the smaller imaginary value of Wcms) the
coupling to the K̄N channel is nearly twice as large as to the πΣ channel. For the second pole
this pattern is reversed. Qualitatively both observations agree quite nicely with the ones made in
Refs. [4,14].

Having presented the main results of our approach, we wish to comment on differences of our
results compared with the outcome of the recent analysis by Ikeda et al. [6,7]. The main observed
difference is the different behavior of the K−p scattering amplitude in the subthreshold energy
region which is of course caused by the different pole positions compared to Ikeda et al. We
have investigated the origin of these observations qualitatively. First, from the analysis of πN

scattering in the same framework, see Ref. [9], it is known that off-shell effects can account
for large modifications of the pole positions. Setting the tadpole integrals to zero, we obtain
immediately the solution of the BSE in the on-shell factorization. Note that this solution is still
different to the one by Ikeda et al. [6,7] since no s-wave projection is performed. Secondly, we
noticed much smaller values of the NLO LECs found by Ikeda et al. additionally to the fact that
the LECs bi (i = 5, . . . ,11) were neglected there due to the s-wave projection. To keep track of
this we scale down our LECs continuously from the values found above to zero. Such a solution
of the BSE is of course by no means physical since no further fitting to experimental data is

Another “exotic” solution (second pole above KN̅)?
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Constraints from the πΣ spectrum
Current status of Λ(1405)

Combined analysis of scattering data + πΣ spectrum

—> The “exotic” solution is excluded.

M. Mai, U.-G. Meissner, arXiv:1411.7884 [hep-ph]

B

M

⌃

⇡

- a simple model for the photoproduction γp -> K+(πΣ)0

- CLAS data of the πΣ spectrum

Figure 4: Result of the fits to the CLAS data in all three channels ⇡+⌃� (green), ⇡�⌃+ (red) and ⇡0⌃0 (blue). Correspondingly, green (dashed), red
(full) and blue (dotted) lines represent the outcome of the model for the solution #4 in the ⇡+⌃�, ⇡�⌃+ ⇡0⌃0 channels, respectively.

13], we assume the simplest ansatz for the photoproduction amplitude

M j(W̃,Minv) =
10X

i=1

Ci(W̃) Gi(Minv) f i, j
0+(Minv) , (5)

where W̃ and Minv denote the total energy of the system and the invariant mass of the ⇡⌃ subsystem, respectively. For a
specific meson-baryon channel i, the energy-dependent (and in general complex valued) constants Ci(W̃) describe the
reaction mechanism of �p ! K+MiBi, whereas the final-state interaction is captured by the standard Höhler partial
waves f0+. For a specific meson-baryon channel i, the Greens function is denoted by Gi(Minv) and is given by the
one-loop meson baryon function in dimensional regularization, i.e. IMB(Minv,mi,Mi) as given in Appendix B.

The regularization scales appearing in the Eq. (5) via the Gi(Minv) have already been fixed in the fit to the hadronic
cross sections and the SIDDHARTA data. Thus, the only new parameters of the photoproduction amplitude are the
constants Ci(W̃) which, however, are quite numerous (10 for each W̃). These parameters are adjusted to reproduce
the invariant mass distribution d�/dMinv(Minv) for the final ⇡+⌃�, ⇡0⌃0 and ⇡�⌃+ states and for all 9 measured total
energy values W̃ = 2.0, 2.1, .., 2.8 GeV. The achieved quality of the photoproduction fits is listed in the third row
of Tab. 1, whereas the �2

d.o.f. of the hadronic part are stated in the second row. Note that for the comparison of
the photoproduction fits the quantity �2

d.o.f. is not meaningful due to the large number of generic parameters Ci(W̃).
Therefore, we compare the total �2 divided by the total number of data points for all three ⇡⌃ final states, denoted
by �2

p.p.. It turns out that even within such a simple and flexible photoproduction amplitude, only the solutions #2, #4
and #5 of the eight hadronic solutions allows for a decent description of the CLAS data. The next best solution has
a roughly 40% larger total �2 per data point than the best one. The best solution is indeed #4, which we display in
Fig. 4. Incidentally, it also has the lowest �2

d.o.f. for the hadronic part. This solution also gives an excellent description

7

MinvW̃

=
10X

i=1

Ci(W̃ )Gi(Minv)f
i,⇡⌃
0+ (Minv)
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Pole positions of Λ(1405)
Current status of Λ(1405)

