Structure and compositeness of hadrons

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

Contents

Introduction: structure of $\Lambda(1405)$

- Comparison of model and data
- Not a simple issue!

Compositeness of hadrons

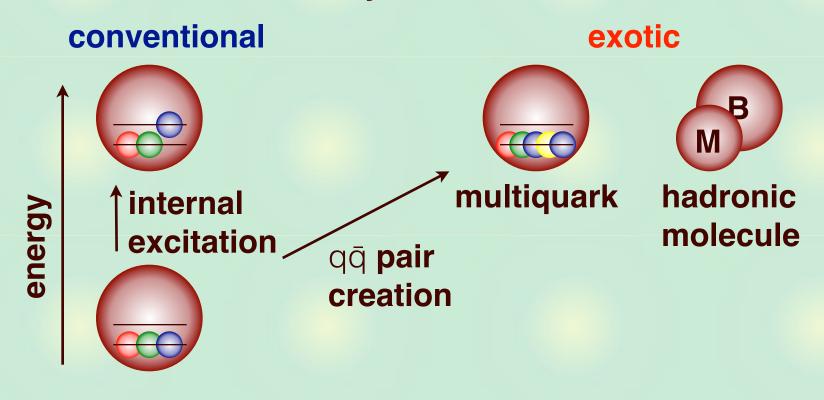
- Field renormalization constant Z
- Negative effective range re

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013)

T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

Exotic structure of hadrons

Various excitations of baryons



Physical state: superposition of 3q, 5q, MB, ...

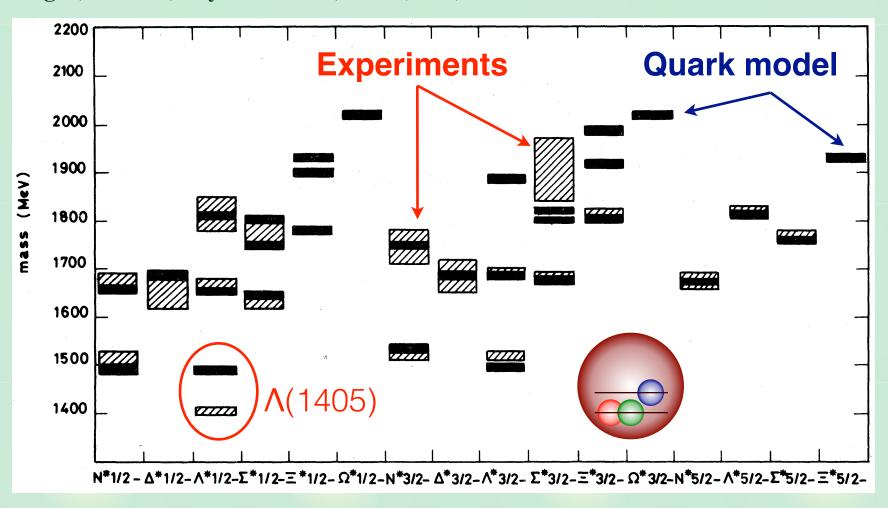
$$|\Lambda(1405)\rangle = N_{3q}|uds\rangle + N_{5q}|uds|q\bar{q}\rangle + N_{\bar{K}N}|\bar{K}N\rangle + \cdots$$

How can we identify the structure of hadrons?

Λ(1405) in quark model

Baryon excited states in a constituent quark model

N. Isgur, G. Karl, Phys. Rev. D18, 4187 (1978)



Prediction does not fit experimental data of $\Lambda(1405)$

Λ(1405) in hadron molecule model

Dynamical coupled-channel scattering model

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

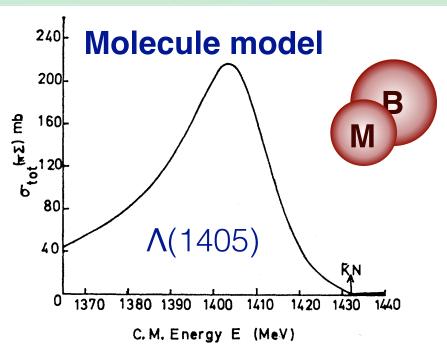
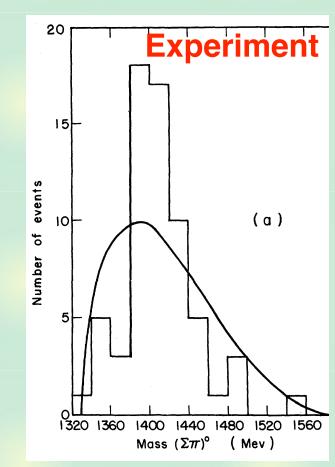


