Universal physics of three bosons with isospin

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

2014, Jun. 17th

T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014)

Universal physics

- **Universal:** different systems share the identical feature
- Critical phenomena around phase transition
 - large correlation length ξ
 - scaling, critical exponent, ...
 - liquid-gas transition ~ ferromagnet

N. Goldenfeld, "Lectures on phase transitions and the renormalization group" (1992)

- Universal physics in few-body system
 - large two-body scattering length |a|
 - shallow bound state <=> a > 0

⁴He [mK] N [MeV] $B_2 = \frac{1}{ma^2} \left[1 + \mathcal{O}\left(\frac{r_s}{a}\right) \right] \quad \mathsf{B}_2$ 2.22 1.31 $1/ma^2$ 1.41 1.12

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

vdW

strong

le

Introduction: universal few-body physics

Two-body system

We consider the low-energy phenomena ($1/p \gg r_0$) of the system with large scattering length ($|a| \gg r_0$).

$$f(\theta, p) = \sum_{l} (2l+1) f_{l}(p) P_{l}(\cos \theta)$$

$$\rightarrow f_{0}(p)$$

$$= \frac{1}{p \cot \delta_{0}(p) - ip}$$

$$\rightarrow \frac{1}{-1/a - ip + r_{s}p^{2}/2 + \dots}$$

$$a < 0$$

$$u_{k=0}(r)$$

$$u_{k=0}(r)$$

$$a > 0$$

$$V(r)$$

Consequence: one shallow bound state exists for $a \gg 0$

$$B_2 = \frac{1}{ma^2} \left[1 + \mathcal{O}\left(\frac{r_s}{a}\right) \right]$$

- determined only by a
- scale invariance

$$a \to \lambda a, \quad p \to \lambda^{-1} p \quad E \to \lambda^{-2} E$$

three bosons

V. Efimov, Phys. Lett. B 33, 563-564 (1970)

 $B_3^n/B_3^{n+1} \approx 22.7^2$

- infinitely many bound states
- discrete scale invariance —> limit cycle

P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463-437 (1999)

Introduction: universal few-body physics

Experimental realization

Experimental realization by ultracold cesium atoms

T. Kraemer et al., Nature 440, 315 (2006)

- tuning a by magnetic field (Feshbach resonance)

Universal theory <==> data (three-body recombination rate)

Introduction: universal few-body physics

Hadrons with a large scattering length

Hadron systems ($r_0 \sim 1$ fm) with a large scattering length

- nucleon system

V. Efimov, Phys. Lett. B 33, 563-564 (1970)

E. Braaten, H.-W. Hammer, Phys. Rev. Lett. 91, 102002 (2003)

- charmed meson system (D~cū, cd)

E. Braaten, M. Kusunoki, Phys. Rev. D 69, 074005 (2004)

0.1-0.5
$$\uparrow = D^0 + \overline{D}^{0^*}$$

MeV? $\downarrow = X(3872)$ $a_{D0\overline{D}0^*} \sim 6-14 \text{ fm}$

=> not bound

These are "accidental fine tuning" of a. Is there a tunable a in hadron physics?

Pion interaction

ππ scattering length <-- chiral low energy theorem

S. Weinberg, Phys. Rev. Lett. 17, 616-621 (1966)

$$a^{I=0} \propto -\frac{7}{4} \frac{m_{\pi}}{f_{\pi}^2}, \quad a^{I=2} \propto \frac{1}{2} \frac{m_{\pi}}{f_{\pi}^2}$$

- $1/f_{\pi^2}$ ~ spontaneous breaking of chiral symmetry
- m_{π} ~ explicit breaking of chiral symmetry
- In nature, the scattering lengths are small <— m_{π} is small - $a^{I=0} \sim -0.31$ fm, $a^{I=2} \sim 0.06$ fm / QCD scale ~ 1 fm
- If we can adjust m_{π} or f_{π} , |a| may be increased by $m_{\pi} \nearrow$ or $f_{\pi} \searrow$

Tuning pion interaction

Increase pion mass

Lattice QCD/chiral EFT can tune the pion mass

Tuning pion interaction

Decrease pion decay constant

Chiral symmetry restoration ~ reduction of f_{π}

T. Hyodo, D. Jido, T. Kunihiro, Nucl. Phys. A848, 341-365 (2010)

—> Real experiment (in-medium symmetry restoration) !

