# Universal physics of three bosons with isospin





# **Tetsuo Hyodo**

Yukawa Institute for Theoretical Physics, Kyoto Univ.

#### Contents



Introduction: universal few-body physics



Tuning pion interaction



Three pions with large scattering length



Realization and consequences





T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014)

Introduction: universal few-body physics

## **Universal physics**

Universal: different systems share the identical feature

#### Critical phenomena around phase transition

- large correlation length ξ
- scaling, critical exponent, ...
- liquid-gas transition ~ ferromagnet

N. Goldenfeld, "Lectures on phase transitions and the renormalization group" (1992)

## Universal physics in few-body system

- large two-body scattering length |a|
- scaling, shallow bound state for a>0

| $a \to \lambda a,  E \to \lambda^{-2} E$ |                   | N [MeV] | <sup>4</sup> He [mK] |
|------------------------------------------|-------------------|---------|----------------------|
| $R_0 = \frac{1}{2}$                      | B <sub>2</sub>    | 2.22    | 1.31                 |
| $D_2 = \frac{1}{ma^2}$                   | 1/ma <sup>2</sup> | 1.41    | 1.12                 |

vdW

strong



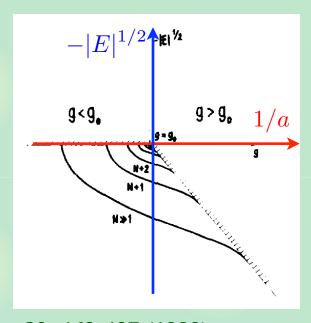
E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

## Three-body system: scaling and its violation

#### Three-body system in hyperspherical coordinates

$$(r_{12}, r_{3,12}) \leftrightarrow (R, \alpha_3, \hat{r}_{12}, \hat{r}_{3,12})$$

**hyperradius** hyperangular variables  $\Omega$  (dimensionless)




$$V(R,\Omega) \propto \frac{1}{R^2}$$

# Efimov effect: attractive 1/R<sup>2</sup> for identical three bosons

V. Efimov, Phys. Lett. B 33, 563-564 (1970)

- infinitely many bound states
- discrete scale invariance --> limit cycle



 $r_{3,12}$ 

P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463-437 (1999)

#### Pion interaction

#### ππ scattering length < - chiral low energy theorem

S. Weinberg, Phys. Rev. Lett. 17, 616-621 (1966)

$$a^{I=0} \propto -\frac{7}{4} \frac{m_{\pi}}{f_{\pi}^2}, \quad a^{I=2} \propto \frac{1}{2} \frac{m_{\pi}}{f_{\pi}^2}$$

- $1/f_{\pi^2}$  ~ spontaneous breaking of chiral symmetry
- m<sub>π</sub> ~ explicit breaking of chiral symmetry

#### In nature, the scattering lengths are small $-m_{\pi}$ is small

-  $a^{l=0} \sim -0.31$  fm,  $a^{l=2} \sim 0.06$  fm / QCD scale ~ 1 fm

## If we can adjust $m_{\pi}$ or $f_{\pi}$ , |a| may be increased by $m_{\pi}$ $\nearrow$ or $f_{\pi}$ $\searrow$

- sufficient attraction
  - -> bound state in I=0
  - -> diverging |a|
- sigma: I=0 resonance

