Antikaon-nucleon interaction and A(1405) in chiral SU(3) dynamics

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

Contents

Introduction: experimental developments

 precise kaonic hydrogen measurement
 new πΣ spectra from various reactions

 KN-πΣ interaction from chiral SU(3) dynamics

 Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

 Current status of Λ(1405)

K meson and **K**N interaction

Two aspects of K(K) meson

- NG boson of chiral SU(3)_R \otimes SU(3)_L \rightarrow SU(3)_V
- massive by strange quark: mk ~ 496 MeV
 - -> spontaneous/explicit symmetry breaking

KN interaction ... T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is coupled with $\pi\Sigma$ channel - generates (1405) below threshold

three-quark

- is fundamental building block for \overline{K} -nuclei, \overline{K} in medium, ...,

KN interaction

- strong attraction
- no repulsive core?

<mark>₭ in nuclei</mark>

Possible (quasi-)bound K in nuclei

- deep binding, high density?

Y. Nogami, Phys. Lett. 7, 288, (1963);
T. Yamazaki, Y. Akaishi, Phys. Lett. B535, 70 (2002);
A. Dote, *et al.*, Phys. Lett. B590, 51 (2004)

Rigorous calculations (2007-)

- bound states in few-nucleon systems
- binding energy depends on the employed $\overline{K}N$ interaction
- -> We need a realistic $\overline{K}N$ interaction.

Experimental constraints for the KN **interaction**

Above the KN threshold:

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the $\overline{K}N$ threshold:

- πΣ mass spectra (new data: LEPS, CLAS, HADES,...)
- $\pi\Sigma$ scattering length (no data at present)

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

 shift and width of atomic state <-> K-p scattering length U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)
 Direct constraint on the KN interaction at fixed energy

New $\pi\Sigma$ spectra

- **Photoproduction experiments:** $\gamma p \rightarrow K^+(\pi \Sigma)^0$
- LEPS@1.5 < E γ < 2.4 GeV, CLAS@1.56 < E γ < 3.83 GeV

M. Niiyama, *et al.*, Phys. Rev. C78, 035202 (2008); K. Moriya, *et al.*, Phys. Rev. C87, 035206 (2013)

Hadron-induced reactions:

- **HADES:** pp -> K+p(πΣ)⁰

G. Agakishiev, et al., Phys. Rev. C87, 025201 (2013)

- J-PARC E31(planned): K-d -> n(πΣ)⁰

New and precise spectra are being available.

$\pi\Sigma$ spectra and $\overline{K}N$ interaction

- **Can spectra constrain the MB amplitude (**KN interaction)?
- Not directly.

- Spectra depend on the reaction (ratio of KN/πΣ in the intermediate state, interference with I=1,...).
- -> Detailed model analysis for each reaction

Short summary of introduction

KN interaction is important both for hadron physics (structure of $\Lambda(1405)$ resonance) and for nuclear physics (K in nuclei).

Precise K-p scattering length by SIDDHARTA
—> quantitative constraint on KN interaction

New $\pi\Sigma$ spectra from various reactions -> reliable reaction model required

Construct realistic KN scattering model based on a reliable framework.

Strategy for KN interaction

Above the KN threshold:

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

Below the $\overline{K}N$ threshold:

- πΣ mass spectra (new data: LEPS, CLAS, HADES,...)
- $\pi\Sigma$ scattering length (no data at present)

Construction of the realistic amplitude

Chiral coupled-channel approach with systematic χ^2 fitting

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012);

$\overline{K}N-\pi\Sigma$ interaction from chiral SU(3) dynamics

Best-fit results

		_	TW	TWB	NLO	Experiment
		$\Delta E \ [eV]$	373	377	306	$283 \pm 36 \pm 6 [10]$
		$\Gamma \ [eV]$	495	514	591	$541 \pm 89 \pm 22$ [10]
	(γ	2.36	2.36	2.37	2.36 ± 0.04 [11]
Branching ratios {		R_n	0.20	0.19	0.19	0.189 ± 0.015 [11]
		R_c	0.66	0.66	0.66	0.664 ± 0.011 [11]
		χ^2 /d.o.f	1.12	1.15	0.96	
tions	$\begin{bmatrix} \mathbf{q} & 350 \\ 300 \\ \mathbf{d} & 250 \\ \mathbf{M} & 200 \\ \mathbf{d} & 150 \\ \mathbf{b} & 50 \\ \mathbf{b} & 150 \\ \mathbf{b} & 150 \\ \mathbf{c} & \mathbf{c} \\ \mathbf{P}_{lab} & [MeV/c] \end{bmatrix}$	$\begin{array}{c} & 6 \\ \hline \mathbf{q} \\ \mathbf{u} \\ \mathbf$		TW TWB NLO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{bmatrix} qu \\ + \mathbf{X}_{-} \mathbf{\mu} & \mathbf{d}_{-} \mathbf{X}_{-} \mathbf{y} \end{bmatrix} \begin{pmatrix} 90 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & $	$\mathbf{P_{lab}} \begin{bmatrix} \mathbf{MeV/c} \end{bmatrix}$
cross sec	$\begin{bmatrix} 250 \\ TWB \\ 200 \\ 1 \\ 150 \\ 1 \\ 150 \\ 50 \\ 50 \\ 50 \\ $	$[\operatorname{qm}] (_{0} \mathfrak{T}_{0} \mu \leftarrow d_{-} \mathcal{X}) \wp$ 250	$ \begin{array}{c} 40 \\ 20 \\ 00 \\ 80 \\ 60 \\ 40 \\ 20 \\ 0 \\ 50 \\ 100 \\ \mathbf{P}_{1a} \end{array} $	TW TWB ······ NLO 150 200 250 b [MeV/c]	$[qm] (_{0}V_{0}\mu \leftarrow d_{-}X)\rho$	TW TWB NLO NLO

SIDDHARTA is consistent with cross sections

Shift, width, and pole positions

Shift and width

∧(1405) Pole positions

TW and **TWB** are reasonable, while best-fit requires **NLO**. Pole positions are now converging.