Three pions with large scattering length

Three pions with isospin symmetry

Large |=0 scattering length

$$f_{I=0} = \frac{1}{-1/a - ip}, \quad f_{I=2} = 0$$

S-wave three-pion system in total |=1

 $\begin{pmatrix} |\pi \otimes [\pi \otimes \pi]_{I=0} \rangle_{I=1} \\ |\pi \otimes [\pi \otimes \pi]_{I=2} \rangle_{I=1} \end{pmatrix} = \begin{pmatrix} 1/3 & \sqrt{5}/3 \\ \sqrt{5}/3 & 1/6 \end{pmatrix} \begin{pmatrix} |[\pi \otimes \pi]_{I=0} \otimes \pi \rangle_{I=1} \\ |[\pi \otimes \pi]_{I=2} \otimes \pi \rangle_{I=1} \end{pmatrix}$

Eigenvalue equation for 3-body system

$$z(|\mathbf{p}|) = \frac{2}{3\pi} \int_0^\infty d|\mathbf{q}| \frac{|\mathbf{q}|}{|\mathbf{p}|} \ln\left(\frac{\mathbf{q}^2 + \mathbf{p}^2 + |\mathbf{q}||\mathbf{p}| + mB_3}{\mathbf{q}^2 + \mathbf{p}^2 - |\mathbf{q}||\mathbf{p}| + mB_3}\right)^{-1.0} \xrightarrow{-0.5} 0$$

$$\times \frac{z(|\mathbf{q}|)}{\sqrt{\frac{3}{4}\mathbf{q}^2 + mB_3} - \frac{1}{a}} \xrightarrow{-0.5} 0$$

$$B_3 = \frac{1.04391}{ma^2}$$
 for $1/a > 0$ c.f. $B_2 = \frac{1}{ma^2}$

1 \

1/ā

Ē

Three pions with large scattering length

Three pions with isospin breaking

Isospin breaking: $m_{\pi^{\pm}} = m_{\pi^{0}} + \Delta$ with $\Delta > 0$

- In the energy region $E \ll \Delta$, heavy π^{\pm} can be neglected.

Identical three-boson system with a large scattering length —> Efimov effect E'

Three pions with large scattering length

Coupled-channel effect

Two universal phenomena : existence of the coupled channel

$$z(|\mathbf{p}|) = \frac{2}{\lambda \pi} \int_0^\infty d|\mathbf{q}| \frac{|\mathbf{q}|}{|\mathbf{p}|} \ln\left(\frac{\mathbf{q}^2 + \mathbf{p}^2 + |\mathbf{q}||\mathbf{p}| + mB_3}{\mathbf{q}^2 + \mathbf{p}^2 - |\mathbf{q}||\mathbf{p}| + mB_3}\right) \frac{z(|\mathbf{q}|)}{\sqrt{\frac{3}{4}\mathbf{q}^2 + mB_3} - \frac{1}{a}}$$

 $2.41480 < \lambda < 3.66811$ $3.66811 < \lambda$

discrete scale invariance

 $\lambda < 2.41480$

E'

scale invariance

Both cases can be realized in three-pion systems.

Realization and consequences

Implication in hadron physics 1

Numerical experiment by lattice QCD : $m_{\pi} \mathcal{I}$

- Find the quark mass for a shallow σ ($\pi\pi$ bound states)
- Look for the three- π bound state and measure the mass.

Note:

- $I=0 \pi\pi$ scattering is very difficult (disconnected graphs).
- Very high mass resolution is required.
- Shallow bound state —> large volume?

Realization and consequences

Implication in hadron physics 2

- In-medium restoration of chiral symmetry : f_{π}
 - $\sigma(I=J=0)$ softening in nuclear medium

T. Hatsuda, T. Kunihiro, H. Shimizu, Phys. Rev. Lett. 82, 2840-2843 (1999)

- Existence of three-body bound state -> When σ softens, $\pi^*(I=1, J=0)$ softens simultaneously.

Note:

- o softening is difficult to confirm (final state interaction,...)

T. Hatsuda, R.S. Hayano, Rev. Mod. Phys. 82, 2494 (2010)

Summary

Summary

Universal physics of three pions

Solution Large $\pi\pi$ scattering length (I=0) can be obtained by $m_{\pi} \mathcal{I}$ or $f_{\pi} \mathcal{I}$.

Universal phenomena with large a:

single bound state (isospin symmetric)
Efimov states (isospin breaking)

Consequence in hadron physics:

- realization in lattice QCD
- simultaneous softening of σ and π^{*}

T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014)