Fig. 1. The total s-wave $\pi\Sigma$ scattering cross section calculated for the multichannel potential model for $Y_0*(1405)$ is plotted as a function of the total c.m. energy. The cross section becomes very small at the $\bar{K}N$ threshold, where only the term $\gamma(E)$ contributes to the $\pi\Sigma$ scattering.

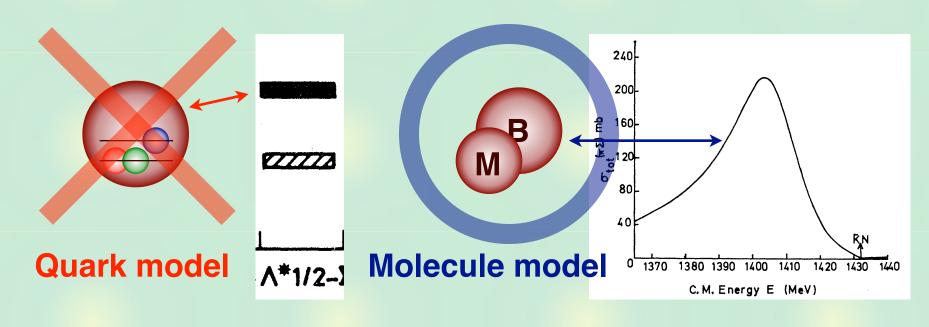


M.H. Alston *et al.*, Phys. Rev. Lett. 6, 698-702 (1961)

Good description of the spectrum (mass and width)

qqq v.s. molecule

Comparison with experimental data



The model prediction contradicts/agrees with data.

(hidden) assumption:

Model space <--> structure of the predicted state

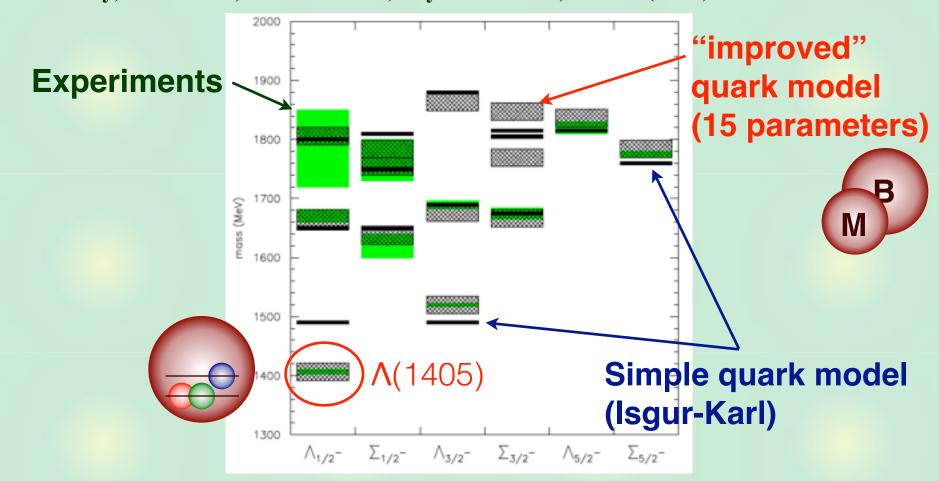
Is this so simple?

Improvement of models

Quark model with more interactions (large N_c expansion)

C.L. Schat, J.L. Goity, N.N. Scoccola, Phys. Rev. Lett. 88, 102002 (2002);

