Toward realistic prediction of the $\Lambda(1405)$ production in K-d reaction

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

 Realistic KN-πΣ interaction with SIDDHARTA

 Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

 K-d -> πΣn reaction for J-PARC E31

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W. Weise, arXiv:1408.0118

K meson and **K**N interaction

- Two aspects of $K(\overline{K})$ meson
 - NG boson of chiral SU(3)_R \otimes SU(3)_L --> SU(3)_V
 - massive by strange quark: mk ~ 496 MeV
 - —> spontaneous/explicit symmetry breaking

KN interaction ...

- is coupled with $\pi\Sigma$ channel
- has a resonance below threshold
 - **->**∧(1405)

meson-baryon v.s. qqq state, ...

is fundamental building block
 for K-nuclei, K in medium, ...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

K nuclei v.s. normal nuclei

KN interaction

- strong attraction
- no repulsive core?

Possible (quasi-)bound \overline{K} in nuclei

- deep binding, high density?
 - Y. Nogami, Phys. Lett. 7, 288, (1963);
 T. Yamazaki, Y. Akaishi, Phys. Lett. B535, 70 (2002);
 A. Dote, *et al.*, Phys. Lett. B590, 51 (2004)

Rigolous calculations (2007-)

- bound in few-nucleon systems
- binding energy depends on the employed $\overline{K}N$ interaction

\rightarrow We need a realistic $\overline{K}N$ interaction.

Experimental constraints for the \overline{KN} interaction

Above the $\overline{K}N$ threshold:

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data by SIDDHARTA)

Below the KN threshold:

- πΣ mass spectra (new data by LEPS, CLAS, HADES,...)
- $\pi\Sigma$ scattering length (no data at present)

SIDDHARTA measurement

Precise measurement of the kaonic hydrogen X-rays

M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

 shift and width of atomic state <-> K-p scattering length U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)
 Direct constraint on the KN interaction at fixed energy

New πΣ spectra

Photoproduction experiments: $\gamma p \rightarrow K^+(\pi \Sigma)^0$

- LEPS@1.5 < $E\gamma$ < 2.4 GeV, CLAS@1.56 < $E\gamma$ < 3.83 GeV

M. Niiyama, *et al.*, Phys. Rev. C78, 035202 (2008); K. Moriya, *et al.*, Phys. Rev. C87, 035206 (2013)

Hadron-induced reactions:

- HADES: pp -> K+p(πΣ)⁰

G. Agakishiev, et al., Phys. Rev. C87, 025201 (2013)

- J-PARC E31(planned): K-d -> n(πΣ)⁰

New and precise spectra are being available.

$\pi\Sigma$ spectra and $\overline{K}N$ interaction

Can spectra constrain the MB amplitude (KN interaction)? - Not directly.

 $\Lambda(1405)$ in production reaction:

- Spectra depend on the reaction (ratio of KN/πΣ in the intermediate state, interference with I=1,...).
- Event numbers do note constrain the absolute value.
- -> Detailed model analysis for each reaction

Short summary of introduction

KN interaction is important both for hadron physics (structure of $\Lambda(1405)$ resonance) and for nuclear physics (K in nuclei)

Precise K-p scattering length by SIDDHARTA —> quantitative constraint on $\overline{K}N$ interaction

New πΣ spectra from various reactions —> reliable reaction model required

> Construct realistic $\overline{K}N$ scattering model and predict $\pi\Sigma$ spectrum in K-d reaction.

Strategy for KN interaction

Above the $\overline{K}N$ threshold:

- K-p total cross sections (old data)
- KN threshold branching ratios (old data)
- K-p scattering length (new data by SIDDHARTA)

Below the $\overline{K}N$ threshold:

- $\pi\Sigma$ mass spectra (new data by LEPS, CLAS, HADES,...)
- $\pi\Sigma$ scattering length (no data at present)

Construction of the realistic amplitude

Chiral coupled-channel approach with systematic χ^2 fitting

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012);

Best-fit results

				TW	TWB	Ν	LO	Experiment		
CI		$\Delta E \ [eV]$		373	377	3	06	$283 \pm 36 \pm 6$	[10]	
SIDDHARIA 1		$\Gamma [eV]$		495	514	5	91	$541 \pm 89 \pm 22$	[10]	
	(- γ		2.36	2.36	2.	37	2.36 ± 0.04	[11]	
Branching ratios {		R_n		0.20	0.19	0.	19	0.189 ± 0.015	[11]	
		R_c		0.66	0.66	0.	66	0.664 ± 0.011	[11]	
		$\chi^2/d.o.f$		1.12	1.15	0.	.96			
ctions $\sigma(K^{-p} \to K^{-p})$ [mb]	$\mathbf{P}_{\mathbf{lab}} \begin{bmatrix} \mathbf{WeV/c} \end{bmatrix}$	250	$\sigma(K^-p o ar{K}^0n) \ \ [\mathrm{mb}]$	50 100 Plab	TWB TWB TWB NLO 150 200 250 [MeV/c]		$\sigma(K^{-}p \to \pi^{-}\Sigma^{+}) \ [mb]$	100 150 Plab [MeV	TW	250
Cross sec $\sigma(K^-p \to \pi^+\Sigma^-)$ [mb]	$\begin{bmatrix} 250 \\ TWB \\ TW$		$\sigma(K^-p \to \pi^0 \Sigma^0) [\text{mb}]$	$ \begin{array}{c} 140 \\ 120 \\ 100 \\ 40 \\ 20 \\ 0 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ \mathbf{P_{lab}} \left[\mathbf{MeV/c} \right] \end{array} $			$\begin{bmatrix} q_{u} \\ g_{u} \\ g_$			250

