Resonances in hadron physics

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto

Contents

Physical state: superposition of 3q, 5q, MB, ...

 $|\Lambda(1405)\rangle = N_{3q}|uds\rangle + N_{5q}|uds|q\bar{q}\rangle + N_{\bar{K}N}|\bar{K}N\rangle + \cdots$

Find out the dominant component among others.

Introduction (Part I)

Structure of resonances?

- Excited states : finite width (unstable against strong decay)
 - stable (ground) states
 - unstable states

Most of hadrons are unstable!

State vector of resonance?

_		_	_		_								
р	$1/2^{+}$	****	<i>∆</i> (1232)	3/2+ ****	Σ^+	$1/2^{+}$	****	<u>=</u> 0	$1/2^{+}$	****	Λ_c^+	$1/2^{+}$	****
n	$1/2^{+}$		<i>∆</i> (1600)	3/2+ ***	Σ^0	-1/-	****	Ξ-	$1/2^{+}$	****	$\Lambda_{c}(2595)^{+}$	1/2-	***
N(1440)	$1/2^{+}$	****	∆(1620)	1/2- ****	Σ^{-}	$1/2^{+}$	****	Ξ(1530)	3/2+	****	$\Lambda_{c}(2625)^{+}$	3/2-	***
N(1520)	3/2-	****	∆(1700)	3/2" ****	Σ(1385)	3/2+	****	Ξ(1620)		*	$\Lambda_{c}(2765)^{+}$		*
N(1535)	$1/2^{-}$	****	∆(1750)	1/2+ *	Σ(1480)		*	Ξ(1690)		***	$\Lambda_{c}(2880)^{+}$	5/2+	***
N(1650)	$1/2^{-}$	****	⊿(1900)	1/2 **	Σ(1560)		**	Ξ(1820)	3/2-	***	$\Lambda_{c}(2940)^{+}$		***
N(1675)	5/2-	****	⊿(1905)	5/2+ ****	$\Sigma(1580)$	3/2-	*	Ξ(1950)	2	***	$\Sigma_{c}(2455)$	$1/2^{+}$	****
N(1680)	5/2+	****	⊿(1910)	1/2+ ****	Σ(1620)	1/2-	**	Ξ(2030)	$\geq \frac{5}{2}$?	***	$\Sigma_{c}(2520)$	3/2+	***
N(1685)		*	⊿(1920)	3/2+ ***	Σ(1660)		***	Ξ(2120)		*	$\Sigma_{c}(2800)$		***
N(1700)	3/2-	***	⊿(1930)	5/2 ⁻ ***	Σ(1670)	3/2-	****	Ξ(2250)		**	Ξ_c^+	$1/2^{+}$	***
N(1710)	1/2+	***	⊿(1940)	3/2- **	Σ(1690)		**	Ξ(2370)		**	=0	$1/2^{+}$	***
N(1720)	3/2+	****	<i>∆</i> (1950)	7/2+ ****	Σ(1750)	1/2-	***	Ξ(2500)		*	$\Xi_c^{\prime+}$	$1/2^{+}$	***
N(1860)	5/2+	**	$\Delta(2000)$	5/2+ **	Σ(1770)	-/-	*	_	1		$\Xi_c^{\prime 0}$	$1/2^{+}$	***
N(1875)	3/2-	***	Δ (2150)	1/2- *	Σ(1775)			Ω-	3/2+	****	$\frac{z_{c}^{\prime+}}{z_{c}^{\prime-}}$ = $\frac{z_{c}^{\prime-}}{z_{c}^{\prime-}}$ = $\frac{z_{c}^{\prime-}}{z_{c}^{\prime-}}$	3/2+	***
N(1880)	1/2+	**	<i>∆</i> (2200)	7/2- *	Σ(1840)	3/2+	*	$\Omega(2250)^{-}$		***	$\Xi_{c}(2790)$	1/2-	***
N(1895)	1/2-	**	<i>∆</i> (2300)	9/2+ **	Σ(1880)	1/2+		Ω(2380) ⁻		**	$\Xi_{c}(2815)$	3/2-	***
N(1900)	3/2+	***	<i>∆</i> (2350)	5/2 *	Σ(1915)	5/2+		Ω (2470) ⁻		**	$\Xi_{c}(2930)$		*
N(1990)	7/2+	**	<i>∆</i> (2390)	7/2+ *	Σ(1940)	3/2-	***				$\Xi_{c}(2980)$		***
N(2000)	5/2+	**	$\Delta(2400)$	9/2 ⁻ **	Σ(2000)	1/2-	*				$\Xi_{c}(3055)$		**
N(2040)	3/2+	*	$\Delta(2420)$	11/2+ ****	Σ(2030)	7/2+					$\Xi_{c}(3080)$		***
N(2060)	5/2-	**	$\Delta(2750)$	13/2 **	$\Sigma(2070)$	5/2	* **				$\Xi_{c}(3123)$		*
N(2100)	1/2+	* **	⊿(2950)	15/2+ **	$\Sigma(2080)$	0,2	**				Ω_c^0	$1/2^{+}$	***
N(2120)	3/2-		٨	1/2+ ****	$\Sigma(2100)$	7/2-	***				$\Omega_{c}(2770)^{0}$	3/2+	***
N(2190)	7/2-	****	Λ Λ(1405)	1/2 ****	$\Sigma(2250)$		**						
N(2220)			$\Lambda(1403)$ $\Lambda(1520)$	3/2 ****	$\Sigma(2455)$		**				Ξ_{cc}^+		*
N(2250)	9/2-		Λ(1520) Λ(1600)	3/2 1/2 ⁺ ***	$\Sigma(2620)$		*				.0	1	
N(2600)	11/2 ⁻ 13/2 ⁺		$\Lambda(1000)$ $\Lambda(1670)$	1/2 ****	Σ(3000) Σ(2170)		*				Λ_{b}^{0}	1/2+	***
N(2700)	13/2 '		$\Lambda(1670)$ $\Lambda(1690)$	3/2 ****	Σ(3170)						Σ_b	1/2+	***
			Λ(1800)	1/2 ***							Σ_{b}^{*}	3/2+	***
			Λ(1800) Λ(1810)	1/2+ ***							$\Xi_{b}^{\bar{0}}, \Xi_{b}^{-}$	1/2+	***
			Λ(1820)	5/2 ⁺ ****							Ω_b^-	$1/2^{+}$	***
			Λ(1820) Λ(1830)	5/2 ****									
			/(1890)	3/2+ ****									
			Λ(2000)	3/2 *									
			A(2020)	7/2+ *									
			A(2100)	7/2- ****									
			Λ(2100) Λ(2110)	5/2+ ***									
			A(2325)	3/2 *									
			A(2350)	9/2 ⁺ ***							DG		
			A(2585)	**									
			.(2303)										

