Universal physics of three bosons with isospin

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

Introduction: universal few-body physics

Tuning pion interaction

Three pions with large scattering length
Realization and consequences
Three pions with large scattering
Realization and consequences
T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014) \square

$$
x_{1}
$$

\qquad

Introduction: universal few-body physics

Universal physics

Universal: different systems share the identical feature

Critical phenomena around phase transition

- large correlation length ξ
- scaling, critical exponent, ...
- liquid-gas transition ~ ferromagnet
N. Goldenfeld, "Lectures on phase transitions and the renormalization group" (19

Universal physics in few-body system

- large two-body scattering length |a|
- scaling, shallow bound state for $a>0$

$$
\begin{array}{l|l|l|l|}
a \rightarrow \lambda a, \quad E \rightarrow \lambda^{-2} E & & \mathrm{~N}[\mathrm{MeV}] & \text { 4He [mK] } \\
\cline { 2 - 4 } & B_{2}=\frac{1}{m a^{2}} & \mathrm{~B}_{2} & 2.22 \\
\hline 1 / \mathrm{ma}^{2} & 1.41 & 1.31 \\
\hline
\end{array}
$$

E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

Introduction: universal few-body physics

Three-body system: scaling and its violation

Three-body system in hyperspherical coordinates

$$
\left(\boldsymbol{r}_{12}, \boldsymbol{r}_{3,12}\right) \leftrightarrow\left(R, \alpha_{3}, \hat{\boldsymbol{r}}_{12}, \hat{\boldsymbol{r}}_{3,12}\right)
$$

hyperradius hyperangular variables Ω (dimensionless)

For $|\mathrm{a}| \longrightarrow \infty$, system is scale invariant.

$$
V(R, \Omega) \propto \frac{1}{R^{2}}
$$

Efimov effect : attractive $1 / R^{2}$ for identical three bosons
V. Efimov, Phys. Lett. B 33, 563-564 (1970)

- infinitely many bound states
- discrete scale invariance --> limit cycle

P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463-437 (1999)

Tuning pion interaction

Pion interaction

пা scattering length <- chiral low energy theorem
S. Weinberg, Phys. Rev. Lett. 17, 616-621 (1966)

$$
a^{I=0} \propto-\frac{7}{4} \frac{m_{\pi}}{f_{\pi}^{2}}, \quad a^{I=2} \propto \frac{1}{2} \frac{m_{\pi}}{f_{\pi}^{2}}
$$

- $1 / f_{\pi}^{2} \sim$ spontaneous breaking of chiral symmetry
- $\mathrm{m}_{\pi} \sim$ explicit breaking of chiral symmetry

In nature, the scattering lengths are small $<-m_{\pi}$ is small

- $\mathrm{a}^{\mathrm{l}=0} \sim-0.31 \mathrm{fm}, \mathrm{a}^{\mathrm{l}=2} \sim 0.06 \mathrm{fm} /$ QCD scale $\sim 1 \mathrm{fm}$

If we can adjust m_{π} or $f_{\pi},|a|$ may be increased by $m_{\pi} \hat{\jmath}$ or $f_{\pi} \downarrow$

- sufficient attraction
\rightarrow bound state in l=0
\rightarrow diverging |a|
- sigma: l=0 resonance

Note that $\Gamma \approx 2 \operatorname{lm}\left(\sqrt{{ }^{5} \text { pole }}\right)$.
$\frac{\operatorname{VALUE}(\mathrm{MeV})}{\mathbf{(4 0 0 - 5 5 0) - i (2 0 0 - 3 5 0)} \text { OUR ESTIMATE }} \frac{\text { DOCUMENT ID }}{\text { TECN COMMENT }}$

Tuning pion interaction

Increase pion mass

Lattice QCD/chiral EFT can tune the pion mass

T. Kunihiro et al. (SCALAR Collaboration), Rev. Rev. D70, 034504 (2004)
C. Hanhart, J.R. Pelaez, G. Rios, Phys. Rey. Lett. 100, 152001 (2008)

-> Numerical experiment (lattice QCD)!

Decrease pion decay constant

Chiral symmetry restoration \sim reduction of f_{π}

T. Hyodo, D. Jido, T. Kunihiro, Nucl. Phys. A848, 341-365 (2010)
—> Real experiment (in-medium symmetry restoration)!

Three pions with isospin symmetry

Large $\mathrm{l}=0$ scattering length

$$
f_{I=0}=\frac{1}{-1 / a-i p}, \quad f_{I=2}=0
$$

S-wave three-pion system in total $\mid=1$

$$
\binom{\left|\pi \otimes[\pi \otimes \pi]_{I=0}\right\rangle_{I=1}}{\left|\pi \otimes[\pi \otimes \pi]_{I=2}\right\rangle_{I=1}}=\left(\begin{array}{cc}
1 / 3 & \sqrt{5} / 3 \\
\sqrt{5} / 3 & 1 / 6
\end{array}\right)\binom{\left|[\pi \otimes \pi]_{I=0} \otimes \pi\right\rangle_{I=1}}{\left|[\pi \otimes \pi]_{I=2} \otimes \pi\right\rangle_{I=1}}
$$

