Resonances in hadron physics

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto

Contents

Part I : Compositeness of hadron resonances

T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013)
T. Hyodo, arXiv:1310.1176 [hep-ph]

Part II : Universal thee-pion physics

T. Hyodo, T. Hatsuda, Y. Nishida, in preparation

π

9

a

Introduction (Part I)

Exotic structure of hadrons

Various excitations of baryons
conventional

exotic

multiquark
hadronic molecule

Physical state: superposition of 3q, 5q, MB, ...

$$
|\Lambda(1405)\rangle=\underline{N_{3 q}}|u d s\rangle+\underline{N_{5 q}}|u d s q \bar{q}\rangle+\underline{N_{\bar{K} N}}|\bar{K} N\rangle+\cdots
$$

Find out the dominant component among others.

Introduction (Part I)

Structure of resonances?

Excited states : finite width (unstable against strong decay)

- stable (ground) states
- unstable states

Most of hadrons are unstable!

State vector of resonance?

$$
\frac{?}{|\Lambda(1405)\rangle}=N_{3 q}|u d s\rangle+N_{5 q}|u d s q \bar{q}\rangle+N_{\bar{K} N}|\bar{K} N\rangle+\cdots
$$

We need a classification scheme applicable to resonances.

Compositeness of bound states

Compositeness approach: decompose Hamiltonian
S. Weinberg, Phys. Rev. 137, B672 (1965); T. Hyodo, arXiv:1310.1176 [hep-ph]

$$
H=H_{0}+V
$$

Complete set for free Hamiltonian: bare $\mid \mathrm{B}_{0}>+$ continuum

$$
1=\left|B_{0}\right\rangle\left\langle B_{0}\right|+\int d \boldsymbol{p}|\boldsymbol{p}\rangle\langle\boldsymbol{p}|
$$

Physical bound state |B>

$$
\begin{aligned}
& H|B\rangle=-B|B\rangle, \quad\langle B \mid B\rangle=1 \\
& 1=\underline{\left\langle B \mid B_{0}\right\rangle\left\langle B_{0} \mid B\right\rangle}+\int \underline{d \boldsymbol{p}\langle B \mid \boldsymbol{p}\rangle\langle\boldsymbol{p} \mid B\rangle}
\end{aligned}
$$

Z : elementariness X :compositeness

Z, X : real and nonnegative --> probabilistic interpretation

$$
\Rightarrow 0 \leq Z \leq 1, \quad 0 \leq X \leq 1
$$

Field renormalization constant Z and compositeness (Part I)

Weak binding limit

In general, Z depends on the choice of the potential V.

- Z : model-(scheme-)dependent quantity

$$
1-Z=\int d \boldsymbol{p} \frac{|\langle\boldsymbol{p}| V| B\rangle\left.\right|^{2}}{\left(E_{p}+B\right)^{2}}
$$

In the weak binding limit, Z is related to observables
S. Weinberg, Phys. Rev. 137, B672 (1965); T. Hyodo, arXiv:1310.1176 [hep-ph]

$$
a=\frac{2(1-Z)}{2-Z} R+\mathcal{O}\left(R_{\mathrm{typ}}\right), \quad r_{e}=\frac{-Z}{1-Z} R+\mathcal{O}\left(R_{\mathrm{typ}}\right)
$$

a : scattering length, r_{e} : effective range
$R=(2 \mu \mathrm{~B})^{-1 / 2}$: radius (binding energy)
$R_{\text {typ }}$: typical length scale of the interaction
Criterion for the structure:

$$
\begin{cases}a \sim R_{\mathrm{typ}} \ll-r_{e} & \text { (elementary dominance), } \quad \mathrm{Z} \sim 1 \\ a \sim R \gg r_{e} \sim R_{\mathrm{typ}} & \text { (composite dominance). } \quad \mathrm{Z} \sim 0\end{cases}
$$

Field renormalization constant Z and compositeness (Part I)

Interpretation of negative effective range

For $Z>0$, effective range is always negative.

$$
\begin{aligned}
& a=\frac{2(1-Z)}{2-Z} R+\mathcal{O}\left(R_{\mathrm{typ}}\right), \quad r_{e}=\frac{-Z}{1-Z} R+\mathcal{O}\left(R_{\mathrm{typ}}\right), \\
& \begin{cases}a \sim R_{\mathrm{typ}} \ll-r_{e} & \text { (elementary dominance) }, \\
a \sim R \gg r_{e} \sim R_{\mathrm{typ}} & \text { (composite dominance). }\end{cases}
\end{aligned}
$$