 $|\Lambda(1405)\rangle = N_{3q}|uds\rangle + N_{5q}|uds|q\bar{q}\rangle + N_{\bar{K}N}|\bar{K}N\rangle + \cdots$

We need a classification scheme applicable to resonances.

Field renormalization constant Z and compositeness (Part I)

Compositeness of bound states

Compositeness approach: decompose Hamiltonian

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, arXiv:1310.1176 [hep-ph]</u>

 $H = H_0 + V$

Complete set for free Hamiltonian: bare |B₀ > + continuum

$$1 = |B_{0}\rangle\langle B_{0}| + \int d\mathbf{p}|\mathbf{p}\rangle\langle \mathbf{p}|$$
Physical bound state |B>

$$H|B\rangle = -B|B\rangle, \quad \langle B|B\rangle = 1$$

$$1 = \langle B|B_{0}\rangle\langle B_{0}|B\rangle + \int d\mathbf{p}\langle B|\mathbf{p}\rangle\langle \mathbf{p}|B\rangle$$

$$H_{0} \qquad H \qquad |B\rangle$$

$$I = \langle B|B_{0}\rangle\langle B_{0}|B\rangle + \int d\mathbf{p}\langle B|\mathbf{p}\rangle\langle \mathbf{p}|B\rangle$$

$$H_{0} \qquad H \qquad |B\rangle$$

$$Z : elementariness \quad X : compositeness$$

$$Z, X : real and nonnegative --> probabilistic interpretation$$

$$\Rightarrow 0 \le Z \le 1, \quad 0 \le X \le 1$$

Field renormalization constant Z and compositeness (Part I)

Weak binding limit

In general, Z depends on the choice of the potential V.