$$f_0(500)$$
 or  $\sigma$  was  $f_0(600)$ 

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

A REVIEW GOES HERE - Check our WWW List of Reviews

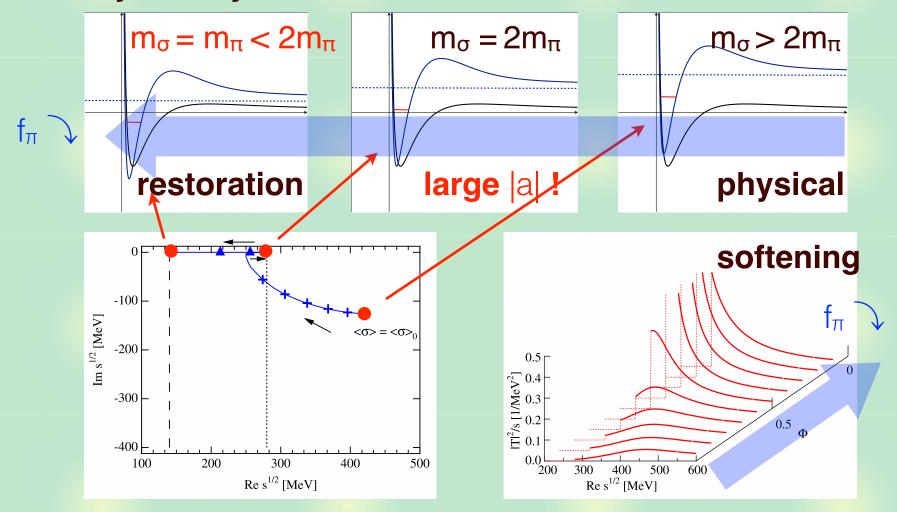
 $f_0(500)$  T-MATRIX POLE  $\sqrt{s}$ 

Note that  $\Gamma \approx 2 \text{ Im}(\sqrt{s_{pole}})$ .


VALUE (MeV)

DOCUMENT ID

TECN COMMENT


## **Increase pion mass**

#### Lattice QCD/chiral EFT can tune the pion mass



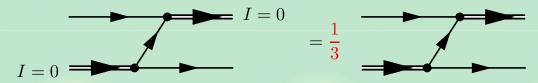
## Decrease pion decay constant

Chiral symmetry restoration  $\sim$  reduction of  $f_{\pi}$ 



T. Hyodo, D. Jido, T. Kunihiro, Nucl. Phys. A848, 341-365 (2010)

—> Real experiment (in-medium symmetry restoration) !


## Three pions with isospin symmetry

#### Large |=0 scattering length

$$f_{I=0} = \frac{1}{-1/a - ip}, \quad f_{I=2} = 0$$

#### S-wave three-pion system in total |=1

$$\begin{pmatrix} |\pi \otimes [\pi \otimes \pi]_{I=0} \rangle_{I=1} \\ |\pi \otimes [\pi \otimes \pi]_{I=2} \rangle_{I=1} \end{pmatrix} = \begin{pmatrix} 1/3 & \sqrt{5}/3 \\ \sqrt{5}/3 & 1/6 \end{pmatrix} \begin{pmatrix} |[\pi \otimes \pi]_{I=0} \otimes \pi \rangle_{I=1} \\ |[\pi \otimes \pi]_{I=2} \otimes \pi \rangle_{I=1} \end{pmatrix}$$



### Eigenvalue equation for 3-body system

$$z(|\mathbf{p}|) = \frac{2}{3\pi} \int_0^\infty d|\mathbf{q}| \frac{|\mathbf{q}|}{|\mathbf{p}|} \ln\left(\frac{\mathbf{q}^2 + \mathbf{p}^2 + |\mathbf{q}||\mathbf{p}| + mB_3}{\mathbf{q}^2 + \mathbf{p}^2 - |\mathbf{q}||\mathbf{p}| + mB_3}\right)^{\frac{1}{3}}$$

$$\times \frac{z(|\mathbf{q}|)}{\sqrt{\frac{3}{4}\mathbf{q}^2 + mB_3 - \frac{1}{a}}}$$

$$B_3 = \frac{1.04391}{ma^2}$$
 for  $1/a > 0$  c.f.  $B_2 = \frac{1}{ma^2}$ 

Three pions with large scattering length

## Three pions with isospin breaking

**Isospin breaking:**  $m_{\pi^{\pm}} = m_{\pi^0} + \Delta$  with  $\Delta > 0$ 

- In the energy region  $E \ll \Delta$ , heavy  $\pi^{\pm}$  can be neglected.

#### Identical three-boson system with a large scattering length

-> Efimov effect

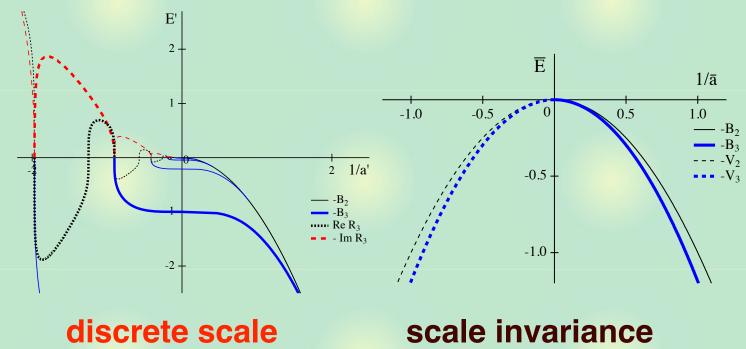
$$z(|\mathbf{p}|) = \frac{2}{\pi} \int_{0}^{\infty} d|\mathbf{q}| \frac{|\mathbf{q}|}{|\mathbf{p}|} \ln\left(\frac{\mathbf{q}^{2} + \mathbf{p}^{2} + |\mathbf{q}||\mathbf{p}| + mB_{3}}{\mathbf{q}^{2} + \mathbf{p}^{2} - |\mathbf{q}||\mathbf{p}| + mB_{3}}\right)$$