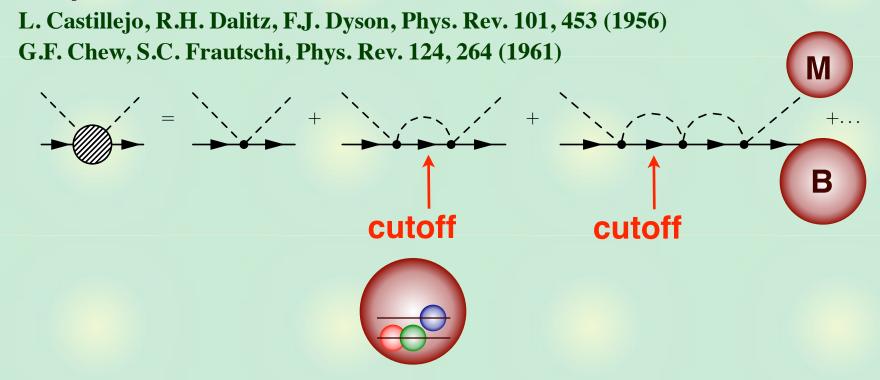
J.L. Goity, C.L. Schat, N.N. Scoccola, Phys. Rev. D 66, 114014 (2002)



qqq model can reproduce Λ(1405) ??

Ambiguity in the scattering equation

CDD pole contribution

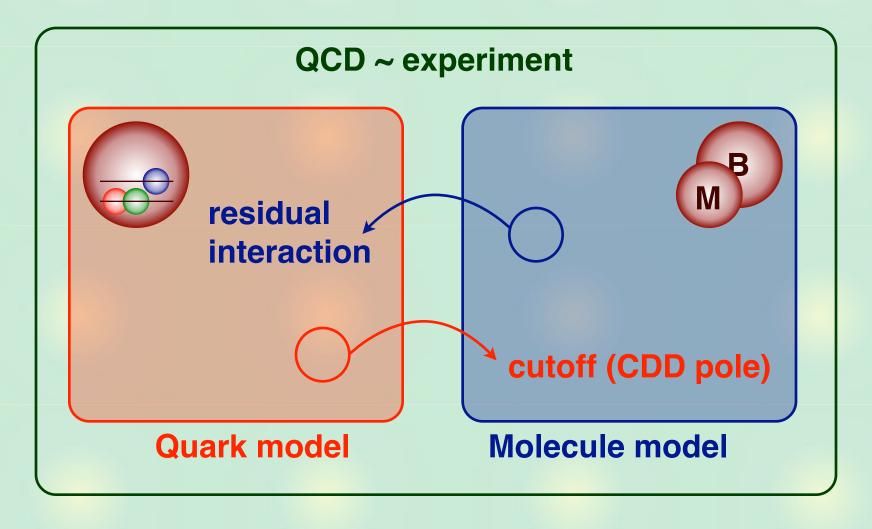


- contributions other than the model space

Parameters in the model effectively encode the effect of the configurations which are not included in the model space.

Ambiguities in the model analysis

Schematic picture:

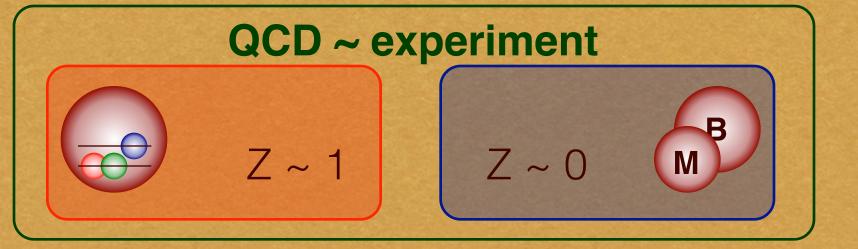


=> model space ≠ structure of the predicted state

Summary of introduction

Model space ≠ structure of hadron

What we need is a model-independent measure for the hadron structure.



Compositeness of bound states

Compositeness approach for a bound state |B>

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, IJMPA 28, 1330045 (2013)</u>

$$H = H_0 + V$$
 $H|B\rangle = -B|B\rangle, \langle B|B\rangle = 1$

Decompose ⊢ into free part + interaction

Complete set for free Hamiltonian

: bare $|B_0>$ + continuum

$$1 = |B_0\rangle\langle B_0| + \int d\boldsymbol{p} |\boldsymbol{p}\rangle\langle \boldsymbol{p}|$$

$$1 = \langle B | B_0 \rangle \langle B_0 | B \rangle + \int d\mathbf{p} \langle B | \mathbf{p} \rangle \langle \mathbf{p} | B \rangle$$

Z: elementary X: composite

In QCD,

 H_0

H₀: free hadrons

 $|\, m{p}\,
angle$

 $|B_0\rangle$

∨ : hadron interaction

Z, X : real and nonnegative --> probabilistic interpretation

$$\Rightarrow 0 \le Z \le 1, \quad 0 \le X \le 1$$

 $|\,oldsymbol{p},\pm\,
angle$

 $|B\rangle$

H

Weak binding limit

In general, Z depends on the choice of the potential \lor .