- Z : model-(scheme-)dependent quantity

$$1 - Z = \int d\mathbf{p} \frac{|\langle \mathbf{p} | V | B \rangle|^2}{(E_p + B)^2}$$

In the weak binding limit, Z is related to observables

S. Weinberg, Phys. Rev. 137, B672 (1965); <u>T. Hyodo, arXiv:1310.1176 [hep-ph]</u>

$$a = \frac{2(1-Z)}{2-Z}R + \mathcal{O}(R_{\text{typ}}), \quad r_e = \frac{-Z}{1-Z}R + \mathcal{O}(R_{\text{typ}}),$$

a : scattering length, r_e : effective range $R = (2\mu B)^{-1/2}$: radius (binding energy) R_{typ} : typical length scale of the interaction

Criterion for the structure:

 $\begin{cases} a \sim R_{\text{typ}} \ll -r_e & \text{(elementary dominance)}, \ \mathsf{Z} \sim \mathsf{1} \\ a \sim R \gg r_e \sim R_{\text{typ}} & \text{(composite dominance)}, \ \mathsf{Z} \sim \mathsf{0} \end{cases}$

Field renormalization constant Z and compositeness (Part I)

Interpretation of negative effective range

For Z>0, effective range is always negative.

$$a = \frac{2(1-Z)}{2-Z}R + \mathcal{O}(R_{\text{typ}}), \quad r_e = \frac{-Z}{1-Z}R + \mathcal{O}(R_{\text{typ}}),$$

 $\begin{cases} a \sim R_{\text{typ}} \ll -r_e & \text{(elementary dominance),} \\ a \sim R \gg r_e \sim R_{\text{typ}} & \text{(composite dominance).} \end{cases}$

Simple attractive potential: r_e > 0 --> only "composite dominance" is possible.

$r_e < 0$: energy- (momentum-)dependence of the potential

D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998) E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

<-- pole term/Feshbach projection of coupled-channel effect

Negative r_e --> Something other than |p> : CDD pole

Application to near-threshold resonances (Part I)

Application to resonances

Compositeness approach at the weak binding:

- Model-independent (no potential, wavefunction, ...)
- Related to experimental observables
- Only for bound states with small binding

Application to general resonances

<u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)</u> F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

- Z and X are in general complex. Interpretation?

$$\langle R | R \rangle \to \infty, \quad \langle \tilde{R} | R \rangle = 1$$

$$1 = \langle \, \tilde{R} \, | \, B_0 \, \rangle \langle \, B_0 \, | \, R \, \rangle + \int d\boldsymbol{p} \langle \, \tilde{R} \, | \, \boldsymbol{p} \, \rangle \langle \, \boldsymbol{p} \, | \, R \, \rangle$$

What about near-threshold resonances (~ small binding) ?

Application to near-threshold resonances (Part I)

Poles of the amplitude

Near-threshold phenomena: effective range expansion

T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013) with opposite sign of scattering length

Resonance pole position <--> (a, r_e**)**

Application to near-threshold resonances (Part I)

Example of resonance: $\Lambda_c(2595)$

- Pole position of $\Lambda_c(2595)$ in $\pi\Sigma_c$ scattering
 - central values in PDG

 $E = 0.67 \text{ MeV}, \quad \Gamma = 2.59 \text{ MeV}$

- deduced threshold parameters

$$a = -\frac{p^+ + p^-}{ip^+p^-} = -10.5 \text{ fm}, \quad r_e = \frac{2i}{p^+ + p^-} = -19.5 \text{ fm}$$

- field renormalization constant: complex
 - Z = 1 0.608i

Large negative effective range

<-- substantial elementary contribution other than $\pi\Sigma_c$ (three-quark, other meson-baryon channel, or ...)

 $\Lambda_c(2595)$ is not likely a $\pi\Sigma_c$ molecule

Summary (Part I)

Part I : Summary

Composite/elementary nature of resonances

Renormalization constant Z measures elementariness of a stable bound state.

 \checkmark In general, Z of a resonance is complex.

Negative effective range r_e : CDD pole

Near-threshold resonance: pole position is related to r_e --> elementariness

> <u>T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013)</u> <u>T. Hyodo, arXiv:1310.1176 [hep-ph]</u>

Introduction (Part II)

Universal phenomena in hadron physics

Universal few-body physics <-- large scattering length

- S-wave $\pi\pi$ scattering length
 - a_{I=0} ~ -0.31 fm, a_{I=2} ~ 0.06 fm / QCD scale ~ 1 fm
 - I=0 component can be increased by $m_{\pi} \nearrow$ or $f_{\pi} \searrow$

C. Hanhart, J.R. Pelaez, G. Rios, Phys. Rev. Lett. 100, 152001 (2008) <u>T. Hyodo, D. Jido, T. Kunihiro, Nucl. Phys. A848, 341-365 (2010)</u>

- Realizable by lattice QCD / nuclear medium

==> Three-pion system with a large scattering length

Universal physics (Part II)