SIDDHARTA is consistent with cross sections

Shift, width, and pole positions

	TW	TWB	NLO
Х	1.12	1.15	0.957

Shift and width **Pole positions** 800 0 × **SIDDHARTA** 600 -50 Width **Г** [eV m Z [MeV **¥** 400 -100 200 DEAR **KEK-PS** -150 0∟ -500 -400 -300 -200 -100 1320 1360 1400 1440 0 Shift $\Delta E [eV]$ re Z [MeV]

TW and **TWB** are reasonable, while best-fit requires **NLO**. Pole positions are now converging.

Subthreshold extrapolation

Behavior of K-p amplitude below threshold

- c.f. without SIDDHARTA

R. Nissler, Doctoral Thesis (2007)

Subthreshold extrapolation is now well controlled.

Remaining ambiguity

For K-nucleon interaction, we need both K-p and K-n.

$$a(K^{-}p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^{-}n) = a(I=1) + \dots$$

$$a(K^{-}n) = 0.29 + i0.76 \text{ fm} (TW) ,$$

 $a(K^{-}n) = 0.27 + i0.74 \text{ fm} (TWB) ,$
 $a(K^{-}n) = 0.57 + i0.73 \text{ fm} (NLO) .$

Some deviation: constraint on K-n (< – kaonic deuterium?)

Summary 1

We study the $\overline{K}N-\pi\Sigma$ interaction based on chiral coupled-channel approach.

With accurate kaonic hydrogen data, we can construct realistic $\overline{K}N-\pi\Sigma$ interaction. Ambiguity in the subthreshold extrapolation (Λ (1405) energy region) is significantly reduced.

Pole position of $\Lambda(1405)$ **is converging.**

Future refinement: |=1 channel <-- kaonic deuterium measurement.

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA 881 98 (2012)

Kaon induced reaction : experiments

Bubble chamber experiment

O. Braun, et al., Nucl. Phys. B129, 1 (1977)

- рк@686-844 MeV
- π+Σ- spectrum

http://j-parc.jp/researcher/Hadron/en/pac_0907/pdf/Noumi.pdf

- pk@1 GeV
- Missing mass spectroscopy
- Separation of $\pi^+\Sigma^-$ / $\pi^-\Sigma^+$ / $\pi^0\Sigma^0$ spectra

Note for the K-d reaction

 $K^{-}d \sim [\bar{K}[NN]_{I=0}]_{I=1/2} \sim \mathbf{1}[[\bar{K}N]_{I=0}N]_{I=1/2} + \mathbf{3}[[\bar{K}N]_{I=1}N]_{I=1/2}$

- large |=1 MB fraction

Kaon induced reaction : theory

Two-step approaches with chiral/phenomenological int.

- D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A42, 257 (2009);
- J. Esmaili, Y. Akaishi, T. Yamazaki, Phys. Rev. C83, 055207 (2011);
- D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A47, 42 (2011);
- K. Miyagawa, J. Haidenbauer, Phys. Rev. C85, 065201 (2012);
- J. Yamagata-Sekihara, T. Sekihara, D. Jido, PTEP 043D02 (2013)

- Perturbative: full three-body dynamics is not included.

Faddeev(AGS) approach

- J. Revai, Few-Body Syst. 54, 1865 (2013)
- $\pi \wedge N$ channel is not included.
- s-wave interactions only (valid at low energy)

K-d -> $\pi\Sigma n$ reaction for J-PARC E31

Strategy for J-PARC E31

Our framework of K-d -> πΣn for J-PARC E31

- Faddeev(AGS) amplitude: full three-body dynamics
- Inclusion of the $\pi \wedge N$ channel: proper |=1 contribution
- Inclusion of relative L: 1 GeV incident momentum

Faddeev(AGS)

- MB interaction: energy-dep. and energy-indep. interactions (fitted to cross sections, to be constrained by SIDDAHRTA)

Y. Ikeda, H. Kamano, T. Sato, Prog. Theor. Phys. 124, 533 (2010)

 $\pi\Sigma$ spectra with various charge combinations

πΣ spectra @ P_{K} = 1 GeV

Deviation of π - Σ + and π + Σ - spectra

- large interference effect with |=1 components

Difference of energy-dep. / energy-indep. (shape, magnitude) - distinction of subthreshold KN amplitude

Partial wave contributions

Effect of the higher partial wave components @ $P_{K_{-}} = 1$ GeV

$L \neq 0$ partial waves are important around threshold.

Summary 2

We study the K-d -> $\pi\Sigma n$ reaction for J-PARC E31

We employ the Faddeev(AGS) amplitude with $\pi \wedge N$ channel and relative L effects included.

Deviation of different charged $\pi\Sigma$ **states indicates the large interference with |=1.**

Lineshape and the magnitude of $\pi\Sigma$ spectra are sensitive to subthreshold $\overline{K}N$ interaction.

Higher L components affect around threshold.

S. Ohnishi, Y. Ikeda, T. Hyodo, E. Hiyama, W. Weise, arXiv:1408.0118