Structure of hadron resonances from the viewpoint of compositeness

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto Univ.

composite v.s. elementary

- Field renormalization constant Z
- Negative effective range re

<u>T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013)</u> <u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)</u>

Recent experimental developments 1

Light (u,d,s) sector -- A(1405) invariant mass distribution

R.J. Hemingway, Nucl. Phys. B253, 742 (1985)

K. Moriya et al. (CLAS collaboration), Phys. Rev. C87, 035206 (2013)

Recent experimental developments 2

Heavy (c,b) sector -- quarkonium spectrum

S. Prel, Hadrons2013@Nara; R. Mussa, Hadrons2013@Nara

- deviation from the Cornell potential above $\overline{D}D$ threshold
- charged states around $\overline{D}D^{(*)}$ and $\overline{B}B$ threshold

Exotic structure of hadrons

Various excitations of baryons

Physical state: superposition of 3q, 5q, MB, ...

 $|\Lambda(1405)\rangle = N_{3q}|uds\rangle + N_{5q}|uds|q\bar{q}\rangle + N_{\bar{K}N}|\bar{K}N\rangle + \cdots$

Find out the dominant component among others.

Structure of resonances?

Excited states : finite width (unstable against strong decay)

- stable (ground) states
- unstable states

Most of hadrons are unstable!

State vector of resonance?

		_		_											
	n	1/2+ ,	****	A(1232)	3/2+	****	Σ^+	$1/2^{+}$	****	=0	$1/2^{+}$	****	A ⁺	$1/2^{+}$	****
	n	1/2+ >	****	$\Delta(1600)$	3/2+	***	Σ ⁰	$1/2^+$	****	=-	$1/2^+$	****	$\Lambda_{-}(2595)^{+}$	1/2-	***
	N(1440)	1/2+ 3	****	$\Delta(1620)$	1/2-	****	Σ-	$1/2^+$	****	$\Xi(1530)$	3/2+	****	$A_{c}(2625)^{+}$	3/2-	***
	N(1520)	3/2- 3	****	$\Delta(1700)$	3/2-	****	$\Sigma(1385)$	3/2+	****	$\Xi(1620)$	-,-	*	$\Lambda_{c}(2765)^{+}$	0/2	*
<u>۱</u>	N(1535)	1/2- 3	****	$\Delta(1750)$	$1/2^+$	*	$\Sigma(1480)$	- /	*	E(1690)		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
	N(1650)	1/2- '	****	$\Delta(1900)$	1/2-	**	$\Sigma(1560)$		**	$\Xi(1820)$	3/2-	***	$\Lambda_{c}(2940)^{+}$	-/-	***
	N(1675)	5/2- 3	****	$\Delta(1905)$	5/2+	****	Σ(1580)	$3/2^{-}$	*	Ξ(1950)	· 1	***	$\Sigma_{c}(2455)$	$1/2^{+}$	****
	N(1680)	5/2+ 3	****	$\Delta(1910)$	$1/2^{+}$	****	Σ(1620)	1/2-	**	$\Xi(2030)$	$\geq \frac{5}{2}$?	***	$\Sigma_{c}(2520)$	3/2+	***
	N(1685)		*	$\Delta(1920)$	3/2+	***	Σ(1660)	1/2+	***	E (2120)	-	*	$\Sigma_c(2800)$	· '	***
	N(1700)	3/2- 3	***	⊿(1930)	5/2-	***	Σ(1670)	3/2-	****	Ξ(2250)		**	Ξ_c^+	$1/2^{+}$	***
	N(1710)	1/2+ 3	***	∆(1940)	3/2-	**	Σ(1690)		**	Ξ(2370)		**	ΞČ	$1/2^+$	***
	N(1720)	3/2+ 3	****	⊿(1950)	7/2+	****	Σ(1750)	$1/2^{-}$	***	Ξ(2500)		*	$= \tilde{r}_{c}^{+}$	$1/2^+$	***
	N(1860)	5/2+ 3	**	<i>∆</i> (2000)	5/2+	**	Σ(1770)	$1/2^{+}$	*				=/0	$1/2^+$	***
	N(1875)	3/2 '	***	∆(2150)	$1/2^{-}$	*	Σ(1775)	5/2-	****	Ω^{-}	3/2+	****	$\Xi_{c}(2645)$	3/2+	***
	N(1880)	1/2+ '	**	<i>∆</i> (2200)	7/2-	*	Σ(1840)	3/2+	*	$\Omega(2250)^{-}$		***	$\Xi_{c}(2790)$	$1/2^{-}$	***
	N(1895)	1/2- *	**	<i>∆</i> (2300)	9/2+	**	Σ(1880)	$1/2^{+}$	**	Ω(2380) ⁻		**	$\Xi_{c}(2815)$	3/2-	***
	N(1900)	3/2+ 3	***	∆(2350)	5/2-	*	Σ(1915)	5/2+	****	Ω(2470) ⁻		**	$\Xi_{c}(2930)$	1	*
	N(1990)	7/2+ '	**	<i>∆</i> (2390)	7/2+	*	Σ(1940)	3/2-	***				$\Xi_{c}(2980)$		***
	N(2000)	5/2+ 3	**	<i>∆</i> (2400)	9/2-	**	Σ(2000)	1/2-	*				$\Xi_{c}(3055)$		**
	N(2040)	3/2+ *	*	⊿(2420)	11/2+	****	Σ(2030)	7/2+	****				$\Xi_{c}(3080)$		***
	N(2060)	5/2 '	**	$\Delta(2750)$	13/2-	**	$\Sigma(2070)$	5/2+	*				$\Xi_{c}(3123)$		*
	N(2100)	1/2	*	⊿(2950)	15/2+	**	Σ(2080)	3/2+	**				Ω_c^0	$1/2^{+}$	***
	N(2120)	3/2 3	¢γκ tutututu	4	1 /0+	****	$\Sigma(2100)$	7/2-	* datate				$\Omega_{c}(2770)^{0}$	$3/2^{+}$	***
	N(2190)	1/2 - 2	****	/1	1/2 -	****	$\Sigma(2250)$		***						
	N(2220)	9/2 -	****	A(1E00)	2/2-	****	Z (2455)		**				Ξ_{cc}^+		*
	N(2250)	9/2	***	A(1600)	1/2+	***	Σ(2020) Σ(2000)		*				-0	* /o-+	
	N(2000)	12/2+ 2	**	A(1670)	1/2	****	$\Sigma(3000)$ $\Sigma(3170)$		*				Λ_{b}^{o}	1/2	***
	10(2100)	13/2		A(1690)	3/2-	****	2(3170)						Σ_b	1/2+	***
				A(1800)	1/2-	***							\sum_{b}^{+}	3/2	***
				A(1810)	$1/2^+$	***							= ^b _b , $=$ ^b	1/2	***
				$\Lambda(1820)$	5/2+	****							Ω_b^-	1/2 '	***
				A(1830)	5/2-	****									
				A(1890)	3/2+	****									
				A(2000)		*									
				A(2020)	7/2+	*									
				<i>A</i> (2100)	7/2-	****									
				A(2110)	5/2+	***									_
				A(2325)	3/2-	*						D			n
				A(2350)	9/2+	***									
				A(2585)		**									

