Hadron mass scaling near an s-wave threshold

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Introduction

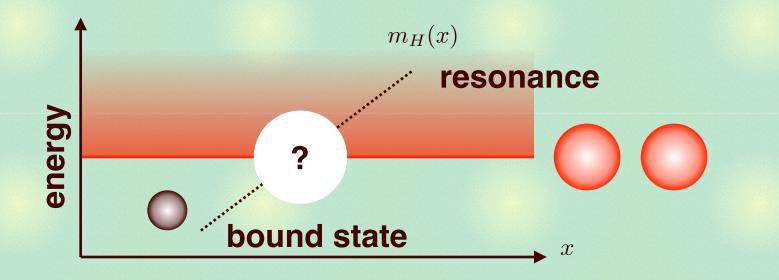
Hadron mass scaling and threshold effect

Systematic expansion of hadron masses

- ChPT: light quark mass mq
- HQET: heavy quark mass ma
- large Nc: number of colors Nc

Hadron mass scaling
$$m_H(x); \quad x = \frac{m_q}{\Lambda}, \frac{\Lambda}{m_Q}, \frac{1}{N_c}$$

What happens at two-body threshold?



Formulation

Coupled-channel Hamiltonian (bare state + continuum)

$$\begin{pmatrix} M_0 & \hat{V} \\ \hat{V} & \frac{p^2}{2\mu} \end{pmatrix} \begin{pmatrix} c(E) | \psi_0 \rangle \\ \chi_E(\boldsymbol{p}) | \boldsymbol{p} \rangle \end{pmatrix} = E \begin{pmatrix} c(E) | \psi_0 \rangle \\ \chi_E(\boldsymbol{p}) | \boldsymbol{p} \rangle \end{pmatrix} \qquad \checkmark$$

Equivalent single-channel scattering formulation

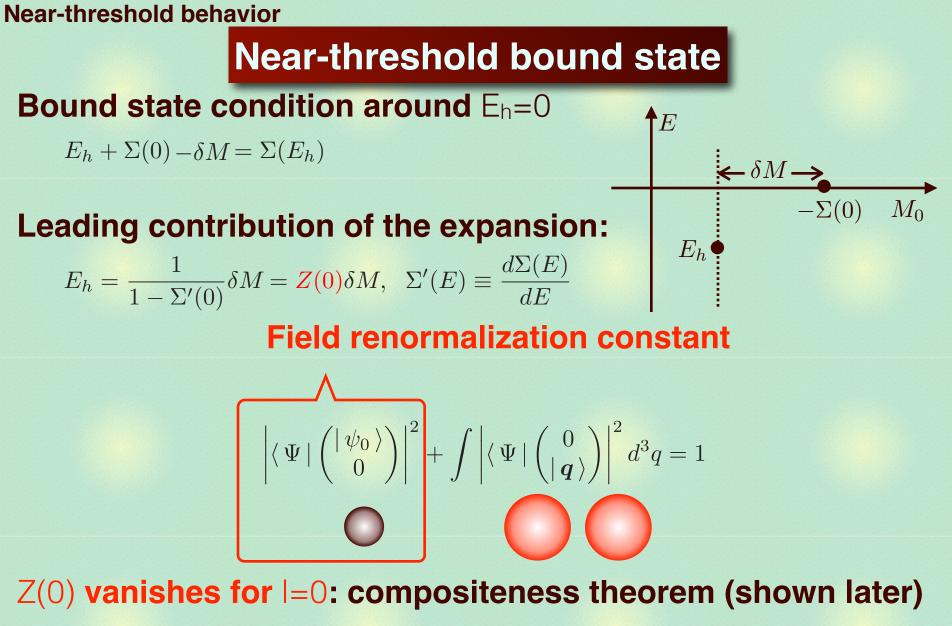
$$\hat{V}_{\text{eff}}(E) = \frac{\hat{V}|\psi_0\rangle\langle\psi_0|\hat{V}}{E - M_0} \sim \sum$$

Pole condition:

 $E_h - M_0 = \Sigma(E_h)$

$$\Sigma(E) = \int \frac{\langle \psi_0 | \hat{V} | \boldsymbol{q} \rangle \langle \boldsymbol{q} | \hat{V} | \psi_0 \rangle}{E - q^2 / (2\mu) + i0^+} d^3 \boldsymbol{q} \sim \mathbf{4}$$

Question: How E_h behaves against M_0 around $E_h=0$?



$$E_h \propto \begin{cases} \mathcal{O}(\delta M^2) & l = 0\\ \delta M & l \neq 0 \end{cases}$$

Near-threshold behavior

Near-threshold bound state (general)

General argument by Jost function (Fredholm determinant)

J.R. Taylor, Scattering Theory (Wiley, New York, 1972)