- Z : model-(scheme-)dependent quantity

$$1 - Z = \int d\mathbf{p} \frac{|\langle \mathbf{p} | V | B \rangle|^2}{(E_p + B)^2}$$
 V-dependent

At the weak binding ($R \gg R_{typ}$), Z is related to observables.

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, IJMPA 28, 1330045 (2013)</u>

$$a = \frac{2(1-Z)}{2-Z}R + \mathcal{O}(R_{\text{typ}}), \quad r_e = \frac{-Z}{1-Z}R + \mathcal{O}(R_{\text{typ}}),$$

a: scattering length, re: effective range

 $R = (2\mu B)^{-1/2}$: radius (binding energy)

 R_{typ} : typical length scale of the interaction

Criterion for the structure:

$$\begin{cases} a \sim R_{\rm typ} \ll -r_e & \text{(elementary dominance)}, \ \mathsf{Z} \sim 1 \\ a \sim R \gg r_e \sim R_{\rm typ} & \text{(composite dominance)}. \ \mathsf{Z} \sim 0 \text{ (deuteron)} \end{cases}$$

Interpretation of negative effective range

For Z > 0, effective range is always negative.

$$a = \frac{2(1-Z)}{2-Z}R + \mathcal{O}(R_{\rm typ}), \quad r_e = \frac{-Z}{1-Z}R + \mathcal{O}(R_{\rm typ}),$$

$$\begin{cases} a \sim R_{\rm typ} \ll -r_e & \text{(elementary dominance)}, \\ a \sim R \gg r_e \sim R_{\rm typ} & \text{(composite dominance)}. \end{cases}$$

Simple attraction (no barrier, energy-indep., ...) : $r_e > 0$ --> only "composite dominance" is possible.

r_e < 0 : energy- (momentum-)dependence of the potential

- **D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998)**
- E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)
- <-- pole term/Feshbach projection of coupled-channel effect</p>

Negative r_e --> **Something other than** |p> : **CDD** pole

Generalization to resonances

Compositeness approach of bound states

$$1 - Z = \int d\mathbf{p} \frac{|\langle \mathbf{p} | V | B \rangle|^2}{(E_p + B)^2}$$

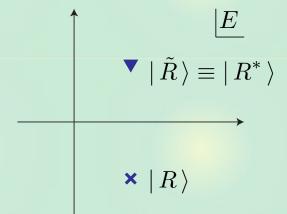
Generalization to general resonances in chiral models

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)

F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

$$1 - Z = -g^2 \frac{dG(W)}{dW} \bigg|_{W \to M_B} \longrightarrow 1 - Z = -g_{II}^2 \frac{dG_{II}(W)}{dW} \bigg|_{W \to z_R}$$

- Z is in general complex. Interpretation?



Z of hadron resonances

Z can be calculated in chiral models

Table 1. Field renormalization constant Z of the hadron resonances evaluated on the resonance pole. The momentum cutoff q_{max} is chosen to be 1 GeV for the $\rho(770)$ and $K^*(892)$ mesons, ^{55,59} 0.5 GeV for the $\Delta(1232)$ baryon, and 0.45 GeV for the $\Sigma(1385)$, $\Xi(1535)$, Ω baryons. ⁶⁰

Baryons	Z	Z	Mesons	Z	Z
$\Lambda(1405)$ higher pole ⁵⁸ $\Lambda(1405)$ lower pole ⁵⁸ $\Delta(1232)^{60}$ $\Sigma(1385)^{60}$ $\Xi(1535)^{60}$ Ω^{60}	0.00 + 0.09i $0.86 - 0.40i$ $0.43 + 0.29i$ $0.74 + 0.19i$ $0.89 + 0.99i$ 0.74	0.09 0.95 0.52 0.77 1.33 0.74	$f_0(500)$ or σ^{58} $f_0(980)^{58}$ $a_0(980)^{58}$ $\rho(770)^{55}$ $K^*(892)^{59}$	1.17 - 0.34i $0.25 + 0.10i$ $0.68 + 0.18i$ $0.87 + 0.21i$ $0.88 + 0.13i$	1.22 0.27 0.70 0.89 0.89
$\Lambda_c(2595)^{56}$	1.00 - 0.61i	1.17			

F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

T. Sekihara, T. Hyodo, Phys. Rev. C87, 045202 (2013)

C.W. Xiao, F. Aceti, M. Bayar, Eur. Phys. J. A 49, 22 (2013)

F. Aceti, L. Dai, L. Geng, E. Oset, T, Zhang, arXiv:1301.2554 [hep-ph]

In some cases, Z and/or |Z| exceed unity. Interpretation?