Mini-review prepared for PDG

still some deviations

Table 1: Comparison of the pole positions of Λ(1405) in the complex energy
plane from next-to-leading order chiral unitary coupled-channel approaches
including the SIDDHARTA constraint.

approach pole 1 [MeV] pole 2 [MeV]

Ref. [11, 12] NLO 1424+7
−23 − i26+3

−14 1381+18
−6 − i81+19

−8

Ref. [14] Fit I 1417+4
−4 − i24+7

−4 1436+14
−10 − i126+24

−28

Ref. [14] Fit II 1421+3
−2 − i19+8

−5 1388+9
−9 − i114+24

−25

Ref. [15] solution #2 1434+2
−2 − i 10+2

−1 1330+4
−5 − i 56+17

−11

Ref. [15] solution #4 1429+8
−7 − i 12+2

−3 1325+15
−15 − i 90+12

−18
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3

Pole structure of the Λ(1405)

Ulf-G. Meißner, Tetsuo Hyodo

February 4, 2015

The Λ(1405) resonance emerges in the meson-baryon scattering amplitude
with the strangeness S = −1 and isospin I = 0. It is the archetype of
what is called a dynamically generated resonance, as pioneered by Dalitz
and Tuan [1]. The most powerful and systematic approach for the low-energy
regime of the strong interactions is chiral perturbation theory (ChPT), see
e.g. Ref. [2]. A perturbative calculation is, however, not applicable to this
sector because of the existence of the Λ(1405) just below the K̄N threshold.
In this case, ChPT has to be combined with a non-perturbative resummation
technique, just as in the case of the nuclear forces. By solving the Lippmann-
Schwinger equation with the interaction kernel determined by ChPT and
using a particular regularization, in Ref. [3] a successful description of the low-
energy K−p scattering data as well as the mass distribution of the Λ(1405)
was achieved (for further developments, see Ref. [4] and references therein).

The study of the pole structure was initiated by Ref. [5], which finds two
poles of the scattering amplitude in the complex energy plane between the
K̄N and πΣ thresholds. The spectrum in experiments exhibits one effective
resonance shape, while the existence of two poles results in the reaction-
dependent lineshape [6]. The origin of this two-pole structure is attributed
to the two attractive channels of the leading order interaction in the SU(3)
basis (singlet and octet) [6] and in the isospin basis (K̄N and πΣ) [7]. It is
remarkable that the sign and the strength of the leading order interaction is
determined by a low-energy theorem of chiral symmetry, i.e. the so-called
Weinberg-Tomozawa term. The two-pole nature of the Λ(1405) is qualita-
tively different from the case of the N(1440) resonance. Two poles of the
N(1440) appear on different Riemann sheets of the complex energy plane
separated by the π∆ branch point. These poles reflect a single state, with a
nearby pole and a more distant shadow pole. In contrast, the two poles of the

1

[11,12] Ikeda-Hyodo-Weise, [14] Murcia, [15] Bonn (updated)
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To avoid “exotic” solutions, we need to check 
the consistency with πΣ spectra.

Different analyses show pole 1 (close to the KN̅ 
threshold) is well determined. There is still 
ambiguity in pole 2 (with large imaginary part).

Future direction: 

Summary of current status of Λ(1405) 
Current status of Λ(1405)

NLO chiral interaction
χ2 error analysis
reliable reaction model

KN̅ scattering data
K-p scattering length
πΣ spectrum