$$|\Lambda(1405)\rangle = N_{3q}|uds\rangle + N_{5q}|uds|q\bar{q}\rangle + N_{\bar{K}N}|\bar{K}N\rangle + \cdots$$

We need a classification scheme applicable to resonances.

Motivation : new exotic hadrons around two-hadron threshold --> molecule structure?

Field renormalization constant Z and compositeness

Compositeness of bound states

Compositeness approach for a bound state |B>

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, IJMPA 28, 1330045 (2013)</u>

 $H = H_0 + V \qquad H|B\rangle = -B|B\rangle, \quad \langle B|B\rangle = 1$

Decompose H into free part + interaction

Field renormalization constant Z and compositeness

Weak binding limit

In general, Z depends on the choice of the potential V.

- Z : model-(scheme-)dependent quantity

$$1 - Z = \int d\mathbf{p} \frac{|\langle \mathbf{p} | V | B \rangle|^2}{(E_p + B)^2} \longleftarrow \text{V-dependent}$$

At the weak binding ($R \gg R_{typ}$), Z is related to observables.

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, IJMPA 28, 1330045 (2013)</u>

$$a = \frac{2(1-Z)}{2-Z}R + \mathcal{O}(R_{\text{typ}}), \quad r_e = \frac{-Z}{1-Z}R + \mathcal{O}(R_{\text{typ}}),$$

a : scattering length, r_e : effective range $R = (2\mu B)^{-1/2}$: radius (binding energy) R_{typ} : typical length scale of the interaction

Criterion for the structure:

 $\begin{cases} a \sim R_{\text{typ}} \ll -r_e & \text{(elementary dominance)}, \ \mathsf{Z} \sim \mathsf{1} \\ a \sim R \gg r_e \sim R_{\text{typ}} & \text{(composite dominance)}, \ \mathsf{Z} \sim \mathsf{0} \text{ (deuteron)} \end{cases}$

Field renormalization constant Z and compositeness

Interpretation of negative effective range

For Z > 0, effective range is always negative.

$$a = \frac{2(1-Z)}{2-Z}R + \mathcal{O}(R_{\text{typ}}), \quad r_e = \frac{-Z}{1-Z}R + \mathcal{O}(R_{\text{typ}}),$$

 $\begin{cases} a \sim R_{\text{typ}} \ll -r_e & \text{(elementary dominance),} \\ a \sim R \gg r_e \sim R_{\text{typ}} & \text{(composite dominance).} \end{cases}$

Simple attractive potential: r_e > 0 --> only "composite dominance" is possible.