Simple attractive potential: $r_{e}>0$
--> only "composite dominance" is possible.
$\mathrm{r}_{\mathrm{e}}<0$: energy- (momentum-)dependence of the potential
D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998)
E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)
<-- pole term/Feshbach projection of coupled-channel effect

Negative r_{e}--> Something other than $\mid p>$: CDD pole

Application to near-threshold resonances (Part I)

Application to resonances

Compositeness approach at the weak binding:

- Model-independent (no potential, wavefunction, ...)
- Related to experimental observables
- Only for bound states with small binding

Application to general resonances

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)
F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

- Z and X are in general complex. Interpretation?

$$
\begin{aligned}
& \langle R \mid R\rangle \rightarrow \infty, \quad\langle\tilde{R} \mid R\rangle=1 \\
& 1=\left\langle\tilde{R} \mid B_{0}\right\rangle\left\langle B_{0} \mid R\right\rangle+\int d \boldsymbol{p}\langle\tilde{R} \mid \boldsymbol{p}\rangle\langle\boldsymbol{p} \mid R\rangle
\end{aligned}
$$

What about near-threshold resonances (~ small binding)?

Application to near-threshold resonances (Part I)

Poles of the amplitude

Near-threshold phenomena: effective range expansion
T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013) with opposite sign of scattering length

$$
\begin{aligned}
& f(p)=\left(-\frac{1}{a}-p i+\frac{r_{e}}{2} p^{2}\right)^{-1} \\
& p^{ \pm}=\frac{i}{r_{e}} \pm \frac{1}{r_{e}} \sqrt{\frac{2 r_{e}}{a}-1}
\end{aligned}
$$

Pole trajectories with a fixed $\mathrm{r}_{\mathrm{e}}<0$

Resonance pole position <--> $\left(a, r_{e}\right)$

Application to near-threshold resonances (Part I)

Example of resonance: $\wedge_{c}(2595)$

Pole position of $\Lambda_{c}(2595)$ in $\pi \Sigma_{c}$ scattering

- central values in PDG

$$
E=0.67 \mathrm{MeV}, \quad \Gamma=2.59 \mathrm{MeV}
$$

- deduced threshold parameters

$$
a=-\frac{p^{+}+p^{-}}{i p^{+} p^{-}}=-10.5 \mathrm{fm}, \quad r_{e}=\frac{2 i}{p^{+}+p^{-}}=-19.5 \mathrm{fm}
$$

- field renormalization constant: complex

$$
Z=1-0.608 i
$$

Large negative effective range

<-- substantial elementary contribution other than $\pi \Sigma_{\mathrm{c}}$ (three-quark, other meson-baryon channel, or ...)
$\Lambda_{c}(2595)$ is not likely a $\pi \Sigma_{c}$ molecule

Summary (Part I)

Part I : Summary

Composite/elementary nature of resonances

Renormalization constant Z measures elementariness of a stable bound state.

In general, Z of a resonance is complex.

Negative effective range r_{e} : CDD pole Near-threshold resonance: pole position is related to $\mathrm{r}_{\mathrm{e}} \rightarrow->$ elementariness
T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013)
T. Hyodo, arXiv:1310.1176 [hep-ph]

Introduction (Part II)

Universal phenomena in hadron physics

 Universal few-body physics <-- large scattering lengthS-wave пा scattering length

- $a_{\|=0}$ ~ -0.31 fm, $a_{l=2 ~}^{\sim}$ ~ $0.06 \mathrm{fm} /$ QCD scale ~ $\mathbf{1 ~ f m}$
- I=0 component can be increased by $\mathrm{m}_{\boldsymbol{\pi}} \nearrow$ or $\mathrm{f}_{\boldsymbol{\pi}} \downarrow$

C. Hanhart, J.R. Pelaez, G. Rios, Phys. Rev. Lett. 100, 152001 (2008)
T. Hyodo, D. Jido, T. Kunihiro, Nucl. Phys. A848, 341-365 (2010)
- Realizable by lattice QCD / nuclear medium
==> Three-pion system with a large scattering length

Isospin symmetric three pions

Pion has an internal degree of freedom : isospin |=1

- s-wave two-body amplitude: $\mathrm{I}=0$ and $\mathrm{I}=2$

$$
i t_{0}(p)=\frac{8 \pi}{m} \frac{i}{\frac{1}{a}-\sqrt{\frac{p^{2}}{4}-m p_{0}-i 0^{+}}}, \quad i t_{2}(p)=0
$$