 $f_l(p) = \frac{\swarrow_l(-p) - \swarrow_l(p)}{2ip \swarrow_l(p)}$

- amplitude pole (eigenstate): Jost function zero

If there is a zero at p=0, then the expansion is

$$\mathscr{N}_{l}(p) = \begin{cases} i\gamma_{0}p + \mathcal{O}(p^{2}) & l = 0\\ \beta_{l}p^{2} + \mathcal{O}(p^{3}) & l \neq 0 \end{cases}$$

- γ_0 and β_i are nonzero for a general local potential

: simple (double) zero for |=0 ($|\neq 0$)

R.G. Newton, J. Math. Phys. 1, 319 (1960)

Near-threshold scaling:

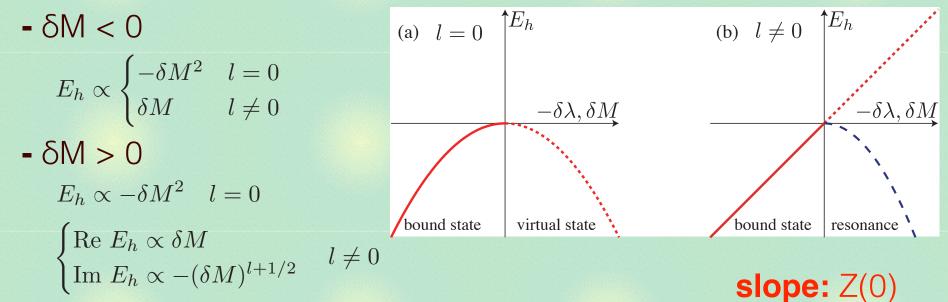
$$E_h \propto \begin{cases} -\delta M^2 & l = 0\\ \delta M & l \neq 0 \end{cases}, \quad \delta M < 0$$



Near-threshold behavior

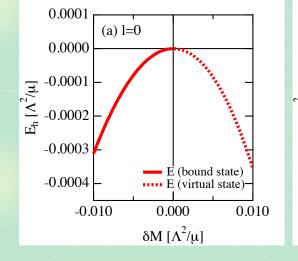
General threshold behavior

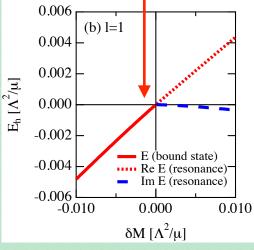
Near threshold scaling:



Numerical calculation

$$\hat{igar{Q}} = g_l |m{q}|^l \Theta(\Lambda - |m{q}|)$$





Compositeness theorem

Theorem: Z(0)=0 for s wave

If the s-wave scattering amplitude has a pole exactly at the threshold with a finite range interaction, then the field renormalization constant vanishes.

T. Hyodo, arXiv:1407.2372 [hep-ph]

For bare state-continuum model (c: nonzero constant)

Z(0) vanishes for $g_0 \neq 0$. If $g_0=0$, no pole in the amplitude.

For a local potential: poles in the effective range expansion

$$p_1 = i\sqrt{2\mu B}, \quad p_2 = -i\sqrt{2\mu B} \frac{2 - Z(B)}{Z(B)}$$

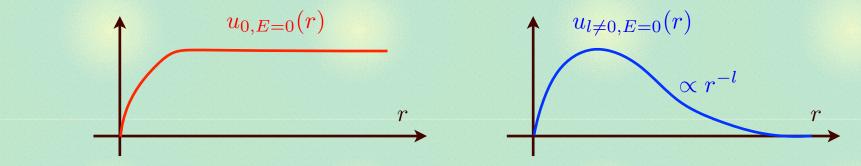
If $Z(0)\neq 0$, then both p_1 and p_2 go to zero for $B \rightarrow 0$: contradiction with the simple pole at p=0

Interpretation of the compositeness theorem

 $\left| \langle \Psi | \begin{pmatrix} |\psi_0 \rangle \\ 0 \end{pmatrix} \right|^2 + \int \left| \langle \Psi | \begin{pmatrix} 0 \\ |q \rangle \end{pmatrix} \right|^2 d^3 q = 1$

Z(B): overlap of the bound state with bare state

- $Z(B\neq 0)=0$ —> Bound state is completely composite.
- **Two-body wave function at** E=0: $u_{l,E=0}(r) \xrightarrow{r \to \infty} r^{-l}$



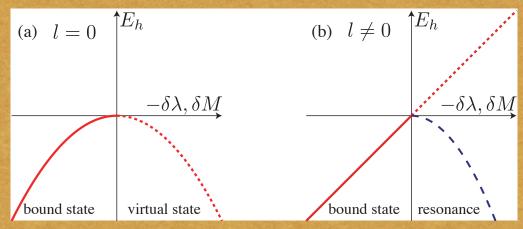
Z(0)=0: Bound state is completely composite. Composite component is infinitely large so that the fraction of any finite admixture of bare state is zero.

Summary

Summary

We study the hadron mass scaling near threshold.

General scaling laws:



Compositeness theorem:

Z(B=0) = 0 for l = 0

Chiral extrapolation across the s-wave threshold should be carefully performed. <u>T. Hyodo, arXiv:1407.2372 [hep-ph]</u>