$$\times \frac{z(|\mathbf{q}|)}{\sqrt{\frac{3}{4}\mathbf{q}^{2} + mB_{3}} - \frac{1}{a}} \uparrow$$

$$\mathbf{cutoff} \sim 1/\mathbf{r}_{0}$$

Universal physics at  $E \ll (2m\Lambda)^{1/2}$ 

Efimov parameter K\*


## **Coupled-channel effect**

#### Two universal phenomena: existence of the coupled channel

$$z(|\boldsymbol{p}|) = \frac{2}{\lambda \pi} \int_0^\infty d|\boldsymbol{q}| \frac{|\boldsymbol{q}|}{|\boldsymbol{p}|} \ln \left( \frac{\boldsymbol{q}^2 + \boldsymbol{p}^2 + |\boldsymbol{q}||\boldsymbol{p}| + mB_3}{\boldsymbol{q}^2 + \boldsymbol{p}^2 - |\boldsymbol{q}||\boldsymbol{p}| + mB_3} \right) \frac{z(|\boldsymbol{q}|)}{\sqrt{\frac{3}{4}\boldsymbol{q}^2 + mB_3 - \frac{1}{a}}}$$

$$\lambda < 2.41480$$

 $2.41480 < \lambda < 3.66811$   $3.66811 < \lambda$ 



no universal bound state

invariance

Both cases can be realized in three-pion systems.

## **Implication in hadron physics 1**

#### Numerical experiment by lattice QCD : $m_{\pi}$ $\nearrow$

- Find the quark mass for a shallow  $\sigma$  ( $\pi\pi$  bound states)

#### single bound state

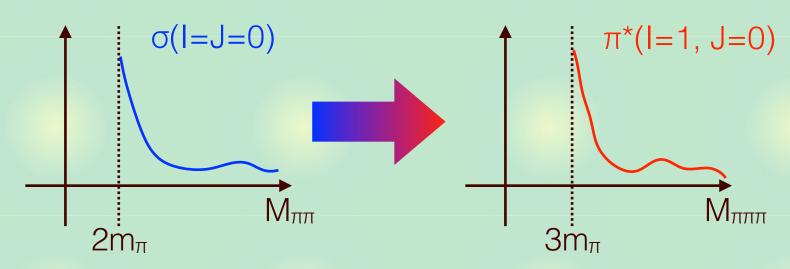
$$B_3 = 1.04391 \ B_2$$

**Isospin symmetric** 

#### several bound states

$$\frac{B_3^n}{B_3^{n+1}} = 515.03 \sim (22.7)^2$$

**Isospin breaking** 


#### Note:

- l=0  $\pi\pi$  scattering is very difficult (disconnected graphs).
- Very high mass resolution is required.
- Shallow bound state —> large volume?

## **Implication in hadron physics 2**

#### In-medium restoration of chiral symmetry : $f_{\pi} \rightarrow$

- $\sigma(I=J=0)$  softening in nuclear medium
  - T. Hatsuda, T. Kunihiro, H. Shimizu, Phys. Rev. Lett. 82, 2840-2843 (1999)
- Existence of three-body bound state
  - -> When  $\sigma$  softens,  $\pi^*(l=1, J=0)$  softens simultaneously.



#### Note:

- o softening is difficult to confirm (final state interaction,...)

T. Hatsuda, R.S. Hayano, Rev. Mod. Phys. 82, 2494 (2010)

## Summary

## Universal physics of three pions



 $\blacksquare$  Large  $\pi\pi$  scattering length (l=0) can be obtained by  $m_{\pi} \mathcal{I}$  or  $f_{\pi} \mathcal{I}$ .



Universal phenomena with large a:

- single bound state (isospin symmetric)
- Efimov states (isospin breaking)



Consequence in hadron physics:

- realization in lattice QCD
- simultaneous softening of  $\sigma$  and  $\pi^*$

T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201(R) (2014)