S-wave three-pion system in total $\mid=1$

$$
\binom{\left|\pi \otimes[\pi \otimes \pi]_{I=0}\right\rangle_{I=1}}{\left|\pi \otimes[\pi \otimes \pi]_{I=2}\right\rangle_{I=1}}=\left(\begin{array}{cc}
1 / 3 & \sqrt{5} / 3 \\
\sqrt{5} / 3 & 1 / 6
\end{array}\right)\binom{\left|[\pi \otimes \pi]_{I=0} \otimes \pi\right\rangle_{I=1}}{\left|[\pi \otimes \pi]_{I=2} \otimes \pi\right\rangle_{I=1}}
$$

Eigenvalue equation (eigenvalue B_{3} for eigenfunction $\mathrm{z}(|\mathbf{p}|)$)

$$
\left.z(|\boldsymbol{p}|)=\frac{2}{3 \pi} \int_{0}^{\infty} d|\boldsymbol{q}| \boldsymbol{q}| | \ln \left\lvert\, \frac{\boldsymbol{q}^{2}+\boldsymbol{p}^{2}+|\boldsymbol{q}| \boldsymbol{p} \mid+m B_{3}}{\boldsymbol{q}^{2}+\boldsymbol{p}^{2}-|\boldsymbol{q}| \boldsymbol{p} \mid+m B_{3}}\right.\right) \frac{z(|\boldsymbol{q}|)}{\sqrt{\frac{3}{4} \boldsymbol{q}^{2}+m B_{3}}-\frac{1}{a}}
$$

Factor $1 / 3$ difference from the identical boson case

Spectrum in the isospin symmetric limit

Result: one universal three-pion bound state

$$
\begin{aligned}
& B_{3}=\frac{1.04391}{m a^{2}} \text { for } 1 / a>0 \\
& \text { c.f. } \quad B_{2}=\frac{1}{m a^{2}}
\end{aligned}
$$

Resonances?

- phase rotation of binding energy $=$ phase rotation of a

$$
B_{3} \rightarrow B_{3} e^{i \theta} \quad \Leftrightarrow \quad \frac{1}{a} \rightarrow \frac{1}{a} e^{-i \theta / 2}
$$

Negative a: virtual state
$<-$ rotation of B_{3} by $\mathbf{2 \pi}=$ sign flip of a
No resonance for all a
<-- interchange of Riemann sheet = sign flip of a

With isospin breaking

In nature, $m_{\pi^{ \pm}}=m_{\pi}{ }^{0}+\Delta$ with $\Delta>0$

- In the energy region $\mathrm{E}<\Delta$, heavy $\pi^{ \pm}$can be neglected.

Identical three-boson system with a large scattering length --> Efimov effect

Efimov resonances

Resonance solution is now possible.

- phase rotation of binding energy = phase rotation of a and $\wedge+$ proper treatment of singularity in $f_{\wedge}(|q|)$

$$
B_{3} \rightarrow B_{3} e^{i \theta} \quad \Leftrightarrow \quad \frac{1}{a} \rightarrow \frac{1}{a} e^{-i \theta / 2} \quad \text { and } \quad \Lambda \rightarrow \Lambda e^{-i \theta / 2}
$$

Efimov bound state --> resonance

Discussion (Part II)

Interpolation by model

A model with finite mass difference $\Delta=m_{\pi^{ \pm}}-m_{\pi}{ }^{0}$

$$
\mathcal{L}=\sum_{i=0, \pm} \pi_{i}^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m_{i}}-m_{i}\right) \pi_{i}+\frac{g}{4} \frac{\pi_{0}^{\dagger} \pi_{0}^{\dagger}-2 \pi_{+}^{\dagger} \pi_{-}^{\dagger}}{\sqrt{3}} \frac{\pi_{0} \pi_{0}-2 \pi_{-} \pi_{+}}{\sqrt{3}}
$$

- $\mathrm{E}<\Delta$: Efimov states, $(\Lambda \gg) \mathrm{E} \gg \Delta$: single bound state
- cutoff for the Efimov effect is introduced by Δ.

Lowest Efimov level --> universal bound state

Summary (Part II)
Part II: Summary

Universal physics of three pions

 Large $\pi \pi$ scattering length $(\mid=0)$ can berealized by $m_{\pi} \nearrow$ or f_{π} Large $\pi \pi$ scattering length $(\mid=0)$ can be
realized by $m_{\pi} \nearrow$ or f_{π}

With isospin symmetry: single three-

:
Y

body bound state for $\mathrm{I}=1, \mathrm{~J}=0$. --> turns into virtual state
With isospin breaking: Efimov states for three neutral pions.
--> turn into resonances
T. Hyodo, T. Hatsuda, Y. Nishida, in preparation

.

 (1)