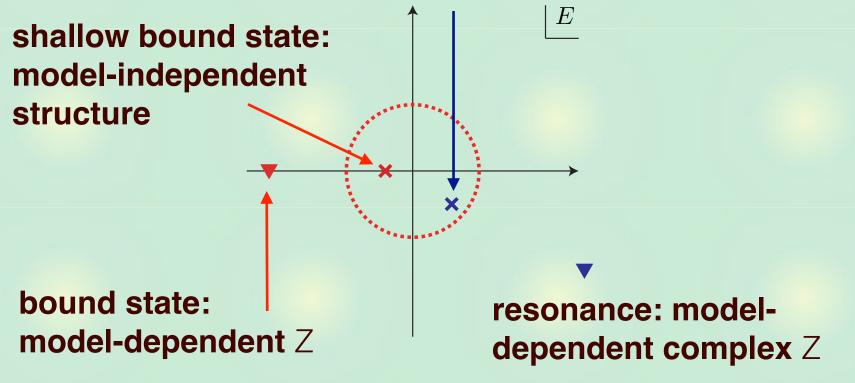
Compositeness of hadrons

Generalization to resonances

Compositeness approach at the weak binding:

- Model-independent (no potential, wavefunction, ...)
- Related to experimental observables

What about near-threshold resonances (~ small binding)?



Poles of the amplitude

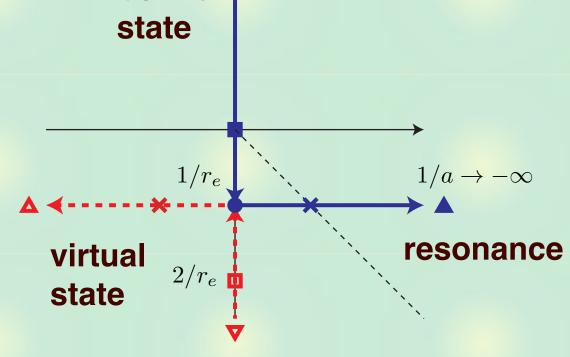
Near-threshold phenomena: effective range expansion

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013) with opposite sign of scattering length

$$f(p) = \left(-\frac{1}{a} + \frac{r_e^2}{2}p^2 - ip\right)^{-1}$$
$$p^{\pm} = \frac{i}{r_e} \pm \frac{1}{r_e} \sqrt{\frac{2r_e}{a} - 1}$$

bound state

Pole trajectories with a fixed $r_e < 0$



Resonance pole position <--> (a, r_e)

Compositeness of hadrons

Example of resonance: $\Lambda_c(2595)$

Pole position of $\Lambda_c(2595)$ in $\pi\Sigma_c$ scattering

- central values in PDG

$$E = 0.67 \text{ MeV}, \quad \Gamma = 2.59 \text{ MeV} \qquad p^{\pm} = \sqrt{2\mu(E \mp i\Gamma/2)}$$

- deduced threshold parameters of $\pi\Sigma_c$ scattering

$$a = -\frac{p^{+} + p^{-}}{ip^{+}p^{-}} = -10.5 \text{ fm}, \quad r_{e} = \frac{2i}{p^{+} + p^{-}} = -19.5 \text{ fm}$$

- field renormalization constant: complex

$$Z = 1 - 0.608i$$

Large negative effective range

<-- substantial elementary contribution other than $\pi\Sigma_c$ (three-quark, other meson-baryon channel, or ...)

 $\Lambda_c(2595)$ is not likely a $\pi\Sigma_c$ molecule

Summary

Composite/elementary nature of resonances

Renormalization constant Z measures elementariness of a stable bound state.

In general, Z of a resonance is complex.

Negative effective range r_e: CDD pole

Near-threshold resonance : pole position is related to re --> elementariness

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013)

T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)