Subthreshold extrapolation

Behavior of K-p -> K-p amplitude below threshold

- c.f. $\overline{K}N \longrightarrow \overline{K}N$ (I=0) without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

Subthreshold extrapolation is now well controlled.

 $\overline{K}N-\pi\Sigma$ interaction from chiral SU(3) dynamics **Remaining ambiguity** For K-nucleon interaction, we need both K-p and K-n. $a(K^{-}p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^{-}n) = a(I=1) + \dots$ $a(K^-n) = 0.29 + i0.76 \text{ fm} (\text{TW})$, $a(K^-n) = 0.27 + i0.74 \text{ fm} (\text{TWB})$, $a(K^-n) = 0.57 + i0.73 \text{ fm}$ (NLO). 0.8 Re $f(K^-n \to K^-n)$ [fm] 0.6 0.4 0.2 0 -0.2 NLO -0.4 1360 1380 1400 1420 1440 \sqrt{s} [MeV]

Some deviation: constraint on K-n (< – kaonic deuterium?)

Summary: chiral SU(3) dynamics

We perform systematic χ^2 analysis for the $\overline{K}N-\pi\Sigma$ interaction in chiral coupled-channel approach.

With accurate kaonic hydrogen data, we can construct realistic KN-πΣ interaction. Ambiguity in the subthreshold extrapolation for Λ(1405) energy region is significantly reduced.

Pole position of $\Lambda(1405)$ **is converging.**

 $z_1 = (1424^{+7}_{-23} - i26^{+3}_{-14}) \text{ MeV}, \quad z_2 = (1381^{+18}_{-6} - i81^{+19}_{-8}) \text{ MeV}$

Remaining ambiguity: |=1 channel <-- kaonic deuterium measurement.

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Current status of $\Lambda(1405)$

Analyses by other groups

 $K^-p \rightarrow \bar{K}^0 n$

NLO interaction + χ^2 **analysis + SIDDHARTA** data

- Bonn group

M. Mai, U.-G. Meissner, Nucl. Phys. A900, 51 (2013)

Κ̈́N $\pi^0\Lambda$ πΣ 20 0 -20 [m W_{CMS}[MeV] -40 -60 -80 -1001550-120 1300 1350 1400 1450 1500 1250 Re W_{CMS}[MeV]

- Murcia group

 $K^-p \rightarrow K^-p$

Z.H. Guo, J.A. Oller, Phys. Rev. C87, 035202 (2013)

~13 parameters —> several local minima Another "exotic" solution (second pole above $\overline{K}N$)?

Current status of Λ(1405)

Constraints from the $\pi\Sigma$ **spectrum**

Combined analysis of scattering data + $\pi\Sigma$ spectrum

M. Mai, U.-G. Meissner, arXiv:1411.7884 [hep-ph]

- a simple model for the photoproduction $\gamma p \rightarrow K^+(\pi \Sigma)^0$
- CLAS data of the $\pi\Sigma$ spectrum

-> The "exotic" solution is excluded.

Current status of $\Lambda(1405)$

Pole positions of $\Lambda(1405)$

Mini-review prepared for PDG

Pole structure of the $\Lambda(1405)$

Ulf-G. Meißner, Tetsuo Hyodo

February 4, 2015

The $\Lambda(1405)$ resonance emerges in the meson-baryon scattering amplitude with the strangeness S = -1 and isospin I = 0. It is the archetype of

[11,12] Ikeda-Hyodo-Weise, [14] Murcia, [15] Bonn (updated)

approach	pole 1 [MeV]	pole 2 $[MeV]$
Ref. [11, 12] NLO	$1424_{-23}^{+7} - i26_{-14}^{+3}$	$1381^{+18}_{-6} - i81^{+19}_{-8}$
Ref. $[14]$ Fit I	$1417^{+4}_{-4} - i24^{+7}_{-4}$	$1436_{-10}^{+14} - i126_{-28}^{+24}$
Ref. $[14]$ Fit II	$1421^{+3}_{-2} - i19^{+8}_{-5}$	$1388^{+9}_{-9} - i114^{+24}_{-25}$
Ref. [15] solution $#2$	$1434^{+2}_{-2} - i10^{+2}_{-1}$	$1330^{+4}_{-5} - i56^{+17}_{-11}$
Ref. $[15]$ solution #4	$1429^{+8}_{-7} - i12^{+2}_{-3}$	$1325^{+15}_{-15} - i90^{+12}_{-18}$

still some deviations

Current status of $\Lambda(1405)$

Summary of current status of $\Lambda(1405)$

To avoid "exotic" solutions, we need to check the consistency with $\pi \Sigma$ spectra.

Different analyses show pole 1 (close to the $\overline{K}N$ threshold) is well determined. There is still ambiguity in pole 2 (with large imaginary part).

Future direction:

NLO chiral interaction χ² error analysis reliable reaction model KNscatteringdataK-pscatteringlengthπΣspectrum