Eigenvalue equation for 3-body system

$$
B_{3}=\frac{1.04391}{m a^{2}} \quad \text { for } 1 / a>0 \quad \text { c.f. } \quad B_{2}=\frac{1}{m a^{2}}
$$

Three pions with isospin breaking

Isospin breaking: $m_{\pi^{ \pm}}=m_{\pi}{ }^{0}+\Delta$ with $\Delta>0$

- In the energy region $\mathrm{E}<\Delta \Delta$, heavy $\pi^{ \pm}$can be neglected.

Identical three-boson system with a large scattering length -> Efimov effect

$$
z(|\boldsymbol{p}|)=\frac{2}{\pi} \int_{0}^{\infty} d|\boldsymbol{q}| \frac{|\boldsymbol{q}|}{|\boldsymbol{p}|} \ln \left(\frac{\boldsymbol{q}^{2}+\boldsymbol{p}^{2}+|\boldsymbol{q}||\boldsymbol{p}|+m B_{3}}{\boldsymbol{q}^{2}+\boldsymbol{p}^{2}-|\boldsymbol{q}||\boldsymbol{p}|+m B_{3}}\right)
$$

$$
\times \frac{z(|\boldsymbol{q}|)}{\sqrt{\frac{3}{4} \boldsymbol{q}^{2}+m B_{3}}-\frac{1}{a}} f_{\Lambda}(|\boldsymbol{q}|)
$$

cutoff $\sim 1 / r_{0}$

Universal physics at $E<(2 m \wedge)^{1 / 2}$

Coupled-channel effect

Two universal phenomena : existence of the coupled channel

$$
z(|\boldsymbol{p}|)=\frac{2}{\lambda \pi} \int_{0}^{\infty} d|\boldsymbol{q}| \frac{\boldsymbol{q} \mid}{|\boldsymbol{p}|} \ln \left(\frac{\boldsymbol{q}^{2}+\boldsymbol{p}^{2}+|\boldsymbol{q}| \boldsymbol{p} \mid+m B_{3}}{\boldsymbol{q}^{2}+\boldsymbol{p}^{2}-|\boldsymbol{q}| \boldsymbol{p} \mid+m B_{3}}\right) \frac{z(|\boldsymbol{q}|)}{\sqrt{\frac{3}{4} \boldsymbol{q}^{2}+m B_{3}}-\frac{1}{a}}
$$

$$
\lambda<2.41480
$$

$$
2.41480<\lambda<3.66811
$$

$3.66811<\lambda$

no universal bound state
scale invariance
discrete scale invariance

Both cases can be realized in three-pion systems.

Implication in hadron physics 1

Numerical experiment by lattice QCD : $m_{\pi} \uparrow$

- Find the quark mass for a shallow σ ($\pi \pi$ bound states)
- Look for the three-т bound state and measure the mass.

single bound state

$$
B_{3}=1.04391 B_{2}
$$

Isospin symmetric

several bound states

$$
\frac{B_{3}^{n}}{B_{3}^{n+1}}=515.03 \sim(22.7)^{2}
$$

Isospin breaking

Note:

- I=0 пा scattering is very difficult (disconnected graphs).
- Very high mass resolution is required.
- Shallow bound state \rightarrow large volume?

Implication in hadron physics 2

In-medium restoration of chiral symmetry : $f_{\pi} \downarrow$

- $\sigma(I=J=0)$ softening in nuclear medium
T. Hatsuda, T. Kunihiro, H. Shimizu, Phys. Rev. Lett. 82, 2840-2843 (1999)
- Existence of three-body bound state
\rightarrow When σ softens, $\pi^{*}(\mid=1, J=0)$ softens simultaneously.

Note:

- σ softening is difficult to confirm (final state interaction,...)
T. Hatsuda, R.S. Hayano, Rev. Mod. Phys. 82, 2494 (2010)
 \section*{Summary
Universal physics of three pions
 \section*{Summary
Universal physics of three pions

 Summary
Universal physics of three pions}

 Summary
Universal physics of three pions}

Large $\pi \pi$ scattering length $(1=0)$ can be obtained by $m_{\pi} \uparrow$ or $f_{\pi} \downarrow$.

Universal phenomena with large a:

- single bound state (isospin symmetric) - Efimov states (isospin breaking)

Consequence in hadron physics:

- realization in lattice QCD
- simultaneous softening of σ and π^{*} T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89,032201(R) (2014)

Summary

Y

$=$

,
\square
\square $=$就 =