$r_e < 0$: energy- (momentum-)dependence of the potential

D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998) E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

<-- pole term/Feshbach projection of coupled-channel effect

Negative r_e --> Something other than |p> : CDD pole

Generalization to resonances

Compositeness approach of bound states

$$1 - Z = \int d\mathbf{p} \frac{|\langle \mathbf{p} | V | B \rangle|^2}{(E_p + B)^2}$$

Generalization to general resonances in chiral models

<u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)</u> F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

$$1 - Z = -g^2 \frac{dG(W)}{dW} \Big|_{W \to M_B} \quad \to \quad 1 - Z = -g_{II}^2 \frac{dG_{II}(W)}{dW} \Big|_{W \to z_R}$$

- Z is in general complex. Interpretation?

E

11

Z of hadron resonances

Z can be calculated in chiral models

Table 1. Field renormalization constant Z of the hadron resonances evaluated on the resonance pole. The momentum cutoff q_{max} is chosen to be 1 GeV for the $\rho(770)$ and $K^*(892)$ mesons,^{55,59} 0.5 GeV for the $\Delta(1232)$ baryon, and 0.45 GeV for the $\Sigma(1385), \Xi(1535), \Omega$ baryons.⁶⁰

Baryons	Ζ	Z	Mesons	Ζ	Z
	$\begin{array}{c} 0.00+0.09i\\ 0.86-0.40i\\ 0.43+0.29i\\ 0.74+0.19i\\ 0.89+0.99i\\ 0.74\\ 1.00-0.61i\end{array}$	$\begin{array}{c} 0.09 \\ 0.95 \\ 0.52 \\ 0.77 \\ 1.33 \\ 0.74 \\ 1.17 \end{array}$	$egin{aligned} f_0(500) & ext{or} & \sigma^{58} \ f_0(980)^{58} \ a_0(980)^{58} \ ho(770)^{55} \ K^*(892)^{59} \end{aligned}$	$\begin{array}{c} 1.17-0.34i\\ 0.25+0.10i\\ 0.68+0.18i\\ 0.87+0.21i\\ 0.88+0.13i\end{array}$	$ \begin{array}{c} 1.22 \\ 0.27 \\ 0.70 \\ 0.89 \\ 0.89 \end{array} $

F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012) <u>T. Sekihara, T. Hyodo, Phys. Rev. C87, 045202 (2013)</u> C.W. Xiao, F. Aceti, M. Bayar, Eur. Phys. J. A 49, 22 (2013) F. Aceti, L. Dai, L. Geng, E. Oset, T, Zhang, arXiv:1301.2554 [hep-ph]

In some cases, Z and/or |Z| exceed unity. Interpretation?

Generalization to resonances

Compositeness approach at the weak binding:

- Model-independent (no potential, wavefunction, ...)
- Related to experimental observables

What about near-threshold resonances (~ small binding)? Eshallow bound state: model-independent structure bound state: resonance: modelmodel-dependent Z dependent complex Z

Poles of the amplitude

Near-threshold phenomena: effective range expansion

T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013) with opposite sign of scattering length

Resonance pole position <--> (a, r_e**)**

Example of resonance: $\Lambda_c(2595)$

- Pole position of $\Lambda_c(2595)$ in $\pi\Sigma_c$ scattering
 - central values in PDG

 $E = 0.67 \text{ MeV}, \quad \Gamma = 2.59 \text{ MeV} \qquad p^{\pm} = \sqrt{2\mu(E \mp i\Gamma/2)}$

- deduced threshold parameters of $\pi \Sigma_c$ scattering

$$a = -\frac{p^+ + p^-}{ip^+p^-} = -10.5 \text{ fm}, \quad r_e = \frac{2i}{p^+ + p^-} = -19.5 \text{ fm}$$

- field renormalization constant: complex
 - Z = 1 0.608i

Large negative effective range

- <-- substantial elementary contribution other than $\pi\Sigma_c$ (three-quark, other meson-baryon channel, or ...)
- $\Lambda_c(2595)$ is not likely a $\pi\Sigma_c$ molecule

Summary

Composite/elementary nature of resonances

Renormalization constant Z measures elementariness of a stable bound state.

 \checkmark In general, Z of a resonance is complex.

Negative effective range r_e : CDD pole

Near-threshold resonance : pole position is related to r_e --> elementariness

> <u>T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013)</u> <u>T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)</u>