Isospin symmetric three pions

Pion has an internal degree of freedom : isospin |=1

- s-wave two-body amplitude: |=0 and |=2

$$it_0(p) = \frac{8\pi}{m} \frac{i}{\frac{1}{a} - \sqrt{\frac{p^2}{4} - mp_0 - i0^+}}, \quad it_2(p) = 0$$

S-wave three-pion system in total |=1

Eigenvalue equation (eigenvalue B_3 for eigenfunction $Z(|\mathbf{p}|)$)

$$z(|\mathbf{p}|) = \frac{2}{3\pi} \int_0^\infty d|\mathbf{q}| \frac{|\mathbf{q}|}{|\mathbf{p}|} \ln\left(\frac{\mathbf{q}^2 + \mathbf{p}^2 + |\mathbf{q}||\mathbf{p}| + mB_3}{\mathbf{q}^2 + \mathbf{p}^2 - |\mathbf{q}||\mathbf{p}| + mB_3}\right) \frac{z(|\mathbf{q}|)}{\sqrt{\frac{3}{4}\mathbf{q}^2 + mB_3} - \frac{1}{a}}$$

Factor 1/3 difference from the identical boson case

Universal physics (Part II)

Spectrum in the isospin symmetric limit

Result: one universal three-pion bound state

- phase rotation of binding energy = phase rotation of a

$$B_3 \to B_3 e^{i\theta} \quad \Leftrightarrow \quad \frac{1}{a} \to \frac{1}{a} e^{-i\theta/2}$$

Negative a: virtual state

- **<--** rotation of B_3 by 2π = sign flip of a
- No resonance for all a
 - <-- interchange of Riemann sheet = sign flip of a

Universal physics (Part II)

With isospin breaking

In nature, $m_{\pi^{\pm}} = m_{\pi^{0}} + \Delta$ with $\Delta > 0$

- In the energy region $E \ll \Delta$, heavy π^{\pm} can be neglected.

Identical three-boson system with a large scattering length --> Efimov effect

$$z(|\mathbf{p}|) = \frac{2}{\pi} \int_{0}^{\infty} d|\mathbf{q}| \frac{|\mathbf{q}|}{|\mathbf{p}|} \ln\left(\frac{q^{2} + p^{2} + |\mathbf{q}||\mathbf{p}| + mB_{3}}{q^{2} + p^{2} - |\mathbf{q}||\mathbf{p}| + mB_{3}}\right) \sup(E) \ln E/\kappa_{*}^{2} |_{1}^{1/4}$$

$$\times \frac{z(|\mathbf{q}|)}{\sqrt{\frac{3}{4}q^{2} + mB_{3}} - \frac{1}{a}} \int_{1}^{f_{\Lambda}} (|\mathbf{q}|)$$
cutoff
$$-\frac{1}{2} - \frac{1}{1} \int_{1}^{0} \frac{1}{q^{2} + mB_{3}} \int_{1}^{1} \frac{1}{q^{2} + mB_{3}} \int$$

Efimov resonances

Resonance solution is now possible.

 phase rotation of binding energy = phase rotation of a and A + proper treatment of singularity in f_A(|q|)

$$B_3 \to B_3 e^{i\theta} \quad \Leftrightarrow \quad \frac{1}{a} \to \frac{1}{a} e^{-i\theta/2} \quad \text{and} \quad \Lambda \to \Lambda e^{-i\theta/2}$$

Efimov bound state --> resonance

Discussion (Part II)

Interpolation by model

A model with finite mass difference $\Delta = m_{\pi^{\pm}} - m_{\pi^{0}}$

$$\mathcal{L} = \sum_{i=0,\pm} \pi_i^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_i} - m_i \right) \pi_i + \frac{g}{4} \frac{\pi_0^{\dagger} \pi_0^{\dagger} - 2\pi_+^{\dagger} \pi_-^{\dagger}}{\sqrt{3}} \frac{\pi_0 \pi_0 - 2\pi_- \pi_+}{\sqrt{3}}$$

- E ≪ Δ : Efimov states, (Λ ≫) E ≫ Δ : single bound state
- cutoff for the Efimov effect is introduced by Δ.

Lowest Efimov level --> universal bound state

Summary (Part II)

Part II : Summary Universal physics of three pions

Solution Large $\pi\pi$ scattering length (|=0) can be realized by $m_{\pi} \nearrow$ or $f_{\pi} \searrow$.

With isospin symmetry: single three-body bound state for |=1, J=0.
 --> turns into virtual state

With isospin breaking: Efimov states for three neutral pions.

--> turn into resonances

T. Hyodo, T. Hatsuda, Y. Nishida, in preparation